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ABSTRACT 

n this paper, the terms disaster is conceptualised and 
explained as an event or a group of events with the 
corresponding outcomes. An event is described in detail 

by its severity and size. The corresponding numerical outcome of 
the event is redefined by magnitude of damage. The damage may 
be categorised as physical, social, and psychological and the 
consequential aspect of damage may be shown as the economic 
loss. The loss can be the output degradation of one industry of 
the economy.  The relationships between the various aspects of 
the damage mentioned are clarified in this paper.  The output-
degradation may spread to other industries in an economy 
through the interaction linkages between the affected industry 
and other industries. In this paper, a new mathematical model is 
developed based on the input-output model. The model can 
measure the economic loss via interconnected linkage and the 
parameters of the model are estimated by three innovative 
methods. The stability, limitation, and application of the model 
are also discussed and the event size distribution is considered as 
an additional random factor. Therefore a random distribution is 
linked to the model and the model is tested with a numerical 
example.  

 

 

I 



European Journal of Business and Social Sciences, Vol. 2, No.10 , pp 33-62, January 2014.            P.P.  33 - 62 
URL: http://www.ejbss.com/recent.aspx 
ISSN: 2235 -767X 
 

EUROPEAN JOURNAL OF BUSINESS AND SOCIAL SCIENCES 
 

34 

Background 

The increasing frequency and severity of natural and human-caused disasters affects stability, growth, and 
prosperity of an economy as well as the well being of society. These disasters are more significant when 
they are unexpected and uncertain. Regardless of whether this uncertainty has a random nature or is 
associated with inaccuracy in predictions, the consequences are costly and unavoidable. Minimizing the loss 
and costs of events or disasters is an ambition of both public and private decision makers and planners. The 
aim of this paper is to develop a new model that improves upon the existing input-output model to determine 
economic loss in interconnected industrial systems.   

Quantifying uncertainty to avoid or reduce the costs of such events can be effectively achieved through an 
engineering impact analysis. Engineering impact analysis enables different groups involved in key decision 
making assess probable and/or possible occurrence of disasters and therefore facilitate appropriate 
precautions. This assessment might lead to improved stability of the economy and social indices in a 
proposed region through investment and allocation of appropriate resources. Specifically examining the 
probable economic impacts of uncertain natural and human-caused disasters, it is important to recognise all 
elements and components of an economy and their interconnections, the major sources of uncertainty, the 
probable and/or possible impacts on the elements and components, and spreading of disasters to intact 
components through physical and functional interdependencies. 

Developing a logical framework with the aim to model and formulate the economic impact of disaster relies 
on the concept of the term event. The term event is defined as a phenomena associated with numerical 
outcomes. These numerical outcomes may be measured to be the probability and possibly of the 
corresponding damages and related physical outputs. The numerical outcomes may be also classified by the 
occurrence of events, magnitude of events, and etc. Therefore, probability theory is one of the fundamental 
principles of such a logical framework. In addition, in an economy with interconnected elements and 
components, any possible external or internal event on one element may impact all other elements and 
subsequently the economy. An economy acts as a system and is the union of elements and components 
including all possible interaction links. In particular, the interactions links causes the spreading and 
cascading of the event consequences. The term element in an economy refers to a particular branch of 
economy or commercial activity. Based on this definition, the term element is substituted by the term 
industry in this paper. 

Disaster, event and corresponding outcomes 

Several researchers have conceptualised the term disaster (Barkun, 1974; Dynes, 1976; Qarantelli, 1985).  
Barkun (1974) classified disaster as physical, social, and psychological damages. Dynes (1976) suggested 
disaster as the potential aspect of something that can generate physical impacts on the environment. The 
physical impacts are classified as natural or human caused agents in most disaster related research. 
Quarantelli (1985) classified and equated disaster using seven ideal-type terms but out of these only three 
are relevant to this study; namely, physical agents, physical impact of such agents, and assessment of 
physical impacts.  

Disaster is also defined as an imbalance in the demand-capability ratio in a crisis occasion (Quarantelli 
1985, p. 50). Pelling (2003) described disaster as the disruption to how a system functions; while the system 
may operate from small scale (such as individuals’ biological and psychological constitutions) to large scale 
(e.g. urban infrastructure network). In all attempts to define the term disaster the critical aspect is that 
measure of a disaster’s unwelcome consequential impacts. For this purpose, this term and it consequential 



European Journal of Business and Social Sciences, Vol. 2, No.10 , pp 33-62, January 2014.            P.P.  33 - 62 
URL: http://www.ejbss.com/recent.aspx 
ISSN: 2235 -767X 
 

EUROPEAN JOURNAL OF BUSINESS AND SOCIAL SCIENCES 
 

35 

impacts have been also described by the term event. Therefore, the term event refers to both concepts of 
disaster and related quantitative outcomes. The first conceivable quantitative outcome can be the event’s 
occurrence frequency. For example, changing climate and increasing the risk associated with terrorism, both 
may logically raise the frequency of events. It needs to be also noted that the occurrence of events may not 
be normally distributed and so sometimes it needs to be studied through a geological or geopolitical 
approach.  

Newly generated policies have emanated from studies on regulation and standardisation of constructions, 
network, immigration, or allocation. Some studies have been done on increasing the frequency of events and 
their uncertainty (Masika 2002, Wisner et al. 2004, Clark et al. 2006). For example, Wisner et al. (2004) 
studied human populations as a function of an event’s frequency, while Masika (2002) noted the weakening 
of recovery over livelihood systems after facing uncertain and frequent events. Additionally, the number of 
events is an important factor for event assessment. It is possible that more than one event occurs at the same 
time, or an event generates others. For example, the impact of an earthquake and heatwave at the same time 
increases the stress on vulnerable people (Earth policy institute, 2003); Scawthorn (2000) remarked on the 
weakness in adequate fire fighting capability caused by an earthquake during a drought. Managing the 
combinations of events may be achieved by developing a logical interaction with the probability related to 
the events. In this regard, Ang and Tang (2007) quantified the relationship between events by rules such as 
addition, multiplication, total probability, or Bayes’ theorem. 

