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Abstract 

Wind-waves are the most important environmental parameter for the design of coastal and offshore structures, 

sediment transport, coastal erosion etc. Therefore, an accurate evaluation of the wave climate is of great importance. 

Due to the lack of long term measurements, nowadays numerically modeled wave data are widely used for 

determining the wave climate. The numerically simulated wave data are continuous in time and space, but generally 

inaccurate in enclosed and semi-enclosed basins mainly due to the inaccurate wind input data. The main goal of this 

study is to develop a new and efficient approach to improve the hindcasted wave parameters in the Persian Gulf. 

Hence, the third generation SWAN model was employed for the wave modeling forced by the 6-hourly ECMWF 

wind data with a resolution of 0.5°. A new methodology was introduced for the distribution of wave prediction 

errors from discrete observation points to the other points of interest. It was found that the proposed method which 

considers the wave generation physics, leads to a significant improvement in the predicted wave parameters. In 

addition, it was revealed that the improvements in prediction of waves with higher wave heights and longer periods 

are more than those of others. This was shown to be due to the higher correlation between high values of output 

parameters which contain larger errors. The influence radius in the error distribution procedure was found to be near 

2 degrees (~200km).  
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1. Introduction 

Wind generated waves are the most important parameter in the design of coastal and offshore 

structures in the marine environment. The wave climate can be determined using long term wave 

data from instrumental measurement such as buoys, observation by satellites or numerical 

models (e.g. Goda, 2000). Each of these data sources has its advantages and disadvantages. The 

buoys present more accurate and frequent data but their locations are very sparse and mostly 

close to coasts. In addition, the long term buoy data may not be available in many regions.The 

altimetry data are continuous and accurate, but very intermittent and inaccurate near the coast 

(Krogstad and Barstow, 1999). The numerically modeled wave data are continuous in time and 

space, but generally inaccurate (mainly underestimated) in enclosed and semi-enclosed basins 

(Cavaleri and Sclavo, 2006). The most important reason for the underestimation of modeled data 

is inaccurate wind input data (Cavaleri and Sclavo, 2006; Komen et al., 1994). The wind data in 

the wave models are generally produced by numerical weather prediction models such as those 

operated at the ECMWF (European Center of Medium-range Weather Forecast). These 

simulated wind data are inevitably inaccurate and lead to inaccurate prediction of wind waves 

(Ardhuin et al., 2007; Cavaleri and Bertotti, 2004; Signell et al., 2005). Nevertheless, due to 

some irrecoverable drawbacks of buoys and altimetry data, nowadays numerically modeled data 

are widely used for determining the wave climate in different regions. To reduce the model 

errors, data assimilation techniques are employed to combine the modeled data with 

measurements at various points in the domain and produce the best possible estimation of the sea 

state over the entire domain (Kantha and Clayson, 2000).  

Data assimilation techniques can be classified into four main groups namely updating of input 

parameters, updating of state variables, updating of model parameters and updating of output 

variables (UOV). (Babovic et al., 2005; Refsgaard, 1997). In these methods buoy and altimetry 

data are used to improve the accuracy of the simulated wave data in the hindcast or forecast 

databases (Babovic et al., 2005; Mínguez et al., 2011; Moeini et al., 2012). The UOV technique 

is an appropriate method to reduce the error of the numerical models (Babovic et al., 2001). This 

method can be employed to modify different wave characteristics noting that the numerical 

model errors are not the same for different outputs (e.g. Moeini and Etemad-Shahidi, 2007). 

