
A two-dimensional bin-packing problem with conflict penalties 

 

 

 

 

 

 

Kunpeng Li
a,*

, Hailan Liu
 a
, Yong Wu

b
, Xianhao Xu

a
 

 

a 
School of Management, Huazhong University of Science & Technology, Wuhan, 

Hubei, P.R. China. 430074. 

b 
Department of International Business & Asian Studies, Griffith University, Gold 

Coast Campus, QLD 4222, Australia 

 

*Corresponding author.  

Tel.:+86-13554436029.  

Fax: +86-27-87556437. 

E-mail address: likp@mail.hust.edu.cn. 

Postal address: School of Management, Huazhong University of Science  

& Technology, 1037 Luoyu Road, Wuhan, Hubei, P. R. China. 430074. 

 

 

 

 

 

 

 



A two-dimensional bin-packing problem with conflict penalties 

 

Abstract 

In this paper, we address the two-dimensional bin-packing (2BP) problem with 

variable conflict penalties, which incur if conflicting items are loaded into the same 

bin. Such a problem is observed in applications such as supermarket chains and 

automobile components transportation. The problem not only focuses on 

minimization of number of bins used, but also deals with the conflict penalties at the 

same time. We propose a heuristic method based on the IMA algorithm initially 

proposed by El Hayek et al. (2008) and adapt it to solve this problem. A local search 

procedure is also designed to further improve the solutions. For instances derived 

from benchmark test data, the computational results indicate that the adapted IMA 

heuristic algorithm with local search effectively balances the number of bins used and 

the conflict penalties. The algorithm outperforms several adapted approaches that are 

well known for the 2BP problems.  
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1. Introduction 

The well known two-dimensional bin-packing (2BP) problem is to load a set of 

rectangular items into larger identical rectangles (bins), with the objective to minimize 

the number of bins used without overlapping loaded items. This problem can be 

observed in many industries, such as the stock cutting in wood industry, the packing 

and container loading in transportation operations, and the paging of articles in 

newspapers. Each problem in real practice has its own features (El Hayek et al., 2008). 

For example, in the case when some items are incompatibly loaded into the same bin, 

we have the two-dimensional bin-packing problem with conflicts.  

In this paper, we address the 2BP problem with conflict penalties. In practice, 

there might be some items in a given set that could not be loaded into the same bin 

(strict conflict constraint). However, there are also cases where items can be loaded 



into the same bin by incurring penalties, such as safety distance (which takes more 

space), or extra protection (which increases cost and takes space at the same time) 

between the items. In this case, the conflict penalty value for each pair of items should 

not always be either 0 or 1, as often assumed in the literature (Khanafer et al., 2012a). 

This problem can be observed in the replenishment of supermarket chains with central 

warehouses. When a pallet is transferred from the warehouse to the store to be 

unpacked, it may be time-consuming if the racks for the commodities on the pallet are 

far away from each other in the store. Therefore, commodities can be said to have 

conflict penalties to reflect the time and labor consumption for pallet unpacking, when 

they are loaded into the same bin but belong to different storage areas. The same 

problem can be observed in other industries, such as the automobile manufacturing 

supply chains in which thousands of components are to be transferred from suppliers 

to manufacturers. For example, a famous automobile manufacturer located in central 

China acquires most of its parts from suppliers scattered around Shanghai and 

Guangzhou where one supply hub is set up in each area, respectively. In a milk-run 

system, the pallets with component packages are collected from suppliers, transferred 

to the supply hub, and subsequently repacked to pallets. Then, they are transported to 

the manufacturer. In order to control the component quality during transportation, 

each supplier requires that its products should not be mix-loaded with other suppliers’ 

products. If this requirement cannot be fulfilled, suppliers will only allow stacking of 

their own products and take no responsibility for quality problems if this condition is 

violated. Hence, it is desirable to directly transfer the pallets from each supplier to the 

manufacturer but obviously the transportation cost would be unreasonably high. 

Therefore, it is necessary not only to minimize the number of pallets used but also to 

minimize the unpacking operations in the supply hub for the incoming pallets. In 

other words, the component packages from the same supplier are better packed in the 

same pallet in the supply hub. The conflict penalties between different packages from 

different suppliers indicate the undesirable operations of unpacking and combining 

incoming pallets.  

The 2BP problem with conflict penalties is a typical k-partite graph G = (V, E) 



(Diestel, 2000, p. 14), where the items can be represented by the vertices (V) and the 

penalties represented by the edges (E). Any combination of vertices in one partition 

can be loaded into the same bin (while space allows) without incurring penalty, while 

any combination of vertices from more than one partition will incur penalties. 

Many industrial applications can be modeled as a typical 2BP problem, such as 

newspaper paging (Lodi et al., 2002a), time tabling (Laporte and Desroches, 1984), 

scheduling, and database storage (Jansen, 1999), etc. Variations of the 2BP problem 

have been studied in the research community in different forms. Reviews of the 2BP 

literature, for example, are provided by Lodi et al. (2002a), Lodi et al. (2002b) and 

Riff et al. (2009). It is obvious that the 2BP with conflict penalties is NP-hard since 

the simpler one-dimensional bin-packing problem is proven to be strongly NP-hard 

(Garey and Johnson, 1979). Various exact and approximate algorithms have been 

proposed for the 2BP with conflicts in the literature. The exact methods, for example, 

are developed by Muritiba et al. (2010) and Elhedhli et al. (2011). Lower bounds are 

also derived by Gendreau et al. (2004), Muritiba et al. (2010), and Khanafer et al. 