The second quantitatively measurable factor concerns the severity of events and consequential damage. This 
measurement can be related to the frequency of severity or magnitude of damage but combinations of events 
also need to be considered. Basoz and Kiremidjian (1998) constructed empirical fragility curves based on 
the reported and aggregated data from past earthquake damage. Several fragility curves have also been 
developed such as fragility curves for bridges (Hwang et al., 2001), and power and water systems 
(Shinozuka et al., 2004). While, fragility curves can be verified by the availability of historical and current 
data, in the absence of such data for events the only feasible approach is to develop these curves 
theoretically. In fact, fragility curves are a conditional type of probability. These curves provide the 
likelihood of a certain level of damages that a structure will experience or exceed (Nielson, 2003). The data 
can be aggregated based on natural randomness or artificially generated by proposed boundaries to reify 
theoretical models.   

Therefore, the term event may be defined as a disaster with some significant measurable outcomes such as 
size and the rate of occurrence. A proper data set of the outcomes may support the relevant groups of people 
to estimate the consequences of probable and/or possible events including corresponding damage.   

Event, severity and damages 

One area of engineering research assesses events by their level of extremity, such as maximum earthquake 
intensity. The term extreme refers to bot the maximum and minimum of a set of numerical outcomes of an 
event. As long as measurement term is numerical, it can be studied in this manner. For example in statistics, 
quantifying extremity is related to the largest and the smallest values (extreme) in a sample, and the sample 
size.  The outcome distribution of consequences therefore may be assumed to be an exact or follow an 
asymptotic distribution (Ang and Tang, 2007). The extreme values in an uncertain extreme event (such as an 
extreme natural event) may not be predictable before occurrence of that event. Also, the values may not be 
achievable from historical data. Hence, to evaluate the extremity in pre-event situation, a set of random 
distributions related to occurrence of extreme events can be constructed using a set of assumptions for the 
purpose of analysis.  
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The corresponding damage of an extreme event may be shown by a distribution with lower and upper 
boundaries. In such a distribution, the population of damage varies between 0 and 1 (0 and 100% 
destruction). It may be illustrated by Cumulative Distribution Function (CDF) curves in terms of initial 
variates (Figure 1). The sample size (n) can also affect the distribution. For example, when n = 1 the 
distribution becomes an exponential curve. However, larger sample size (n) increases the fidelity of the 
estimated distribution to the real one and changes the curve to an S-shape. This means that the growth 
pattern can be defined by an S-shaped curve Initially, the population increases slowly with a positive 
acceleration; then increases rather rapidly to approach exponential growth rate:  labelled the J-shape; then 
when the growth in population declines because of a negative acceleration; but the growth rate is 
nevertheless still positive; and finally the population gains its maximum value (100%) with a zero growth 
rate. In the absence of historical data, the two parameters: namely, sample size (n) and population of 
damages can be estimated through the conduction of a set of what-If scenarios. The larger sample size (n) 
may indeed result in better accuracy; for example, Figure 1 shows that when the sample size n is larger than 
1, the distribution moves from an exponential to a an S-shape (As noted earlier, the S-shape appears more 
realistic when compared to others in terms of damage and extremity).  

 

 
 

Figure 1: Distribution of damages versus extremity of event for  different 
values of  n 

Before assessing damage, the intersection among events needs to be also considered. The simultaneous 
occurrence of more than one extreme event, or the occurrence of a series of extreme events, may propagate 
damages. For example, explosions in gas pipelines or floods due to failed dam may occur after an 
earthquake. In this case, earthquake as an event generates or causes extra set of events that follow. Figure 2 
shows possible interactions between two extreme events and the resultant overall damages flow chart.  

 
 

Figure 2: The nature of overall damages in case of two extreme events 
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The overall damage may also be modelled based on the distribution of damage (Figure 1). In this regard, all 
interactions between events need to be evaluated through a large database (Figure 3). While in this research 
the quantification of damage is predicted through a set of what-If scenarios, the effect of events are provided 
as a package of so-called overall damages. It is critical to note that in aggregating the impacts of damage, 
the maximum damage cannot exceed 1 (100%). 

 
 

Figure 3: Conceptual model of overall damages of six simultaneous extreme events 

Accepting the classifications of damage (physical impact, social impact, and psychological impact) provided 
by Barkun (1974) (Figure 4), the assessment of the loss, associated with an event needs to be determined for 
each type. It is a fact that in most cases, the three types intersect but initially to avoid complexity in 
modelling it may be assumed that there is no interaction between the impacts (the impact of any two of them 
is zero). Essentially, then if the impact of social and psychological is assumed to be zero, the physical 
impact adequately captures the estimated total loss.  

 

Figure 4: Classification the impact of extreme events   

Physical impact 

An important consideration when developing a disaster framework is the economic loss. An economy is a 
system that consists of a number of physically interconnected industries. Each industry acts as a provider of 
commodities to others (supplier) and/or consumers (end-users). Extreme events may potentially impact the 
industries and/or their linkages physically. This physical impact for example, may be a destroyed 
powerhouse or a set of broken power-lines. The obvious consequence of physical impact on an industry is 
functional disorder. This functional disorder may simultaneously impact upon the industry outputs.  

The physical impact, based on the above explanation, can be defined as degradation of the industry outputs. 
This degradation may be measured by the percentage of the output (over as-planned output) and/or outage 
of the industries. In both cases, the results are the same: perturbation in the supply and demand chain. The 
actual physical impact measurement is rather difficult to obtain. The process needs a large database for 
every possible event and its effect on each industry. However, when the goal is to measure the economic 
loss, the physical impact may be determined by aggregating the output degradation of affected industries as 
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well as their cascading effects on interconnected industries. A study on the monetary flow between the 
industries may be most efficient way to calculate the physical impact. 