Some researchers have studied the correction of the simulated wave data based on the 

information taken from the measurements. Caires and Sterl (2005) presented a nonparametric 
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approach to correct model outputs. They applied their approach to the significant wave height 

dataset of the 45 years European Centre for Medium-Range Weather Forecasts Re-Analysis 

(ERA-40). Their results showed clear improvements in bias, scatter, and quantiles of the 

corrected data in the whole range of significant wave height. Cavaleri and Sclavo (2006) used 

information taken from buoy, altimetry and model data to calibrate decadal time series at a large 

number of points, distributed at 0.5° intervals in the Mediterranean sea. They derived single 

calibration coefficients for wind speed and wave height at the various grid points. They showed 

that the model captures well the structure of the wave fields, i.e. wave direction; and applied no 

correction to the wave direction. In the above-mentioned studies, the calibration process was 

conducted on a point-to-point basis, without considering the spatial correlation between adjacent 

points or taking into account the effect of wave climate. Tomas et al. (2008) developed a 

methodology for the spatial calibration of wave hindcast data sources based on an empirical 

orthogonal function and a non-linear transformation of the spatial–time modes. They applied 

their method to monthly long-term distribution of significant wave height in the Western 

Mediterranean. This approach may not be applicable for the correction of hourly hindcast data 

bases. In addition, since they assume a prior distribution function of the data in their study area, 

their method may not be generalized. Sannasiraj and Goldstein (2009) presented an assimilation 

model based on an optimal interpolation scheme. They formulated the gain matrix (weighting 

matrix) according to the model physics (by which the waves are generated by winds). They 

evaluated the efficiency of their method by using buoy observations in the Arabian Sea. Their 

assimilation approach led to a 30–50% reduction of root mean square error of wave height at the 

validation stations. In their method, the gain matrix was formulated without considering the 

difference between wave climate in each season e.g. south-west monsoon, north-east monsoon, 

and non-monsoon. Mínguez et al. (2011) proposed a calibration procedure for wave hindcast 

databases based on a nonlinear regression method. In their method, the correction parameters 

were formulated based on the wave propagation direction and varied smoothly along the possible 

wave directions by means of cubic splines. They showed the performance of their method using 

buoy and satellite data from different locations around Spain.  

Limited researches have been conducted on wave modeling and data assimilation in the Persian 

Gulf. Al-Salem et al. (2005) employed the third-generation spectral WAM model to simulate the 

wind waves in the Persian Gulf with focus on Kuwait territorial waters. They used wind data 
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with a spatial resolution of 0.5° obtained from the ECMWF to force the model. The model was 

validated using measurements at several locations near Kuwait waters. They showed that the 

WAM model successfully simulates the wave conditions except for some storm events where the 

wave heights were underestimated. This underestimation was due to the underestimation of the 

storms’ intensity by ECMWF. Similar results were echoed by Rakha et al. (2007). Moeini et al. 

(2010) evaluated the quality of two wind data  sources, i.e. numerically modeled winds and the 

measured data, for wave hindcasting in the Persian Gulf using the SWAN model. They found 

that the SWAN model overestimates the low wave heights and underestimates the higher ones 

because of the smoothing of wind field by ECMWF. They also noted that the calibration of the 

model parameters cannot lead to a comprehensive improvement of the model results. Moeini et 

al.(2012) developed an approach based on the point to point correction of the hindcasted wave 

parameters in the Persian Gulf. They showed that calibration of model parameters does not result 

in simultaneous and wide-ranging improvement of wave heights and periods. They proposed an 

error prediction approach using artificial neural networks (ANN) to correct wave heights and 

periods, separately. In addition, they showed that combination of the ANN estimated error with 

numerically modeled wave parameters leads to better results showing the importance of 

numerical wave modeling in the assimilation procedure. 

The main goal of this study is to develop an efficient approach for improvement of the simulated 

wave parameters over the entire domain based on the error distribution. Two approaches are 

investigated for the error distribution and their results are compared with each other. In the first 

approach, the errors at the desired grid point are estimated based on the linear combination of the 

predicted errors at the observation points. In the second one, it is assumed that the error ratios at 

the different grid points are the same as the ratio of the wave heights at these points.  