(2010). Heuristic algorithms, as an effective means to provide solutions to such 

problems, also received much attention (e.g., Gendreau et al., 2004; Epstein et al., 

2008; Khanafer et al., 2012b).   

Different variants of the 2BP with conflicts are also studied in the literature. 

Epstein et al. (2011) address the online variable-sized bin packing problem with 

conflicts. Hamdi-Dhaoui et al. (2012) investigate the 2BP with partial conflicts, where 

two conflicting items can be packed into the same bin as long as they maintain a 

safety distance between each other. To the best of our knowledge, the proposed 

problem resembles the published work in Khanafer et al. (2012a) most but differs in 

the objective function. The work in Khanafer et al. (2012a) develops heuristic 

algorithms to address the min-conflict packing problem, in which the number of 

violated conflicts is minimized while the number of bins used is fixed. A bi-objective 

version of the problem is also considered in order to find the trade-off between the 

number of bins used and the violation of the conflict constraints. Our work combines 

the number of bins used and conflict minimization into one objective function by 



assigning different weights to them while Khanafer et al. (2012a) take the Pareto front 

of these two. Moreover, unlike the common practice of assigning either 0 or 1 to 

conflicts in existing literature, we utilize different levels of penalty to reflect the fact 

that not all conflicting pairs of items (edges in the graph G) should incur the same 

level of penalty in practice. In the supermarket chain example, it is natural to assume 

that the cost (and thus penalty) should be high if two items’ storage areas are far away 

from each other. Therefore, we assign various conflict penalty values for the conflicts 

among the items in this paper. 

The remainder of this paper is organized as follows: In Section 2 we give the 

notation and the definitions used throughout the paper, as well as the mathematical 

formulation of this problem. Efficient and easy-to-implement algorithms are 

subsequently proposed in Sections 3 and 4, respectively. Section 5 presents the 

computational performance of the proposed algorithms on test problems derived from 

the literature and Section 6 concludes the paper. 

2. Problem Formulation 

Suppose there is a set A of n items ai = (wi, hi), i = 1, …, n, where wi and hi 

indicate the item’s width and height, respectively. We denote W and H as the width 

and height of the identical bins B = (W, H), in which the items will be packed. 

Without loss of generality, we assume that the sizes of the bin and items are positive 

integers satisfying wi≤W and hi≤H, for every item ai∈A. In practice, items ai and aj 

packed in the same bin might need to be stored on different racks after unpacking. 

Therefore, there exists transportation cost or conflict penalty in the order of distance 

from ai’s rack to aj’s rack, and vice versa. If these racks are close to each other, the 

conflict penalty should obviously be small. We use cij to denote the conflict penalty 

between ai and aj if they are packed in the same bin. Therefore, the problem in this 

paper involves two objectives, i.e., both the bin number and the conflict penalties (e.g., 

follow up transportation cost) should be minimized, while most of the work in the 

literature only consider bin number minimization. We transform this problem into a 

single objective function by assigning a weight to the conflict penalty in the objective 



function, which is denoted by  . Obviously, the value of the weight   should be 

decided according to practical circumstances. In our example, if the transportation 

distance from the warehouse to the store is far longer than the transportation distance 

in the store, then the weight for   in the objective function should be small. 

The specific 2BP with conflict penalties addressed in this paper has the following 

characteristics: 

 There may have identical items in the item set A.  

 The number of items is given, while the number of bins is unlimited.  

 The conflict penalty cij is between 0 and 1.  

 Items can be rotated by 90°, as long as they are within the boundary of the 

bin and keep their sides parallel to bin sides. This expands the search space 

considerably compared with the fixed orientation cases.  

The parameters and variables that are used to describe the mathematical 

formulation are as follows: 

Parameters: 

M   An arbitrarily large number; 

(W, H) Width and height of bin; 

(wi, hi) Width and height of item ai; 

cij  Penalty cost between items ai and aj; 

n      The number of items; 

Variables: 

bij A binary variable which equals 1 if item ai is packed in bin j, otherwise 

0; 

zi A binary variable which equals 1 if bin i is used, otherwise 0; 

ri A binary variable which equals 1 if item ai is rotated, otherwise 0; 

(xi, yi) Coordinates of the left-bottom corner of item ai; 

lij, fij Binary variables used to indicate the relative placement of items. lij or fij 

equals 1 if item ai is on the left side of, or in front of item aj, respectively; 

otherwise 0; 

sij A binary variable which equals 1 if items ai and aj are packed in the 



same bin, otherwise 0. 

The objective function is: 

min 
1 1
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The objective function, as discussed before, is to minimize the sum of the 

numbered bins and the weight adjusted total penalty costs. Constraints (1) and (2) 

ensure that items are always packed within the bin boundaries. Constraints (3)–(5) 

guarantee that items will not overlap when they are packed into the same bin. 

Constraints (6) and (7) dictate that any item can only be packed into one bin and only 

when this bin is used. Constraints (8) enforce that the binary variable sij only counts 

when items ai and aj are packed into the same bin k. 

Due to the high complexity of the problem, exact approaches become intractable 

for solving large scale instances that often arise in practice. In most of the cases, 

researchers employ heuristic or meta-heuristic methods that are able to produce near 

optimal solutions within reasonable computational time. In this paper, we propose two 

algorithms to tackle the problem. The first one adapts the IMA algorithm initially 

proposed by El Hayek et al. (2008) and applies a local search algorithm to improve 



the solutions generated; the second one is a tabu search based algorithm which on one 

hand provides another approach to solve the problem and on the other hand enables 

numerical comparisons with the adapted IMA algorithm. 