Social impact 

Social impact may simply be defined by the impact of events on society but a better definition may be found 
through the assessment of this impact. Burdge (1995) defined the social impact assessment as an approach to 
identify and assess the impact of change on society including individuals, families, and communities. Becker 
(2001) described social impact assessment by the act of understanding and recognising the future 
consequences of an action related to individuals, organizations and social macro-systems. Social impact is 
related to the future consequences of any social-related actions. Chadwick (2002) indicated that most of 
social impact assessments are focused on quantitative factors such as population changes, infrastructure 
needs, and economic assessments. Therefore, it can be concluded that social impact is an existing and/or 
potential (future consequences) impacts on society and it may be measured by numerical outcomes.  

Haas et al. (1977) defined four steps that a community must undergo after a disastrous event: (i) the 
emergency period; (ii) restoration period; (iii) replacement reconstruction period; and (iv) commemorative 
betterment period. Such an event can impact the society the impact may be related to the industry output 
causing shortage of goods and services that in turn may directly affect the health and welfare of people. 
Moreover, the recovery process is related to the level of society readiness. Quarantelli and Dynes (1976) and 
Hanchett et al. (1998) also explored the social impact of an extreme event but they explained social impacts 
in terms of physical and economic losses.  It seems it is common to simultaneously describe the event 
consequential losses by both those impacts. For example, Gruntfest (1995) counted the losses of an event as 
the number of destroyed houses or businesses, tax losses, and migration from an affected area. In this 
manner, the physical and social impacts can be known as inherent factors.   

As noted above, the loss associated with a disaster is usually difficult and sometimes impossible to measure.  
The combination of two such as physical and social impacts makes the evaluation even more complex. 
Therefore, the social impact is assumed zero and the behaviour of individuals, families, and communities are 
supposed to be constant and as pre-disaster behaviour (but the social loss is subsumed to the economic loss 
in this case).   

Psychological impact 

Green et al., (1990) noted that people who are directly affected by an extreme event can suffer psychiatric 
disorders after the event much more than those indirectly affected. These disorders are called psychological 
impact of an event. Galea et al. (2002) stated that disasters, extensive loss of life, damages to buildings and 
properties, and financial strain appear to be the main factors that cause psychological impacts. However, 
Burdge (1995) suggested the psychological impact of an event should be a part of the social impact. The 
psychological impact of an event can affect and change the behaviour of people. It was argued that short 
term and long lasting disorders change human consumption behaviour (demand). For example, after an 
extreme event, the demand for phone calls may significantly increase yet the communication infrastructure 
that operates, is still based on its pre-disaster capacity; a higher that normal demand can theoretically shut 
down the whole communication system.   
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In conclusion, there are rather close relationships between psychological and physical and social impacts. 
The psychological impact may be also defined by physical impact in an economic assessment when it is 
determined via the changes in consumers demand. Therefore, a comprehensive loss assessment needs to be 
carried out through these three impacts but the complexity of the mixture of the above mentioned impacts is 
rather high and would lead significant modelling difficulties with little improvement in accuracy it would 
seem when a first level attempt is made to model loss in economy. Hence, to avoid the complexity, the 
psychological impact is assumed neutral (subsumed in the total economic loss). 

Development of a new model based on the input output model (I/O) 

The dynamic input - output model has been developed and described by Miler and Blair (1985). It combines 
the relationship between the industries (as systems), and also provides an analytical technique to study the 
whole system (an economy) during the recovery process. The new model analyses events within the same 
framework but an important novel factor is then included; that is, the severity of the event based on the 
extreme value theory. In traditional dynamic I/O model the recovery of an affected industry starts at time 
zero after the disaster with a constant resilience rate; increasing to reach its as-planned output. This process 
is the same for any event regardless of magnitude. However, the magnitude of an event may be different for 
each industry. Therefore, the I/O model can only be used for a basic level of disaster (when n =1). In this 
paper, the model is revised based on probability theory and extreme value distribution concepts. Evaluating 
the industry outputs associated with the event size, either independently or collectively, needs be done for all 
affected important industries (infrastructure systems). The important industries like infrastructure systems 
are the key industries for the stability of supply and demand chain in an economy. Since the magnitude of an 
event is also considered, the new model will provide a more accurate measurement of economic loss when 
compare to other models.  

However, for this purpose the output reduction and/or outage must be shown clearly. For instance, it is 
assumed that a powerhouse (as an important industry) is affected by an extreme event and results in several 
hours or days of electricity outage. There is no damage on electricity network and that the electricity 
consumer industries do not have backup generators. Importantly, there is only one power house producing 
electricity for all. This means the source of electricity is the same for all industries, and end-users such as the 
local people in the selected economic environment (this means that all face an equal risk of electricity 
outage).  

The term an important industry can also contain services industry as long as they behave the same as 
manufacturing industries in pre- and post-disaster. Shobeiri Nejad and Tularam (2010) formulated the 
Australian international arrivals and argued that tourist arrivals, as a variable, follows product life cycle 
similar to other industries. Tularam et al. (2012) tested this formula over a time series analysis and the result 
was enough close with 95% confidence to validate that. This variable plays a significant role in a tourist 
destination while other industries and enterprises are tightly connected to tourism industry. Therefore, 
tourism industry may also count as an important industry that have outage (no tourist arriving) or reduce and 
regrow over the recovery process. 
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Model development based on probability and extreme value theories  

Consider a random variable Z (population) with a known probability distribution  zfZ  (PDF: Probability 
Distribution Function) or  zFZ  (CDF: Cumulative Distribution Function). The population is assumed to 
have a size n. Any sample of some size drawn from the population contains a largest and smallest value. 
Under repeated sampling, these extreme values will have their own distribution related to initial population 
(Z).  