2 Study area and data  

The Persian Gulf, located in the southwest of the Asian continent is a shallow, semi-enclosed 

basin in a typical arid zone and is an arm of the Indian Ocean. It is located between the longitude 

of 48-57° E and the latitude of 24–30° N (Fig. 1). This Gulf is connected to the deep Gulf of 

Oman through the narrow Strait of Hormuz. The Persian Gulf covers an area of approximately 

226,000 km
2
 with a length of 990 km. Its width varies from 56 to 338 km, separating Iran from 

the Arabian Peninsula where the shortest distance is about 56 km in the Strait of Hormuz. This 
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basin has an average depth of about 35 m and the deepest water depth is approximately 107 m 

(Purser and Seibold, 1973; Emery, 1956). 

Generally, the input wind data for wind-wave simulation are generated by the meteorological 

models. Many different organizations run global atmospheric model producing 2-D gridded wind 

data all over the world. In this study, the wave model was forced by 6-hourly ECMWF 

operational data. These data are corresponding to 10 m level above the water surface and have 

spatial resolution of 0.5°. It should be noted that ECMWF operational data were selected because 

of their higher spatial resolution compared to those of ECMWF re-analysis (1.125° spatial 

resolution). 

3. Wind-wave model 

In this study, the third generation spectral SWAN model (Booij et al., 1999) was employed to 

simulate wind waves over the Persian Gulf. The SWAN model is a spectral wind wave model, 

developed to obtain reliable estimates of wave parameters in coastal waters. In this model, the 

action density spectrum is considered rather than the energy density spectrum because it is 

conserved in the presence of currents unlike energy density. The action density is the energy 

density divided by the relative frequency:  

N(σ,θ) = E(σ,θ) / σ        (1) 

The relative frequency σ and the wave direction θ are the independent variables. In this model, 

the wave spectrum evolution in the space (x,y) and time (t) is described by the spectral action 

balance equation (Booij et al., 1999). In the present study, SWAN cycle III version 40.72 (The 

SWAN Team, 2007) was used for wave simulation. The SWAN model was executed in 

nonstationary mode and spherical coordinates. Since the Komen’s formulation for wind input 

parameterization (Komen et al., 1984) leads to better results (Moeini and Etemad-Shahidi, 2007), 

this formulation was used for exponential growths of wind input. Additionally, quadruplet wave 

interaction was activated for nonlinear interaction. Dissipation due to bottom friction, 

whitecapping and depth-induced wave breaking were activated in the simulation. This study 

focused on the assimilation method based on updating of output variables not on the updating of 

the model parameters. Therefore, all of  the model’s  tunable coefficients such as bottom friction 

and whitecapping coefficient were set to their default values. For example, the used default value 



6 
 

of the coefficient for determining the rate of whitecapping dissipation (cds2 coefficient in the 

model set up) was 2.36e-5. Millar et al. (2007) have also used the default values for the model 

coefficients to analyze the change of the shoreline wave climate due to installation of a wave 

farm off the north coast of Cornwall, UK. Although the rate of whitecapping has a great 

influence on the output wave parameters, Moeini et al. (2012) showed that adaptation of model 

parameters is not a comprehensive methodology for accurate prediction of wide-range wave 

data. 

The geographical space was discretized into 200×160 cell grid over the Persian Gulf with a 

0.05×0.05 degree resolution in x and y directions. The origin of the computational grid was 

selected at 47 E, 23 N in the spherical coordinates (Fig. 1). The spectral space was divided into 

20 logarithmically spaced frequencies, from 0.06 to 1 Hz and 24 equal directions in the rose 

(Δθ=360/24=15). This depicts that the lowest period of the simulated waves is 1 second and the 

highest was nearly 17 seconds covering typical wind waves in the Persian Gulf. The 

computational time step was set as 10 minutes as well. It should be noted that all of the model 

discretization parameters such as discretization of time, space and spectrum (frequency and 

direction) were selected by sensitivity analysis and then optimized by trial and error. 