3. The Heuristic Algorithms 

Parreño et al. (2008) and El Hayek et al. (2008) present a maximal space 

algorithm to solve the 3D and 2D container loading problem, where a GRASP 

algorithm and a heuristic called IMA are proposed, respectively. A variable 

neighborhood search algorithm is further developed for the same problem in Parreño 

et al. (2010). These algorithms perform well on benchmark problems. Obviously, the 

basic idea behind these algorithms can be extended to further develop more efficient 

problem-specific approaches. In this section, we propose an algorithm based on the 

maximal-space algorithm which has been discussed and presented in Parreño et al. 

(2008) and El Hayek et al. (2008). For the sake of completeness, the main ideas and 

steps of the maximal space algorithm and the IMA are briefly discussed in Sections 

3.1 and 3.2 below.  

3.1 The maximal space algorithm 

The maximal space algorithm utilizes the concept of “maximal space”, which is 

illustrated in Figure 1. When packing a rectangle into an empty bin, the first item is 

packed at the bottom left corner of the bin. Two maximal spaces, not necessarily to be 

disjoint though, are generated according to the definition given in Parreño et al. 

(2008). They are drawn separately on the right hand side of Figure 1.1, where we can 

see that spaces 1 and 2 have a shared space. Figure 1.2 shows the maximal spaces 

after another rectangle is packed into the bin at the top right corner of maximal space 

1, which results in three maximal spaces 3, 4, and 5. 

  

[Insert Figure 1 at about here] 

   



 

Algorithm 1 briefly describes the main steps of the maximal space algorithm in 

Parreño et al. (2008). Needless to say, the most important issue in the maximal space 

algorithm is the criteria to select the box and the maximal space in Steps 2 and 3, 

respectively. It is clear that appropriate criteria will result in good performance of the 

algorithm for problems with special features. In Parreño et al. (2008), the maximal 

space with the minimum distance to a bin corner is selected. Two criteria are used for 

selecting the box to be packed: the first is the Best-Volume criterion, which selects the 

box producing the largest increase in volume utilization; the second is the Best-Fit 

criterion which selects the box that best fits into the maximal space.  

3.2 The IMA algorithm 

El Hayek et al. (2008) develop a more complex procedure for the selections of 

the box and the maximal space, where a pair of box and maximal space is selected 

when it is producing the largest value calculated by the following equation:  

2 2 2 2

1 2 3 4( , ) ( ) / ( ) ( / ) ( / ) ( ) / ( )i i i ma ma i ma i ma i i ma maa ma q w h w h q dx w q dy h q dx dy w h          

Where ai is the i
th

 item and ma denotes the current maximal space; wi, hi and wma, hma 

are the width and height of ai and ma, respectively; dxi and dyi are the projections of 

the edges of the packed item ai on x- and y-axis; q1 to q4 are the four weights, each 

between 0 and 1 and all four sum to 1. Different combinations of qi values affect the 

evaluation value significantly and the best combination can be searched in an iterative 

way. By increasing the value of each qi from 0 to 1 with a step value (e.g., 0.05), the 

best combination can be identified once all possible combinations of the four qi are 



examined. 

3.3 The adapted IMA algorithm 

The objective function in this paper not only considers minimizing the number of 

bins used, but also incorporates the weighted conflict penalties. We adapt the maximal 

space algorithm and the preliminary experiments indicate that the criteria in El Hayek 

et al. (2008) perform much better than that of Parreño et al. (2008) for this particular 

problem. The pair selection criterion in El Hayek et al. (2008) is further modified in 

this paper to better address the research problem and to reflect the specific problem 

characteristics. One additional term is introduced in the following equation, which is 

used to calculate the value for a pair of box and maximal space. Clearly, the one with 

maximum value is selected.  

2 2 2 2

1 2 3 4

5

( , ) ( ) / ( ) ( / ) ( / ) ( ) / ( )

( ) /

i i i ma ma i ma i ma i i ma ma

ij

j

a ma q w h w h q dx w q dy h q dx dy w h

q m c m

      

 
  

The additional term, which measures the total conflict penalties, is introduced 

with a corresponding weight q5. The sum from q1 to q5 is 1 and each is between 0 and 

1. m indicates the number of items packed in the bin. Note that j is the index for all the 

items that are already loaded in the bin. The configuration of weights is identical to 

that of the previous one. In order to reduce computational time, the step value is 

adjusted to be 0.1 when evaluating all the combinations of the five qi. Experimental 

tests indicate that there is little difference for the search of the best combination of qi 

when the step value increases from 0.05 to 0.1. 

Algorithm 2 shows how the adapted IMA works. The procedure basically tries to 

iteratively find the maximum   while keeping an eye on the conflict penalty. The 

resulting penalty is assessed by placing an item into a particular bin. Another 

coefficient   is also introduced to control whether a new bin should be used when 

the conflict penalty reaches a certain level. This is achieved by combining with the 

coefficient for conflict penalty   to reflect its contribution to the final objective 

function value. The values for the parameters are determined by preliminary 

experiments. Thus, the step size to control the increment of   is set to 0.2 while its 



value changes between the range [0.1, 0.9]. 

 

 

3.4 A local search algorithm  

In order to reduce total conflict penalties of a loading scheme generated by the 

adapted IMA, a local search improvement algorithm is proposed. The algorithm takes 



the solution produced by the adapted IMA algorithm as the initial solution and 

subsequently exchanges items among the bins in the hope to reduce the total conflict 

penalties. It is rather clear that the number of the bins used will remain unchanged 

since only item exchanges will happen. The detailed steps of the algorithm are 

illustrated in Algorithm 3, in which X denotes the index for bins and K denotes the 

index for items in a bin. 