The sample size n contains a set of observations. This set includes the first, second, up to the nth observation. 
While these observations are unpredictable, they may be accepted as real values of random initial variables (

nZZ ,,1  ). The following sets ( nUU ,1 ) may be derived for minimum and maximum random initial variables:  
 nZZU ,,min 11    and   nn ZZU ,,max 1   

The above sets include the extreme values that in turn will form their own distributions. These probability 
distributions may be extracted under certain assumptions when sampled repeatedly.  For example, it is 
assumed that maximum set of random initial variable ( nU ) is less or equal to a specific value for example: u

. Therefore, all initial random variables are less than or equal to u  ( uZZ n ,,1  ). If it is assumed that all 
initial random variables are statistically independent then the distribution functions of initial variables (Z) 
will be equal:      zFzFzF ZZZ n


1

 and based on this assumption, the CDF of nU  may be written as shown 

in Equation 1:   

      nZnU uFuZuZuZPuF
n

 ,,, 21  . 1 

The PDF is the derivative of CDF and may be written as shown in Equation 2: 

          ufuFn
du

udF
yFuf Z

n
Z

n
pU

U
n

1 . 2 

  

For the set of min (minimum) random initial variables ( 1U ), it is assumed that 1U  is larger than a specific 
number u . Therefore, all initial random variables are larger than u  ( uZZ n ,,1  ) and the distribution of 1U  
may be written as shown in Equation 3:  

      nZn uFuZuZuZPuF  1,,,1 211
 . 3 

Equation 5.3 is also known as the survival function (Ang and Tang, 2007). The CDF of this can be given as: 

    nZU uFuF  11
1

. 4 

Therefore, the PDF is again the derivative of Equation 4:  

      ufuFnuf Z
n

ZU
11

1

  5 
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Equation 3 is survival function and approaches zero, thus  uF
nU  is chosen for probability distribution in this 

model development. The initial variable Z may be assumed to be the population of events and  uF
nU  

represents the probability distribution of events. It is logical to accept that where there is no event, there is 
no sample size and the probability of event is zero (vice versa); on the other hand, where there are several 
events the random variable may contain the set of maximum ( nU ) and minimum: 1U . An event was defined 
to be a disaster with numerical outcomes and, respectively, it can be explained by the consequential damages 
(event   damage). Hence, the initial variable can be substituted by population of damage.  This idea can be 
also expanded for the event size. When the event size reaches and then exceeds a specific value, the 
population of damage becomes (and remains) 1. It is also true that the larger the size of event the higher the 
size of damages. Therefore, a sample from initial variable may contain n different level of damages 
associated with the events with different sizes.    

Although the damage may be measured in various ways, for the purpose of this research it is measured by 
the degradation of the industry output. Therefore, the initial damage population is substituted by the 
degradation of affected industry outputs. This amount of output can be also normalized and oscillate 
between 0 and 1. The recovery process and damage are two sides of the same coin. While the damage 

degrades the system outputs, the recovery process aims to return that to pre-disaster value (recover
damage

1


). Therefore, the initial variable in extreme value theory may be replaced by normalized output over the 
recovery process. It is a fact that each industry is built based on its environmental conditions where all the 
catastrophic events were possibly considered (there is an ideal zero events situation). However, 
environmental conditions change over time and, subsequently, the probability of uncertain and unforeseen 
events increases. As a result, the probability of damage on the industry rises. The level of damage on the 
industry may be also enlarged by increasing severity of the events. The damage may then directly affect the 
industry output and degrade it. Following the industry output degradation, the recovery processes become 
activated and attempts are made fix the system so that the output may return to its pre-disaster (so-called as-
planned) output. This recovery is a dynamic process. During this process, the system outputs (as a 
measurable numerical outcome) increases over the time of recovery. This numerical outcome can be 
accepted to be explained by time (variable). If each initial variable is shown by corresponding time T , nU  
may be shown by  nn TTU ,,max 1  .Based on above modification of extreme value theory and statistical 
content,  uF

nU  models the amount of output over the recovery process. Equation 5.1 may be written as 

shown in Equation 6: 

    nTU tFtF
n

  where    tTT n ,,1  . 6 

Woo (2000) proposed that Natural disasters such as earthquakes and volcanic eruptions follow a random 
poisson distribution in time. Embrechts et al. (2003) noticed that poisson process represents rare events in 
space and time. This process encounters in the context of the risk theory and is a key tool in analysis of 
external events. Ang and Tang (2007) noted that the occurrence of most extreme natural events 
approximately follow a poisson process. The poisson process is based on the occurrence time itself. If the 
occurrence of an extreme event follows a poisson process, then the time and recurrence may be defined by 
the exponential distribution. Therefore,  tFT  may be written as shown in Equation 7: 

  kt
T etF 1  7 
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In Equation 5.7, notation k refers to mean of occurrence rate. In substituting the probability of event 
occurrence with the system output through above process, the notation k can now be redefined as the mean 
growth rate. The exponential growth is dynamic and based on two variables: namely, time and growth rate. 
This model is stable for all values of these two variables. Indeed, the exponential growth model has been 
used in studies by Lian (2006) and Santos (2006), both of whom demonstrate the system resilience after an 
event. The exponential growth also satisfies the goal of recovery process (the industry output can regain its 
pre-disaster value (to the as-planned output). 

Based on Equation 1 and Equation 7, the distribution of nU  may be written as followed: 

   nkt
U etF

n

 1 . 8 

Equation 8 is the amount of the system output (normalised) over recovery time t.  tF
nU  represents the 

normalised system output (  
x
tx ) (Soomro, Tularam et al, 2013).  Now Equation 7 can be now written as 

shown in Equation 9: 

   nkte
x
tx  1 , 9 

where,  tx  refers to the system output or function, x  shows the as-planned output, t  refers to time  0t , k  
directs to the constant growth rate (recovery resilience rate and 0k ); and n  the magnitude of the event 
 1n . The PDF of the speed of system output growth over the recovery process is     1

1
 

nktkt
U eekntf

n
. 

This model, as it mentioned earlier, is more realistic for the recovery after an extreme event because of 
embedding the event size n. The previous recovery model was developed and used for all events regardless 
to their size. However, in new model, when the event size increases, the effects are visible and measurable. 
Equation 9 can be expanded via the binomial theorem for small n: 
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Equation 10 is useful for small n.  