4. Error distribution approaches  

Two different approaches were used to distribute the error of the predicted wave heights over the 

modeled domain. In the first approach, the errors at the desired grid points were estimated using 

the linear combination of the predicted errors at the observational points. If the errors are known 

at m observation points and need to be determined at n grid points (Fig . 2), the modified wave 

heights, based on the linear combination of the errors, can be written as:  

1 1

m m
a f o

i i ij j ij

j j

H H g E g
 

   
     

   
   (2) 

i = 1, 2,..., n 

j = 1, 2,..., m 

where, 
a

iH  is the updated (assimilated) wave height at grid point i, 
f

iH  is the simulated (first-

guess) wave height at that grid point.
o

jE  is the error of the predicted wave height at the 

observation point j:  
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o o f

j j jE H H   (3) 

where, gij in Eq. 2 presents the weight of the error of each observation points in the assimilation 

process. In the present study, the values of gij were defined as a function of  the distance between 

observation and grid points (rij): 

2

ij

ij
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g exp

d

  
   
   

 (4) 

where, d is the influence radius (Kantha and Clayson, 2000) determined by trial and error. 

In the second approach, it was assumed that the error ratios of the different grid points are the 

same as the ratios of the wave heights at these points. Some researchers employed this approach 

without using any weight for different points (e.g. Kumar et al., 2009). Here we used the same 

weight used in the first approach (Eq. 4). In this way, the assimilated wave height at the desired 

grid point is estimated as follows:  

1
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 (5) 

The above equation can be rewritten based on the error at the observation point as: 

1

1

f o fm
a f i
i i ijm f

j j
ij

j

H H H
H H g

H
g 



 
   

 


  (6) 

Where, (H
o
-H

f
)j is the value of the error at the observation point. It is worth mentioning that by 

contrast to the linear combination method, the physics of the wave generation is considered in 

this data assimilation method. In this method, the value of the error at a desired grid point (

i i

a fH H ) depends on the value of the error at the observation point as well as the first-guess 

value of the wave parameter at that grid point ( i

fH ). Since the waves are an integrated effect of 

the generating wind fields in time and space (Cavaleri and Bertotto, 2004), the higher waves are 

usually simulated with larger errors. Therefore, considering the simulated value of the wave 

parameter at a desired grid point in the error distribution methodology improves the efficiency of 

the data assimilation approach.  
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5. Results and discussion 

As mentioned in section 4, two different approaches were investigated for updating of the 

simulated wave parameters over the modeled domain. In this section, the results of these 

approaches are presented. Generally, approaches can be assessed by comparison of their results 

with measured data. Since the main goal of this study is to develop an efficient approach for 

improvement of the simulated wave parameters over the entire domain, the results of these 

approaches should be compared with accurate measurement over the simulated area. Until now, 

in-situ simultaneous wave data (at several points) are not available over the Persian Gulf area. 

Therefore, altimeter wave measurements are the only available data over the model domain that 

can be used for evaluation of the error distribution approaches. However, this altimeter data 

contain some errors (Krogstad and Barstow, 1999; Greenslade, 2001) and are not accurate 

enough to be used as the data base for assessment of the assimilation approaches. For example, 

the error of the altimeter wave height data has been estimated about 0.5 m by Greenslade (2001). 

If these data are being used for assessment of the error distribution approaches, some of the 

outcome error will be due to the error in altimeter data. Therefore, another source of data was 

used as the basic data for evaluation of the error distribution approaches and improvement of the 

model outputs over the computational domain. In this regard, the SWAN model was run using 

available ECMWF data and the results were considered as the observations (
oH ). The simulation 

period covered 1994-1995 and the model was forced by 0.5 degree 6-hourly operational 