 

The local search iteratively re-arranges items in pairs in the hope that the overall 

conflict penalty will be reduced. The local search starts with the item that incurs the 

largest penalty within its current bin. The item is then re-arranged into other bins that 

have the potential to reduce the overall penalty (potential bins are indexed by Y in 



Algorithm 3). Among those bins, the best feasible option is chosen for the 

re-arrangement. All the other items are treated in a similar way until no further 

reduction can be made by switching items among all bins.    

4. A Tabu Search Algorithm 

In order to evaluate the performance of the proposed heuristic algorithm in 

Section 3, we propose a meta-heuristic algorithm based on tabu search to solve the 

problem. Tabu search is a local search meta-heuristic proposed independently by 

Glover (1986) and Hansen and Jaumard (1990). According to recent literature, tabu 

search is widely applied for solving container loading problems (Lodi et al. 2004; 

Bortfeldt et al. 2003; Harwig et al. 2006; Alvarez-Valdes et al. 2005, Khanafer et al, 

2012a, etc.).  

A tabu search procedure starts from an initial feasible solution. During the search 

process, a set of neighbors is generated and the best feasible one is chosen. A tabu list 

will also be maintained to guide the search and prevent the search from becoming 

stuck at local optimal points. A neighbor can be either tabu or non-tabu; furthermore, 

the tabu status may be overridden by an aspiration criterion. Intensification and 

diversification schemes are also applied during the search. 

In the initial solution generating phase for tabu search, the solution is generated 

in a similar way to the adapted IMA algorithm listed in Algorithm 2. However, the 

selection criterion for matching a pair of maximal space and an item is the maximum 

space utilization ratio, not  . This has some computational advantages since the 

iterative search for the best combination of qi is eliminated. Once an initial solution is 

generated, the tabu search follows the steps of TSpack in Lodi et al. (2004). 

5. Computational Experiments 

The presented algorithms described in this paper were tested on the instances 

derived from the well-known two-dimensional finite bin-packing instances of Berkey 

and Wang (1987). We assume that in the warehouse, the items are loaded into a set of 

bins which are subsequently transported to the supermarket. The set of items in the 

bins will be assigned to six storage areas in the supermarket. Within a given bin, if 



two items are assigned to the same storage area, there is no conflict penalty incurred; 

otherwise, the penalty value will depend on the distance between the two storage 

areas the two items belong to. The penalty value is increased by 0.2 each time if the 

difference of the indexes between the two storage areas is increased by 1. Also, the 

weight of the conflict penalties in the objective function is tested with five values: 0.0, 

0.01, 0.05, 0.1 and 0.5, respectively. Allowing the weight to be zero, the problem will 

deteriorate to a typical 2BP. In Berkey and Wang (1987), there are five sets of data 

that are generated based on n = 20, 40, 60, 80, and 100, respectively. For each data set, 

there are six classes according to different bin sizes. We generated 10 instances for 

each problem configuration and the average of these 10 instances is reported. The 

algorithms were coded in C++. The computational experiments were conducted on a 

personal computer with Intel Pentium dual-core 2.8 GHz CPU and 2 GB RAM.  

We compare the results on the test instances given by four algorithms: 1) the 

original IMA algorithm proposed in El Hayek et al. (2008) (indicated as IMA); 2) the 

adapted IMA in this paper (IMA_A); 3) the adapted tabu search algorithm in this 

paper (TS); and 4) the proposed adapted IMA algorithm with the local search 

(IMA_A_LS). As mentioned in Section 3.3, preliminary experiments indicated that 

the IMA algorithm in El Hayek et al. (2008) outperforms the maximal space algorithm 

of Parreño et al. (2008) for this particular problem. Thus, the results of the original 

maximal space algorithm were not reported here.  

Figure 2 illustrates the impact of the weight   on the ultimate packing results 

since it directly contributes to the final objective function value. A 20-item case is 

selected and solved by IMA_A and the solutions with   at 0.01, 0.05, 0.1 and 0.5 

are presented. It can be observed that when the weight is not very big (in this example, 

when  =0.01, 0.05 and 0.1) and therefore contributing less to the objective function 

value, the packing solutions are the same excepting the objective function value 

changes as the weight increases. This means that the additional conflict penalties 

combined with the weight is not big enough to outweigh the usage of a new bin. 

When the weight increases to 0.5 and contributes a lot to the objective function value, 

it can be observed that two additional bins are used and the packing results (grouping 



items into bins) also change accordingly.  

 

[Insert Figure 2 at about here] 

 

Figure 3 graphically presents the packing results provided by different 

approaches for a 20-item instance when the weight   is set at 0.01. Although the 

number of bins used by each algorithm is identical, the objective function value, and 

thus the conflict penalties vary between different approaches. The IMA approach, 

which does not consider the conflict penalties when packing, results in the largest 

objective function value, while IMA_A_LS has the smallest. The packing results are 

considerably different when the conflict penalties (even when  = 0.01) are 

contributing to the final objective function value. 

 

[Insert Figure 3 at about here] 

 

The computational results of the four algorithms for each of the aforementioned 

weights   are shown in Tables 1 to 5, respectively. Apart from Table 1 where 

 =0.0, we also list IMA’s results in Tables 2 to 5 for reference even though it does not 

consider the conflict penalties during packing. The first two columns in each table 

include the class of the test instances (with bin dimensions indicated) and the number 

of items to be packed. From a computational time perspective, except a few cases 

where the CPU time exceeds 1 second, the majority of the test instances are solved 

within a very short time which is much less than 1 second. Therefore, the 

computational times used by each algorithm are not reported here. 