Equation 9 can also be expanded based on exponential function theory for large n. Based on this theory 



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

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x

n
1lim  can be written as xe . Therefore, by substitution of x with ktne : 
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11 

Before developing the model for the interconnections between the systems, a shifted exponential distribution 
needs to be investigated. The recovery process, while the post disaster function of system has dropped, can 
be explained by shifted model. In chapter 2, this shift was explained by adding as-planned output ( x ) and 
the output after the disaster ( 0x ). However, this shifting is explaining by 0t  in this model; that is, 0t  is the 
corresponding time for 0x . In equation 12, n has the lowest value (n=1). 
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   010 ttke
x

x  . 12 

Rearranging Equation 12 in term of  0t  is: 
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x
xx

k
t 0
0 ln1  13 

In a similar manner for large n, the above method can be used to determine the extreme CDF model for 
Equation 11: 
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x
tx   14 

Therefore, 0t  may be written as shown in Equation 15:  
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15 

As in real situation n is limited, equation 15 can be accepted to estimate the time. Later, in this research, 
Equation 9 is hired to show these relationships by the redefinition of recovery time and outage time. 

 

Figure 5 shows the distribution of the system output during the recovery process. That is, when 0x  is larger 
than zero, the curve is shifted more to the left side.  

 

 
 

Figure 5: System output over the recovery process 

 

 
 



European Journal of Business and Social Sciences, Vol. 2, No.10 , pp 33-62, January 2014.            P.P.  33 - 62 
URL: http://www.ejbss.com/recent.aspx 
ISSN: 2235 -767X 
 

EUROPEAN JOURNAL OF BUSINESS AND SOCIAL SCIENCES 
 

44 

Figure 5 demonstrates the curves for four different 0x  values. When the output degrades to zero, it may halt 

for a portion of time over the recovery process. However, when 0x  is greater than zero, the halting time may 
be shorter or zero. Moreover, Figure 5 shows that in some cases when the output is larger than zero, the 
growth starts without any halting time over the recovery process.  

In above method, the model was shifted by a calculated or estimating the initial time. The model can be also 
shifted by altering other parameters. In the following innovative method, the model is shifted by modifying 
the event size n. The solution of original distribution associated with 0x , instead of  0t , can be given as: 

kte
x
x

x
x  )1(1 00 . 16 

Equation 16 can be written rearranged to the following form: 

)1)(1( 0
0

0 kte
x
xx

x
x  . 17 

Assuming the effect of an event with larger size causes more halting time, Equation 17 can be written as:  

nkte
x
xx

x
x )1)(1( 0

0
0  , 18 

where the size of event imbedded in the parameter n . The event size in Equation 18 was explained earlier 
when the extreme value theory was discuss and presented in Equation 8. The recovery process is shown by 
following curves (Figure 6): 

 
 

Figure 6: Equal halting time in the beginning of recovery process 

Figure 6 shows that the halting time is the same for any value of 0x . To make it realistic, it is assumed that 
event size ( n ) explains the halting time of recovery when the system is affected. A shift in the event size n  
allows this to be represented. It is also assumed that when an event occurs with magnitude, n ; while the 
system is not completely damaged (and has output more than zero), the halting time is shorter than when it is 
completely destroyed. In this case, the event size needs to be altered and this results in an amended halting 
time (Figure 7). Examining the relationship between natural disasters and event size (Figure 5.3), the 
damage power of an event to may grow exponentially (such as in an earthquake) as modelled in Equation 
19. 

 )1( neDamage   19 
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For example, for 5 , 3.0  and 8n , the corresponding damage is 62%; that is, when 38.062.010 x . 

 
 

Figure 7: Amended halting time in the beginning of 
recovery process 

Miller and Blair (1985) proposed a well-known dynamic balance equation for Input-Output model. 
Theoretically, this model is based on basic population growth model as shown in Equation 20;  

       tXBtYtXAtX    or 

    tYtXAI
B
ItX  )()( , 

 

20 

where the label A represents a matrix of technical coefficients, Y is a matrix of final demand, and B is a 
diagonal capital matrix. It is to be noted that as the positive value of B increases the industry outputs  tX  to 
infinity. Therefore, Equation 20 is stable when the capital coefficient matrix has negative values (adapted 

from Miller and Blair, 1985). If B accepted as matrix with negative values, 
B
I  is also accepted as the same. 

However, recovery is a positive and additive process. Therefore, the coefficient 
B
I  is substituted by matrix 

by – K. Matrix K has positive values (the resilience matrix) and contains the growth rate for each industry. 
The negative sign attached to K  can be explained by the positive and additive inherent nature of resilience 
or recovery in the exponential solution.  

  )()( tXAIKtX   21 

or      
 dtAIK

tX
tdXtXAIK

dt
tdX

)(
)(

)()(  

tAIKeXtX )(
0)(   

This solution is a descending function (survival function) and can not show the recovery process. However, 
if )(tX  and 0X  can be substituted by )(tXX   and 0XX   respectively, the solution can represent the 
recovery process. This means that the degradation of the system outputs follows a survival function and at 
the end of recovery process, the systems obtain their pre-disaster (as-planned) outputs (Equation 22). 