ECMWF. Since the focus of this study was on the assimilation method based on updating of 

output variables not on the modification of the model parameters, all model parameters such as 

bottom friction and whitecapping coefficient were set to their default values. Then, the simulated 

wave characteristics containing some errors (
fH ) were produced. To produce these erroneous 

first-guess wave heights and periods, the input values of wind speeds were multiplied randomly 

by a factor between 0.75 and 1.25 and the wave model was executed again. The erroneous model 

results are called first-guess model, hereinafter. Sannasiraj et al. (2006) have also employed this 

method for producing of basic and first-guess data. It should be noted that all of the wave model 

conditions  such as discretization of time, space and spectrum and physical parameters remained 

unchanged during simulation of the first-guess wave data. The simulation period was also same 

as the simulation of observations, i.e. 1994-1995. 
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The assimilation approaches were then assessed based on the observation (
oH ) and first-guess (

fH ) values in the modeled domain. This assessment was conducted by two scenarios, using one 

observation point and six observation points. In the first scenario, the observation point was 

considered to be at the Bushehr station where buoy measurements were available (Moeini et al., 

2012). Five grid points were also selected to control the assimilation results. Fig.1shows the 

location of the observation and grid points in the first scenario.  

Figures 3 to 6 depict the scatter diagrams of the wave heights at the grid points using two 

assimilation approaches. As seen in these figures, both approaches improve the results. 

Generally, by increasing the distance between the grid point and observation point the accuracy 

decreases. Additionally, in all cases, the accuracy of the second approach (based on the wave 

height ratio) is more than that of using the linear combination. Tables 1 to 4 present error 

measures of the data assimilation procedure at four selected grid points. In these tables, 

Assimilation 1 refers to the assimilation approach based on the linear combination and 

Assimilation 2 refers to the second approach based on the wave height ratio. As seen in Tables 1-

4, at the nearest point to the observation point, i.e. point B81; the scatter index reduced from 26 

percent to about 11 percent when using the linear combination and 8 percent when using the 

wave height ratio (assimilation 2) method. Point 88 has a distance about 330 km from the 

observation point. At this point, the scatter index reduced from about 25 percent to nearly 18 

percent using the linear combination and to about 11 percent using the second assimilation 

approach. In other words, using the wave height ratio for error distribution leads to a reduction of 

more than 50 percent in the scatter index at the most distant point. The reason for the skillfulness 

of the wave height ratio approach is that it considers the wave climate in the computational 

domain. Because of the nature of the error in the wind input data, the error of an output 

parameter depends on its simulated value and this is considered in the wave height ratio 

approach. 

Similar results are found in the improvement of the wave period. For brevity, only the results for 

points B81 and 77 are presented. Figures 7 and 8 depict scatter diagrams of the wave period at 

the mentioned points using two assimilation procedures. As seen, by increasing the distance, the 

improvement in the results reduces. In other words, at point 77 which is located about 2.4 

degrees from the observation point; significant improvement in the wave period is not seen 

especially for low values of wave period. On the other hand, the improvement in the wave height 
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was significant for this distant point. For the qualitative assessment of improvements, the 

relevant error measures are presented in tables 5 and 6. As seen, in both approaches the scatter 

indices reduce from 9 percent to less than 6 percent at point B81. This improvement is less at 

point 77. The reason of the less effectiveness of the assimilation procedure on the wave period 

(rather than on the wave height) may be the lower value of the produced error in the wave 

period. Comparison of the tables 1- 4 and 5-6 shows that the produced error in the wave height is 

about 26 percent and about 9 percent for the wave period. Therefore, since the correlations 

between the values of the errors at different points decrease when the error values decrease, the 

assimilation procedure is not very effective for the wave period. The reduction of the correlation 

of the errors between different points for lower values can be seen in the scatter diagrams of the 

wave height and period of all points. These diagrams depict that the scatter of the first guess data 

for high values of wave heights and periods is less than those of low values of wave heights and 

periods. After assimilation and improving  the results, the scatter of the high values is 

significantly reduced while the scatter of the low values even increased in some cases.  

Next, the assimilation process was evaluated assuming 6 observational points. To control the 

results, four grid points (P1 to P4) were considered over the Persian Gulf (Fig. 9).  