According to the average results of algorithms IMA and TS for solving instances 

of Class_01, the proportion of conflict penalty in the objective function increases 

from 0 to 0.40 when the weight   increases from 0 to 0.5. For the results of 

algorithm IMA_A and IMA_A_LS , the proportion of conflict penalty is always less 

than 0.1 when the weight   changes. It would be reasonable to conclude that better 

results should contain smaller proportion of the conflict penalty in the objective value 

app:ds:proportion
app:ds:proportion


for all of the test instances. 

    

[Insert Table 1 here] 

 

Table 1 presents the computational results for the test problems with  =0.0, 

which makes the problem a typical 2BP. The results reported are the average 

objective function value (also the number of bins used) over the 10 test instances for 

each problem configuration. The column IMA_A reports for both IMA_A and 

IMA_A_LS since the local search will not reduce the number of bins used. Overall, 

the results are not so different among the four algorithms. However, there is still a 

margin between IMA and the TS approaches for most of the cases. The IMA_A and 

IMA_A_LS achieves equivalent to the IMA except on a few occasions it is 

outperformed by the IMA. This is rather interesting to note, since the only difference 

between the IMA and the IMA_A is the pair selection criteria. The IMA_A and 

IMA_A_LS consider conflict penalties when packing. However, this does not 

contribute to the objective function value, since the weight   is at 0.0.  

 [Insert Tables 2-5 at about here] 

 

Tables 2 to 5 display the computational results for the test problems with 

different weights. The results are organized in two major parts: one is the objective 

function value and the other is the number of bins used for each problem 

configuration. Note that the column IMA_A, which is the last column of the ‘Number 

of bins used’ section of Table 2 to 5, reports for both IMA_A and IMA_A_LS, since 

the local search will not change the number of bins used. Same as in Table 1, the 

results are the average of the 10 test instances within each problem configuration. In 

terms of objective function, it can be observed that once the conflict penalties are 

considered, the IMA_A_LS approach always achieves the best results. On some 

occasions, IMA_A gets equally good ones. This indicates that the IMA_A_LS 

provides effective packing results among the four approaches. Compared with 

IMA_A, the results also suggest that the local search effectively helps to improve the 



performance even when the number of bins used does not change. As mentioned 

before, the performance of IMA is only for reference, and we can see that as the 

weight of conflict penalties increases, the performance gap between IMA and 

IMA_A_LS amplifies. This clearly demonstrates the effectiveness of IMA_A_LS’s 

ability to handle conflict penalties. The same can be observed for the TS approach. 

The results are somewhat surprising since the objective function value is sometimes 

even bigger than the IMA approach. Of course, the results are linked with the number 

of bins used and it seems that the TS approach still focuses more on minimizing the 

number of bins. 

In the above experiments, we evenly and randomly distribute the items within 

the six storage areas for each test instance. However, it is worthwhile to evaluate the 

performance of the four approaches when the clustering of items changes for each test 

instance. Since the size of the resulting test instances will be extremely large, we just 

select one instance from the previous experiments (in this case, Class_03). The items 

are subsequently re-grouped to create different group structures. We randomly select 

20%, 40%, 60% and 80% of the items and allocate them into the third storage area. 

Then, we randomly and evenly distribute the rest items in the other five storage areas. 

Therefore, we have four group structures. The average performance of the four 

algorithms under different weight settings (  = 0.01, 0.05, 0.1 and 0.5, respectively) is 

summarized and reported in Figure 4. Each subfigure shows one weight setting. The 

percentage of items allocated to the third storage area is indicated as the x axis. The y 

axis displays the objective function value (note that the scale varies between different 

subfigures), while the horizontal line within each bar indicates the number of bins 

used. The order of algorithms presented in the figure is: TS, IMA, IMA_A and 

IMA_A_LS, as marked in Figure 4a. 

In general, we can observe that as the percentage of items belong to the third 

storage area increases, the objective function values of all four approaches decrease 

accordingly, since the potential penalty is reduced when more items belong to one 

storage area. The performance of the four algorithms follows what we have described 

in Tables 2 to 5, i.e., TS incurs the highest objective function value for most of the 



times, while IMA_A_LS performs the best. The number of bins used by the IMA_A 

and IMA_A_LS changes when the weight of the penalty and the percentage of items 

in the same storage area change. However, for IMA and TS, as discussed before, seem 

to be rather insensitive to these changes. Compared with TS and IMA, IMA_A and 

IMA_A_LS always balance the number of bins used and the weighted penalty while 

minimizing the objective function value. 

[Insert Figure 4 at about here] 

 

From a pure bin number minimization perspective, we can observe that the 

IMA_A_LS approach (including IMA_A) can achieve the best performance for some 

test instances when the weight   is small. As the weight increases, the number of 

best performing times (in terms of bin number minimization) quickly diminishes 

which is an indication that the IMA_A_LS treats the conflict seriously and balances 

the number of bins used and the overall objective function value. The adapted tabu 

search approach, on the other hand, maintains the number of best performing cases on 

the results of bin numbers and sometimes even with more cases as the weight   

increases. It again suggests that the adapted tabu search approach concentrates on bin 

number minimization. 

In summary, we found throughout our investigation that the adapted IMA 

combined with the local search algorithm performed strongly in comparison to the 

adapted IMA and the adapted tabu search algorithms. With the portion of the conflict 

penalties increasing in the objective value, the corresponding gaps increase. This 

indicates that the proposed approach can effectively deal with the conflict penalties in 

the objective function.  