    0
)(

0 XXeIXtX tAIK    22 

For an event size (n), Equation 22 can be written as:  
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where  ntAIKeI )(   is exponential growth over recovery after an extreme event with size n  (this equation 
relates to the extreme value, namely, severity of event).  Equation 23 shows the output of many 
interdependent systems as a matrix. Equation 23 can now be exponentially expanded:  

  1)()(   tAIKtAIK ee  24 

The right hand side (RHS) of Equation 24 (in the mean time without the negative power) when expanded 
gives: 
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Finally, the RHS of Equation 24 may be written as:  

 

;27 

 

When the negative power is added, the Equation 27 becomes: 
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Equation 28 may now be simplified to Equation 29: 
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Factorising the common coefficient, Equation 29 may be written as: 
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At this time other elements of the model may be added to Equation 30 in the following manner: 
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The equation      0
)(

0 XXeIXtX tAIK    may now be written as shown in Equation 32: 
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The event size n  is noted to be one. Therefore, for every interconnected system (in a system), the output 
over the time can be written as: 
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As mentioned previously, the event may affect more than one industry at the same time. The event size may 
also be different for each industry as well. In this case, the event size needs to be provided as a diagonal 
matrix. The result is an exponential matrix power to a matrix. At the present to avoid this interfering of 
event sizes and complexity, it is assumed that the event simply impacts one industry directly. This 
assumption simplifies the case. Therefore, there is just one event size ( n ) taken to be a real number. This 
process is repeated for all affected industry individually, and finally, the smallest output for each time is 
accepted. 

To illustrate the application of the newly developed I/O model, the following example is selected and 
modified from Miller and Blair (1985). In fact, Lian (2006) also used this example to demonstrate IIM and 
DIIM models (See Table 1). Table 2 is modified for a one industry economy. 
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Table 1: Flow of goods among two industries economy (million dollars) 

 

Industry I j Final Demand Total Output 

i 150 500 350 1000 

j 200 100 1700 2000 

Primary Input 650 1400   

Total Input 1000 2000   

 

Table 2: Flow of goods among one industries economy (million dollars) 

 

Industry i Final Demand Total Output 

i 150 850 1000 

Primary Input 850   

Total Input 1000   

 

Figure 9 represents the outputs of two industries through a complete recovery process concerning industry i . 
This industry is affected by an extreme event with magnitude of one. The halting time for industry i  is zero. 
The recovery resilience rate is constant and equal 0.2  2.0k . Figure 8 shows that although industry j  is 
unaffected, its output is decreasing and then increasing to as-planned output while industry i  is under 
recovery.  

 
 

Figure 8: Normalised output through a complete recovery process on 
industry i 
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Increasing n  changes the curve into double exponentials. There is an observed halting at the beginning of 
the recovery process. The halting can be defined by as-planned output of affected industry. It can be 
assumed that the industry with the output less than 95% of as-planned to be an extinguished industry.  
Figure 10 demonstrates the output of two industries for different event magnitudes.  

 

 

 

Figure 9: Industry outputs through recovery process with different event magnitudes 

 

Figure 9 shows that as the magnitude of event increases, the halting time also increases for the affected 
industry. On the other hand, unaffected industries, respectively, decrease with a pause associated with 
halting time of affected industry. However, an affected industry also impacts other industries through the 
interconnected network (at the same time). For this reason, the function is changed to a Min function. This 
Min function selects the smallest value of the industry outputs, while the event size increases. For affected 
industry the Min function and the previous one have the same outcomes, however, the previous function has 
a weakness to calculate the industry output which is affected through another industry. This weakness 
appears when the directly affected industry has a halting time by increasing the event size. In this case, the 
interconnected industry experiences the same halting time but in an opposite way, it stays without any 
changes. Realistically, the industry outputs must be smaller while the event size is larger. Therefore, Min 
function solves this problem makes the outcomes real.   
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Figure 10 demonstrates the amended graph of normalized output for two industries during recovery process 
with event size of 8  8n . 
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Figure 10: The graph of normalised output through recovery process with Min 
function 

Estimating the parameters 
The information regarding the matrix A  that shows the monetary interdependency between the industries 
can be obtained from ABS website (Australian Bureau of Statistics-Australian National Accounts (Input-
Output Tables-Industry by Industry Flow Table). Other related data is also available for 406 detailed US 
industries from US Department of Commerce (BEA/RIMS II). The information regarding the matrix X , 
which shows as-planned output, can also obtained from Input Output table provided in the ABS website 
(www.abs.gov.au). The information regarding the matrix 0X  that represents the output after an extreme 
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estimation must be through some of simulated condition by experts, fully explained foundations, or through 
an estimation process by studying the historical data. As the output of each industry is related to the event 
size (n) and recovery resilience rate (k), an estimation of event size may be based on identifying the response 
of industries while there are facing with new events as well as maximum possible magnitude of new 
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Estimating event size 
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an event with Not-Bad event size, n , the output may drop to zero (For example: electricity outage). 
However, within in a short time recovery process, the output increases to 95% or more of as-planned output. 
On the other hand, an event with Very-Bad size n  is assumed to result in the industry completely destroyed.  
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Dam. In Multi-hazard Loss Estimation Methodology for Earthquake Model (HAZUS-MH MR3), the 
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Emergency Management Agency, 2003).  Based on these categories and applications (and for simplicity as 
well), the event size is selected to be up to a maximum of 10 (industry is completely destroyed). If the event 
size is also assumed as random Poisson distribution, then the above values of n can be described as the mean 
of distributed size. 

Estimating recovery resilience rate and outage time  

The system outputs are explained by three parameters: event size ( n ), recovery resilience rate ( k ), and the 
time outage or recovery ( outageT , eryreT cov ) (Equation 5.23). Each of those parameters may be estimated or 

calculated using the other two parameters. For this purpose, following three innovative methods are used in 
this thesis.  

Method 1: The outage (or halting) time may be obtained or assumed from 

(i) historical data; 
(ii) by comparing the outage time with other similar event; or  
(iii)  as suggested by expert.  

When the event size is known, the recovery resilience rate and standard recovery time can be determined 
using Equations 35 and 36. 

 

     outage
n TLnk  /05.01 /1  35 

 

     kLnT n
ery  /95.01 /1

covRe  36 

 

Both of above equations have been derived from Equation 23. The outage (or halting) time is defined as a 
part of recovery time that the output is less than or equal to 5% of pre-disaster output. For example, if the 
output drops to zero after the event and the recovery process starts immediately (initial time is zero) and the 
corresponding standard outage time of 5% of as-planned (or 0.05 if the as-planned is normalised) is given, 
the recovery resilience rate can be calculated using Equation 35. Similarly, the standard recovery time (when 
the recovery process has completed and the output is equal to or more than 95% of as-planned output or 0.95 
of the normalised output) can be obtained using Equation 3.36. In fact, in this method, the resilience rate is 
determined based on the outage time outageT ; and using the now known resilience rate, the recovery time 

eryT covRe  can then be calculated as well. Table 3 shows as example of this method of calculation.  