Figures 10 to 13 depict the scatter diagram of the wave heights for first guess and updated data. 

Tables 7-10 show the statistical parameters of the assimilation process. As seen in the scatter 

diagrams and statistical parameters, when 6 observation points exist in the computational 

domain, updating of the model results led to a similar improvement of the predicted wave height 

at all grid points. The scatter indices decrease to about one fourth in the case of linear 

combination and to one fifth in the case of the wave height ratio (assimilation 2) approach. In 

addition, at all grid points, the assimilation approach based on the wave height ratio outperforms 

the linear combination one. This was observed and discussed for  the case of one observational 

point. Another point is that the assimilation procedure yields the best results at point P2 and the 

worst ones at P4. This is due to the different values of the output parameters at these points. 

Based on the modeling results, point P2 is located in an area where the highest waves exist 

whereas the smallest waves are generated at P4 area. Since the error correlation between 

different grid points is less for lower values of the output parameters, assimilation procedure at 

point P2 which contains higher values leads to better results than other points. It should be noted 

that the best value for the influence radius was found to be nearly 2 degrees by trial and error.  
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6. Summary and conclusion 

An efficient approach to distribute error of simulated wave heights over the domain was 

developed in this study. To do so, the third generation SWAN model was employed for wave 

simulation forced by the 6-hourly ECMWF wind data with a resolution of 0.5°. Two approaches 

for error distribution and improving  the results were assessed. In the first approach, the value of 

the error at a desired grid point was estimated based on the linear combination of the error at the 

observation points. In the second approach, the errors of the output parameter of the model at a 

desired point were estimated based on the combination of the ratio of simulated values of the 

output parameters in the observational and grid points. The weight of each observational point 

was determined using an exponential function of the distance. The results of the study showed 

that the second approach leads to better results due to considering the physics of wind-wave 

generation.  

The estimation of the weights based only on the distance between observation and grid points 

can influence the error distribution procedure. Thus, the selection of the gain values considering 

different wave regime is very important. In addition, optimum selection of the weight vectors to 

achieve minimum errors over the domain can enhance the quality of the error distribution 

process. Detecting highly correlated points over the simulation domain is also an interesting 

future research topic. 
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Figure Caption 

Fig. 1. The Persian Gulf, modeled area and the location of the observation and grid points used 

for assessment of the error distribution results 

Fig. 2. The used grid and observation points in the data assimilation process 

Fig. 3. Scatter diagram of the wave height at point B81. Left: first guess data, middle: updated 

based on the linear combination, right: updated based on the wave height ratio. 

Fig. 4. Same as Fig.3 but for Point 65  

Fig. 5. Same as Fig.3 but for Point 77  

Fig. 6. Same as Fig.3 but for Point 88  

Fig. 7. Scatter diagrams of the wave period at point B81. Left: first guess data, middle: updated 

based on linear combination, right: updated based on wave height ratio. 

Fig. 8. Same as Fig.7 but for Point 77  

Fig. 9. The location of the observation and grid points 

Fig. 10. Scatter diagram of the wave height at point P1. Left: first guess data, middle: updated 

based on linear combination, right: updated based on wave height ratio. 

Fig. 11. Same as Fig.10 but for P2. 

Fig. 12. Same as Fig.10 but for P3. 

Fig. 13. Same as Fig.10  but for P4. 
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Fig 1. The Persian Gulf, modeled area and the location of the observation and grid points used for assessment of the 