6. Conclusion 

Traditional two-dimensional bin-packing problem takes the bin number 

minimization as the only objective. In practice, however, there might be cases where 

pairs of items have variable degrees of penalty between them, such as additional labor 

or time consumption for unpacking bins in supermarkets or warehouses. Therefore, 



we introduce a new 2BP problem with variable degree of conflict penalties and deal 

with bin number minimization and penalty reduction in an integrative way. We 

propose a heuristic method based on the IMA algorithm (El Hayek et al., 2008) and 

adapt it to tackle this problem. A local search algorithm is further introduced to 

improve the results provided by the adapted IMA algorithm. An adapted tabu search 

algorithm is also proposed, partly for the purpose of validating the performance of the 

adapted IMA algorithm. The computational results reveal that the adapted IMA with 

local search provides the best solution compared to other approaches introduced in 

this paper.   

Future work related to this interesting problem might include developing lower 

bounds to gauge the effectiveness of the proposed heuristic algorithms. Developing 

exact algorithms should also be considered, especially for medium sized problems. 

Furthermore, it is also desirable to combine this loading stage with the subsequent 

routing stage and provide loading and routing decisions in an integrated way.
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Table 1 Computational results for test problems with  =0.0.  

Class and bin  

dimension 

n 
IMA IMA_A TS 

Class_01 

10x10 

20 6.60 6.60 6.60 

40 12.90 12.90 12.90 

60 19.50 19.50 19.60 

80 27.00 27.00 27.10 

100 31.30 31.30 31.90 

Avg. 19.46 19.46 19.62 

Class_02 

30x30 

20 1.00 1.00 1.00 

40 1.90 1.90 2.00 

60 2.50 2.50 2.50 

80 3.10 3.10 3.10 

100 3.90 3.90 3.90 

Avg. 2.48 2.48 2.50 

Class_03 

40x40 

20 4.70 4.70 4.90 

40 9.40 9.40 9.40 

60 13.50 13.50 13.70 

80 18.40 18.60 18.90 

100 22.20 22.30 22.50 

Avg. 13.64 13.70 13.88 

Class_04 

100x100 

20 1.00 1.00 1.00 

40 1.90 1.90 1.90 

60 2.50 2.50 2.50 

80 3.10 3.10 3.20 

100 3.70 3.70 3.80 

Avg. 2.44 2.44 2.48 

Class_05 

100x100 

20 5.90 5.90 5.90 

40 11.40 11.50 11.50 

60 17.40 17.60 17.50 

80 23.90 23.90 24.10 

100 27.90 27.90 28.50 

Avg. 17.30 17.36 17.50 

Class_06 

300x300 

20 1.00 1.00 1.00 

40 1.70 1.70 1.90 

60 2.10 2.10 2.20 

80 3.00 3.00 3.00 

100 3.20 3.40 3.40 

Avg. 2.20 2.24 2.30 

 

 

 

 

 

 

 

 



Table 2 Computational results for test problems with  =0.01.  

Class and bin  

dimension 

n Objective function value (avg.) Number of bins used (avg.) 

IMA IMA_A TS IMA_A_LS IMA TS IMA_A 

Class_01 

10x10 

20 6.69 6.66 6.69 6.65 6.60 6.60 6.60 

40 13.09 13.01 13.08 12.97 12.90 12.90 12.90 

60 19.77 19.68 19.88 19.63 19.50 19.60 19.50 

80 27.34 27.20 27.44 27.12 27.00 27.10 27.00 

100 31.86 31.57 32.39 31.50 31.40 31.90 31.30 

Avg. 19.75 19.62 19.90 19.57 19.48 19.62 19.46 

Class_02 

30x30 

20 1.72 1.72 1.72 1.72 1.00 1.00 1.00 

40 3.55 2.79 3.67 2.68 1.90 2.10 2.00 

60 5.38 3.85 5.66 3.61 2.50 2.50 2.60 

80 7.00 4.63 7.20 4.35 3.10 3.10 3.40 

100 9.10 5.48 9.63 5.06 3.90 3.90 4.00 

Avg. 5.35 3.69 5.58 3.48 2.48 2.52 2.60 

Class_03 

40x40 

20 4.93 4.82 5.02 4.78 4.80 4.90 4.70 

40 9.68 9.60 9.68 9.50 9.40 9.40 9.40 

60 14.00 13.81 14.12 13.68 13.60 13.70 13.50 

80 19.13 19.01 19.46 18.81 18.60 18.90 18.60 

100 22.97 22.78 23.23 22.53 22.30 22.50 22.30 

Avg. 14.14 14.00 14.30 13.86 13.74 13.88 13.70 

Class_04 

100x100 

20 1.76 1.76 1.76 1.76 1.00 1.00 1.00 

40 3.70 2.78 3.82 2.73 1.90 1.90 2.00 

60 5.37 3.87 5.61 3.64 2.50 2.50 2.80 

80 6.92 4.79 7.21 4.37 3.10 3.20 3.40 

100 8.98 5.54 9.21 5.08 3.80 3.80 4.00 

Avg. 5.35 3.75 5.52 3.52 2.46 2.48 2.64 

Class_05 

100x100 

20 5.99 5.97 6.00 5.95 5.90 5.90 5.90 

40 11.71 11.66 11.71 11.58 11.50 11.50 11.50 

60 17.89 17.82 17.79 17.71 17.60 17.50 17.60 

80 24.27 24.20 24.51 24.05 23.90 24.10 23.90 

100 28.45 28.36 29.06 28.17 27.90 28.50 27.90 

Avg. 17.66 17.60 17.82 17.49 17.36 17.50 17.36 

Class_06 

300x300 

20 1.78 1.78 1.78 1.78 1.00 1.00 1.00 

40 3.87 2.77 4.01 2.69 1.70 2.20 2.00 

60 5.25 3.75 5.51 3.63 2.10 2.20 2.50 

80 7.07 4.43 7.34 4.20 3.00 3.00 3.00 

100 9.11 5.44 9.44 4.97 3.40 3.40 3.80 

Avg. 5.42 3.63 5.62 3.45 2.24 2.36 2.46 

 



Table 3 Computational results for test problems with  =0.05.  