The outage time, associated with event size, may be also described using an exponential distribution. Table 
3 shows the calculated parameters for four different event sizes. The distribution of outage time may be 
described using a logarithmic scale or Weibull distribution as well (Figure 11). The distribution can be 
selected based on the historical extreme values distribution. In the absence of historical information, the 
distribution may be chosen by explaining the case. For example, it can be said that, by increasing the event 
size more industries are affected (positive loop). On the other hand, the number of industries is limited 
(negative loop). Both these loops and their combination may be defined by exponential distributions.  
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Table 3: Parameter estimation by assumed outage time and event size- exponential 
base 

 

Event Size Magnitude n  

Standard 
Outage Time 

xxt 05.0  

Standard 
Recovery Time  

xxt 95.0  

Associated 
k  

No event 0  N.A N.A N.A 

Minor 1  houraboutge
dayonethanLess

1..
 days3  

1  

  

Moderate 4  day1  days7  64.0  

  

Extensive 7  days14  days65  075.0  

  

Complete 10  days100  days390  0135.0  

 

   

 

Figure 11: Relationships between outage time and event size 

 

By assuming the same flooring and sealing for outage time, Table4 shows the estimated parameters for 
exponential outage distribution with maximum value. It can be argued that if an industry completely 
destroyed by an assumed event with size 10, any larger events cannot result in more damage and outage 
time. Finally, the distribution of outage may follow a combination of these distributions.   
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Table 4: Parameter estimation by assumed outage time and event size- 
Logarithmic Base 

 

Event Size Magnitude n  

Standard 
Outage Time 

xxt 05.0  

Standard 
Recovery Time  

xxt 95.0  

Associated 
k  

No event 0  N.A N.A N.A 

Minor 1  houraboutge
dayonethanLess

1..
 days3  

1  

  

Moderate 4  days45  days307  0142.0  

  

Extensive 7  days80  days373  0132.0  

  

Complete 10  days100  days390  0106.0  

 

The Tables 3 and 4, show that that the recovery resilience rate for each industry falls clearly between an 
interval; 0 and 1  10  k . This interval is useful to demonstrate the maximum possible resilience rate based 
on available resources to the decision makers. Also, when k approaches to zero the recovery is rather slow; 
and both the outage and recovery are increasing.  

 

Method 2: This method is similar to method 1 but the standard recovery time, eryT covRe , is used instead of the 

outage time. In this case the recovery time (the output returns to 95% as-planned output) is known or it is 
decided. The resilience rate and standard outage time can be determined using Equations 37 and 38. 

 

     ery
n TLnk covRe

/1 /95.01   37 

 

     kLnT n
outage  /05.01 /1  38 

       

Method 3: In this method, it is assumed that k  is constant for any value of n  and the recovery resilience rate 
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is larger than zero with an upper boundary of 1. The outage time and recovery time are dependent to k . The 
Tables 5.5 and 5.6 show the outage and recovery times for different event sizes.  

 

Table 5: Outage and recovery time for different event sizes (k = 0.0106) 

 

0106.0k  

 daysTOutage /  daysT ery /covRe  

 

1n  5 285 

4n  63 414 

7n  102 467 

10n  130 500 

 

Table 5 shows that if k = 0.0106 (as an example), the recovery process will take 285 days to increase the 
output from 0 to 95% as-planned for lowest value of n (n = 1). However, this process takes 500 day for 
maximum value of n (n = 10). 

Table 6: Outage and recovery time for different event sizes (k = 1) 

 

1k  

 daysTOutage /  daysT ery /covRe  

 

1n  0.05 3 

4n  0.7 4.5 

7n  1.06 4.9 

10n  1.36 5.3 

 

Table 5.6 shows that when resilience rate k  is one for event size one the recovery time takes 3 days 
(increasing the output from 0 to 95% as-planned). This recovery process takes just 6 days for event size 10. 
The small difference between the recovery time for minimum and maximum events may be used to show 
that this method is not realistic. For example, the difference between recovery times for an industry in two 
conditions of slightly damaged and completely destroyed cases is a short 3 days (the resilience rate is 1 for 
both cases).  
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Model stability, limitation, and application 

Stability 

Equation 23 demonstrates the monetary flow through a dynamic recovery process. It is assumed that 
recovery resilience rate and event size are constant. Therefore, at the initial time  0t : 

          00
0

00
0*)(

00 XXXeIXXXeIXX
nnAIK   . 39 

As the time progresses  t , the degraded output increases from initial value to as-planned output 
(Equation 40). 

      XXXXXXeIXX
nAIK  

000
*)(

0  40 

The case of the recovery resilience rate being positive  0k  affects the stability of Equation 23. For event 
size zero, this equation can be written as: 

      XXXeIXtX tAIK  
0

0)(
0  41 

All the members of matrix tAIKeI )(   are less than one, therefore, all the members of matrix  ntAIKeI )(  , 
when event size n increases  n , approach to zero and  therefore, the Equation 23 remains stable 
(Equation 42).  