error distribution results 
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Fig. 2. The used grid and observation points in the data assimilation process 
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Fig. 3. Scatter diagram of the wave height at point B81. Left: first guess data, middle: updated based on the linear 
combination, right: updated based on the wave height ratio. 
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Fig. 4. Same as Fig.3 but for Point 65  
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Fig. 5. Same as Fig.3 but for Point 77  
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Fig. 6. Same as Fig.3 but for Point 88  
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Fig. 7. Scatter diagrams of the wave period at point B81. Left: first guess data, middle: updated based on linear 
combination, right: updated based on wave height ratio. 
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Fig. 8. Same as Fig.7 but for Point 77  
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Fig. 9. The location of the observation and grid points 
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Fig. 10. Scatter diagram of the wave height at point P1. Left: first guess data, middle: updated based on linear 
combination, right: updated based on wave height ratio. 
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Fig. 11.Same as Fig.10 but for P2. 
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Fig. 12.Same as Fig.10 but for P3. 
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Fig. 13.Same as Fig.10 but for P4. 
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Table 1. Statistical parameters of the data assimilation procedure at point B81 

Point B81 First guess Assimilation 1 Assimilation 2 

Bias (m) 0.015 0.00 0.00 

RMSE 0.143 0.06 0.04 

SI (%) 26.009 10.82 8.02 

Correlation Coef. 0.900 0.98 0.99 
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Table 2. Statistical parameters of the data assimilation procedure at point 65 

Point 65 First guess Assimilation 1 Assimilation 2 

Bias (m) 0.019 0.00 0.00 

RMSE 0.150 0.07 0.05 

SI (%) 25.410 12.12 8.66 

Correlation Coef. 0.905 0.98 0.99 
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Table 3. Statistical parameters of the data assimilation procedure at point 77 

Point 77 First guess Assimilation 1 Assimilation 2 

Bias (m) 0.020 0.01 0.00 

RMSE 0.145 0.09 0.06 

SI (%) 25.37 15.60 10.28 

Correlation Coef. 0.909 0.96 0.98 

 

  



32 
 

 
Table 4. Statistical parameters of the data assimilation procedure at point 88 

Point 88 First guess Assimilation 1 Assimilation 2 

Bias (m) 0.022 0.01 0.01 

RMSE 0.143 0.10 0.06 

SI (%) 25.318 17.65 11.42 

Correlation Coef. 0.915 0.95 0.98 
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Table 5. Statistical parameters of the assimilated wave periods, point B81 

Point B81 First guess Assimilation 1 Assimilation 2 

Bias (m) 0.028 0.00 0.00 

RMSE 0.206 0.13 0.13 

SI (%) 9.055 5.66 5.61 

Correlation Coef. 0.900 0.96 0.96 
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Table 6. Statistical parameters of the assimilated wave periods, point 77 

Point 77 First guess Assimilation 1 Assimilation 2 

Bias (m) 0.035 0.01 0.01 

RMSE 0.214 0.18 0.18 

SI (%) 9.09 7.68 7.62 

Correlation Coef. 0.909 0.93 0.93 
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Table 7. Statistical parameters for assimilation procedures at point P1 

P1 First guess Assimilation 1 Assimilation 2 

Bias (m) 0.015 0.00 0.00 

RMSE 0.143 0.04 0.03 

SI (%) 26.227 7.23 5.52 

Correlation Coef. 0.896 0.99 0.99 
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Table 8. Statistical parameters for assimilation procedures at point P2 

P2 First guess Assimilation 1 Assimilation 2 

Bias (m) 0.017 0.00 0.00 

RMSE 0.146 0.03 0.03 

SI (%) 25.406 5.99 4.61 

Correlation Coef. 0.904 0.99 1.00 
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Table 9. Statistical parameters for assimilation procedures at point P3 

P3 First guess Assimilation 1 Assimilation 2 

Bias (m) 0.022 0.00 0.00 

RMSE 0.143 0.04 0.03 

SI (%) 25.318 7.52 6.00 

Correlation Coef. 0.915 0.99 0.99 
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Table 10. Statistical parameters for assimilation procedures at point P4 

P4 First guess Assimilation 1 Assimilation 2 

Bias (m) 0.022 0.00 0.00 

RMSE 0.123 0.04 0.03 

SI (%) 24.750 7.70 6.13 

Correlation Coef. 0.915 0.99 0.99 

 

 