Class and bin  

dimension 

n Objective function value (avg.) Number of bins used (avg.) 

IMA IMA_A TS IMA_A_LS IMA TS IMA_A 

Class_01 

10x10 

20 7.03 6.87 7.03 6.83 6.60 6.60 6.60 

40 13.84 13.40 13.82 13.28 12.90 12.90 12.90 

60 20.87 20.33 20.99 20.17 19.50 19.60 19.60 

80 28.70 27.92 28.79 27.59 27.00 27.10 27.00 

100 33.72 32.59 34.34 32.24 31.40 31.90 31.50 

Avg. 20.83 20.22 21.00 20.02 19.48 19.62 19.52 

Class_02 

30x30 

20 4.58 2.96 4.58 2.82 1.00 1.00 2.00 

40 10.01 4.30 9.94 4.30 2.00 2.20 3.10 

60 16.75 5.57 18.30 5.57 2.60 2.50 4.40 

80 22.47 5.94 23.59 5.94 3.20 3.10 5.70 

100 29.86 6.00 32.55 6.00 4.00 3.90 6.00 

Avg. 16.73 4.95 17.79 4.92 2.56 2.54 4.24 

Class_03 

40x40 

20 5.43 5.15 5.51 5.08 4.80 4.90 4.70 

40 10.81 10.07 10.80 9.85 9.40 9.40 9.50 

60 15.59 14.68 15.78 14.35 13.60 13.70 13.60 

80 21.26 20.13 21.69 19.61 18.60 18.90 18.90 

100 25.66 24.01 26.15 23.30 22.30 22.50 22.50 

Avg. 15.75 14.81 15.99 14.44 13.74 13.88 13.84 

Class_04 

100x100 

20 4.79 3.00 4.79 2.91 1.00 1.00 2.10 

40 10.89 4.31 11.49 4.27 1.90 1.90 3.00 

60 16.87 5.62 17.27 5.62 2.50 4.20 4.60 

80 21.96 5.95 23.23 5.95 3.30 3.20 5.80 

100 29.72 6.12 30.85 6.11 3.80 3.80 6.10 

Avg. 16.85 5.00 17.53 4.97 2.50 2.82 4.32 

Class_05 

100x100 

20 6.37 6.16 6.41 6.11 5.90 5.90 5.90 

40 12.55 12.11 12.56 11.92 11.50 11.50 11.50 

60 19.06 18.53 18.97 18.16 17.60 17.50 17.60 

80 25.76 25.19 26.16 24.63 23.90 24.10 24.20 

100 30.65 29.73 31.29 29.11 27.90 28.50 28.40 

Avg. 18.88 18.35 19.08 17.99 17.36 17.50 17.52 

Class_06 

300x300 

20 4.88 2.89 4.88 2.86 1.00 1.00 2.00 

40 12.12 4.32 9.87 4.32 1.90 2.70 3.00 

60 17.64 5.55 18.22 5.53 2.20 3.00 4.60 

80 23.37 5.93 24.71 5.93 3.00 3.00 5.80 

100 31.97 6.00 33.59 6.00 3.40 3.40 6.00 

Avg. 18.00 4.94 18.25 4.93 2.30 2.62 4.28 

 

 



Table 4 Computational results for test problems with  =0.1.  

Class and bin  

dimension 

n Objective function value (avg.) Number of bins used (avg.) 