      00
)(

0 XXXeIXtX
ntAIK    42 

Limitations 
There is a possibility that an event impacts more than one industry at the same time. The same event can 
impact different industries by quite different sizes and outage times at the same time. However, the event 
size n in the new model can accept just one value as mentioned earlier. To solve this limitation, the impact 
of an event on each system and the corresponding cascade effect on other interconnected systems are 
calculated individually. This means that to evaluate the loss by this model, just one industry is accepted to be 
directly affected by the event at each time. This process is sequentially repeated for all directly affected 
industries with their associated event sizes. The effects of an event on an industry can be induced on other 
interconnected industries at the initial time. If there were no induced initial effects on the rest of 
interconnected industries, matrix of  0XX   has one non-zero member that is related to the directly affected 
industry. Otherwise, any observed induced initial affects must be mentioned in the matrix of initial outputs (

0X ). Hence, matrix  0XX   may have more than one non-zero member. This process is conducted for each 
affected industry and interconnected industries individually. This procedure may lead to different values of 
outputs for each industry. In the final step, the minimum output in each time and for each industry is 
accepted.  
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Application 

One basic application of this model is the measurement of the loss. In this application, if the event size and 
recovery resilience rate and/or outage time are either known or decided, the total loss of each industry as 
well as whole interconnected industries can be calculated over the time of recovery. There is also an 
opportunity for decision makers to minimize the cost and/or loss by optimizing the recovery process. The 
calculated loss provides the opportunity to decrease the event size in future by empowering important 
industries (critical infrastructure systems) through a protection manifest before the event happens and also 
speeding the recovery process by increasing the level of readiness. 

Alternative model (demand based model) 

Industries within an economic system can be classified in two major groups based on their role: supply 
industry or demand industry. Chen (2006) describes the classifications by two methods. The first method is 
classified based on the number of connections. In this method the number of industries that one specific 
industry buys from (input) or sells to (output) is counted and shown in two different columns. If the number 
of buyers is more than sellers, then the industry is called Supply Industry (else Demand Industry). The 
second method of classification compares the total dollar (as currency) income of sale and total dollar 
outcome of purchase for each industry from intermediate transaction in the I/O table. If the value of sale was 
more than purchase in one particular industry, the industry is Supply Industry (or else Demand Industry). 

In Equation 23, the technical coefficient matrix A  can be substituted by another diagonal matrix. If the 
technical coefficient matrix contains the coefficient based on the amount of output from one industry to 
another (supply-side), the substituted diagonal matrix is based on the input to one industry from another 
(demand-side). These two models may be then used based on the definition of industries. To evaluate the 
loss via one affected supply industry, Equation 23 may be applied. However, if the industry is a demand 
industry, the loss may be measured through the alternative model where matrix A is substituted by an 
alternative matrix (See Ghosh, 1958) 

Event size distribution and calculation of total loss 

The important industries (critical infrastructure systems) are specifically built based on many factors 
including historical climate, current climate, and essential security information of the location. Therefore, 
the probability and possibility of concurrency of disastrous events with larger sizes may increase by 
changing each one of the factors. The only parameter that accepts randomness in this thesis is the event size. 
To randomize the event size, the truncated Poisson distribution might be selected. The truncated Poisson 
distribution is a Poisson distribution without value of zero that shows the absence of the event (No-event). 
The loss may be obtained by adding different categories of losses and costs namely: loss through 

 perturbation in monetary flow among the industries: this loss can be estimated and explained by 
developed model;  

 changing the behaviour of end-users e.g. local people: this loss can be explained by social and 
psychological impacts of events; 

 cost of restoration of affected industries; and 
 cost of imported goods and commodities to substitute the shortage of essential elements.    
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The calculation, estimation, and aggregation of the above items are altogether known as risk assessment; in 
contrast, managing the parameters through different management options is considered to be risk 
management. In considering a set of management options, the loss involving the recovery resilience rate and 
event size can be formulated as shown in Equation 43: 

),( nkfLossTotal t , 43 

 

where tk  is the recovery resilience rate among the time. The loss through perturbation in monetary flow 
among the industries may be written as shown in Equation 44: 

 

  

D

txx
LossTotal

M

i

D

t
ii

FlowMonetary


 



 1 0 , 

44 

 

where, D  is the number of days and, M  is the number of industries. 

For example, in the numerical example (Figure 12), the assumed mean event size is 6 based on a Poisson 
distribution. The industry 1’s output drops to ‘0’ while industry 2’s is not affected directly by the event. 
There is also no induced initial effect on industry 2.  The recovery resilience rate is 0.2. Figure 5.13 
demonstrates the random recovery process and also the average loss for each industry over 52 weeks (R was 
used to run the model).   

 

 

Figure 12: Recovery of the system based random event size 

Figure 13 shows the average loss over 52 weeks and the total calculated loss for 52 weeks is 440 million 
dollars (Industry 1 lost 302.1 million dollars while Industry 2 lost 137.9 million dollars). Figure 13 
demonstrates that although the recovery process starts after the event, the total loss increases. This growth in 
the total loss shows that the event impacts the interconnected industry via the affected industry as well. 
However, the total loss and recovery find a balance at the pick of the curve and then the total loss decreases 
to zero.   
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Figure 13: Mean loss in one year 

Conclusion 

Assessing and subsequently managing the disastrous events whether natural or man-made are essential 
requirements for managers, planners, and decision makers. Several studies have been done on this issue and 
numerous models and methods have been proposed and developed in the past. A well-known mathematical 
model for risk assessment is I/O model exists. The new model developed can be used to explain the 
interdependency among the industries in an economy.  In this paper, the I/O model is improved to make the 
assessment more accurate and closer to reality. The model is revised through the use of the extreme value 
and probability theories. The event size is added as a parameter to the model via a mathematically proven 
process. The newly developed model provides the opportunity to assess and manage the risk by measuring 
and controlling recovery resilience rate, outage (halting) or recovery time, and event size. This new model 
can also be used to assess the risk by increasing the size of event using a random process. To explain the 
distribution of event size a truncated Poisson distribution is used. The zero-event value is excluded (no-
event) and the event size is assumed to be natural numbers only. The method of calculating loss using the 
new model provides a framework for decision makers to achieve a better understanding of the risk and its 
economic consequences. This new level of modelling and understanding may help the processes such as: 
protection process, state of readiness, recovery process; or any combination of the above processes. Finally, 
the parameters in the mathematical model (i.e. recovery resilience rate, outage or halting time, recovery 
time, and event size) can be calculated and controlled through the framework presented. 
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