IMA IMA_A TS IMA_A_LS IMA TS IMA_A 

Class_01 

10x10 

20 7.45 7.10 7.46 7.07 6.60 6.60 6.60 

40 14.77 13.63 14.75 13.45 12.90 12.90 13.10 

60 22.24 20.76 22.38 20.48 19.50 19.60 19.90 

80 30.41 28.43 30.49 28.03 27.00 27.10 27.40 

100 36.03 33.36 36.78 32.79 31.40 31.90 31.90 

Avg. 22.18 20.65 22.37 20.36 19.48 19.62 19.78 

Class_02 

30x30 

20 8.16 3.54 8.16 3.54 1.00 1.00 2.30 

40 18.02 5.39 17.59 5.36 2.00 2.40 3.70 

60 30.90 5.98 34.11 5.98 2.60 2.50 5.90 

80 41.67 6.00 44.08 6.00 3.30 3.10 6.00 

100 55.72 6.00 61.20 6.00 4.00 3.90 6.00 

Avg. 30.89 5.38 33.03 5.38 2.58 2.58 4.78 

Class_03 

40x40 

20 6.06 5.67 6.13 5.52 4.80 4.90 4.80 

40 12.21 10.40 12.20 10.21 9.40 9.40 9.70 

60 17.59 15.22 17.82 14.98 13.60 13.80 14.30 

80 23.91 20.91 24.48 20.35 18.60 18.90 19.80 

100 29.03 25.02 29.80 24.20 22.30 22.50 23.40 

Avg. 17.76 15.44 18.08 15.05 13.74 13.90 14.40 

Class_04 

100x100 

20 8.58 3.65 8.58 3.62 1.00 1.00 2.60 

40 19.88 5.47 21.08 5.45 1.90 1.90 3.80 

60 31.25 5.97 30.34 5.97 2.50 4.20 5.90 

80 40.61 6.00 40.71 6.00 3.30 6.80 6.00 

100 55.56 6.17 55.85 6.12 3.90 6.90 6.10 

Avg. 31.18 5.45 31.31 5.43 2.52 4.16 4.88 

Class_05 

100x100 

20 6.83 6.39 6.92 6.31 5.90 5.90 5.90 

40 13.60 12.60 13.62 12.39 11.50 11.50 11.90 

60 20.52 19.15 20.43 18.88 17.60 17.50 18.40 

80 27.62 25.84 28.14 25.30 23.90 24.30 24.60 

100 33.37 30.44 34.06 29.75 28.00 28.60 29.10 

Avg. 20.39 18.88 20.63 18.52 17.38 17.56 17.98 

Class_06 

300x300 

20 8.75 3.61 8.75 3.60 1.00 1.00 2.50 

40 22.34 5.41 16.74 5.34 1.90 3.60 4.40 

60 33.09 6.00 33.44 6.00 2.20 3.00 6.00 

80 43.74 6.00 46.42 6.00 3.00 3.00 6.00 

100 60.54 6.00 58.42 6.00 3.40 9.70 6.00 

Avg. 33.69 5.40 32.76 5.39 2.30 4.06 4.98 

 

 

 



Table 5 Computational results for test problems with  =0.5.  

Class and bin  

dimension 

n Objective function value (avg.) Number of bins used (avg.) 

IMA IMA_A TS IMA_A_LS IMA TS IMA_A 

Class_01 

10x10 

20 10.79 8.29 10.92 8.23 6.80 6.60 7.60 

40 21.85 14.96 22.14 14.77 13.10 12.90 13.90 

60 33.09 22.54 33.25 22.14 19.80 20.70 21.40 

80 43.71 30.29 43.55 29.59 27.50 28.60 28.70 

100 53.86 35.63 53.69 35.06 32.20 35.10 34.60 

Avg. 32.66 22.34 32.71 21.96 19.88 20.78 21.24 

Class_02 

30x30 

20 36.80 5.33 36.80 5.25 1.00 1.00 4.70 

40 82.10 6.00 77.68 6.00 2.00 3.10 6.00 

60 144.10 6.00 160.54 6.00 2.60 2.50 6.00 

80 195.15 6.00 208.02 6.00 3.30 3.10 6.00 

100 262.58 6.00 290.42 6.00 4.00 3.90 6.00 

Avg. 144.15 5.87 154.69 5.85 2.58 2.72 5.74 

Class_03 

40x40 

20 11.08 6.93 11.03 6.84 4.90 4.90 5.90 

40 23.28 11.65 21.30 11.46 9.60 11.90 10.90 

60 33.44 16.57 30.92 16.32 13.80 18.30 15.50 

80 45.17 22.61 42.28 22.06 18.70 25.50 21.50 

100 55.62 26.42 52.67 26.02 22.50 34.10 25.60 

Avg. 33.72 16.84 31.64 16.54 13.90 18.94 15.88 

Class_04 

100x100 

20 38.89 5.26 38.89 5.24 1.00 1.00 4.70 

40 91.82 6.00 97.80 6.00 1.90 1.90 6.00 

60 146.24 6.00 134.18 6.00 2.50 5.40 6.00 

80 189.86 6.00 176.08 6.00 3.30 7.40 6.00 

100 262.18 6.20 251.65 6.20 3.90 6.90 6.20 

Avg. 145.80 5.89 139.72 5.89 2.52 4.52 5.78 

Class_05 

100x100 

20 10.51 7.61 10.80 7.58 6.00 6.00 6.60 

40 21.83 14.08 20.97 13.71 11.70 13.00 12.90 

60 31.81 21.01 30.92 20.59 18.10 19.20 19.50 

80 42.22 27.97 41.88 27.10 24.10 26.80 26.20 

100 53.57 32.64 52.68 32.07 28.60 35.10 31.50 

Avg. 31.99 20.66 31.45 20.21 17.70 20.02 19.34 

Class_06 

300x300 

20 39.77 5.39 39.77 5.39 1.00 1.00 4.60 

40 104.08 6.00 67.13 6.00 1.90 5.80 6.00 

60 156.64 6.00 154.49 6.00 2.20 4.00 6.00 

80 206.70 6.00 220.11 6.00 3.00 3.00 6.00 

100 289.10 6.00 253.29 6.00 3.40 9.70 6.00 

Avg. 159.26 5.88 146.96 5.88 2.30 4.70 5.72 
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Figure 1: Maximal spaces in two dimensions 



 

(a)  = 0.01, objective function value = 7.078. 

 

(b)  = 0.05, objective function value = 7.39. 

 

(c)  = 0.1, objective function value = 7.78. 

 

(d)  = 0.5, objective function value = 9.30. 

Figure 2: Exemplary packing results achieved by IMA_A subject to different weights of    



 

(a) IMA, objective function value = 5.096. 

 

(b) IMA_A, objective function value = 5.064. 

 

(c) TS, objective function value = 5.096 

 

(d) IMA_A_LS, objective function value = 5.05. 

Figure 3: Exemplary packing results achieved by the four algorithms with  = 0.01  



 

Figure 4: Impacts of grouping structure on the performance of the four algorithms 

 

 

 

 

 


