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Abstract
We show that the eight-port interferometer used by Noh, Fougeres, and Mandel [Phys. Rev.
Lett. 71, 2579 (1993)] to measure their operational phase distribution of light can also be used to
measure the canonical phase distribution of weak optical fields, where canonical phase is defined as
the complement of photon number. A binomial reference state is required for this purpose, which
we show can be obtained to an excellent degree of approximation from a suitably squeezed state.
The proposed method requires only photodetectors that can distinguish among zero, one and more

than one photons and is not particularly sensitive to photodetector imperfections.

PACS numbers: 42.50.Dv, 42.50.-p



I. INTRODUCTION

The quantum mechanical nature of the phase of light has been studied since the begin-
nings of quantum electrodynamic theory [1], with renewed interest recently. The study of
quantum phase is distinguished from the study of many other quantum observables by the
difficulties inherent not only in finding a theoretical description but also in finding methods
for measuring the phase observable so described [2]. A method of circumventing this latter
difficulty is to define phase as the quantity measured by some particular experiment. This is
known as an operational approach [3]. A sensible operational phase measurement must, of
course, be in accord with a classical phase measurement in the appropriate limit, for example
when the field being measured is in a strong coherent state. This requirement, however, is
not sufficient to define a unique operational phase observable and various different opera-
tional definitions have been proposed. The best known of these is that of Noh et al. [4] who
also proposed a means of measuring an operational phase distribution [5], which was further
developed in Refs [6] and [7]. There are also various theoretical approaches to describing the
phase observable. What distinguishes these theoretical approaches from one another is their
predicted phase distributions for particular states. Some of these approaches are motivated
by the aim of expressing phase as the complement of photon number, in the spirit of Dirac’s
original work [1]. Examples of such approaches include the probability operator measure
approach [8], a formalism in which the Hilbert space is doubled [9], a limiting approach
based on a finite Hilbert space [10] and a more general axiomatic approach [11]. Although
these particular approaches are quite distinct they all lead to the same phase probability
distribution for a field in state |¢b) as a function of phase angle 6 [11]:
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where |n) is a photon number state. Leonhardt et al. [11] have called this the “canonical”
phase distribution to indicate a quantity that is the canonical conjugate, or complement,
of photon number. Irrespective of how it is derived, the canonical phase distribution has
properties that one might expect from the complement of photon number: it is shifted
uniformly when a phase shifter is applied to the field, it is not changed by a photon number
shift [11] and it corresponds to a wavefunction in the phase representation of which the

photon number amplitude is the finite Fourier transform [2, 12]. The last property is a



natural parallel to momentum-position conjugacy.

Although the canonical phase distribution has attractive theoretical properties, its di-
rect measurement presents difficulties [13]. Good approximate methods exist, based on
homodyne techniques, for measuring the canonical phase distribution of states with narrow
phase distributions, for example coherent states with mean photon numbers of at least five
[14]. Weak fields in the quantum regime, however, must have broad phase distributions
because of number-phase complementarity. In principle the distributions for such fields can
be measured by the projection synthesis method proposed in Ref. [15] but this requires the
generation of a reciprocal binomial state as a reference state. The generation of this exotic
state has still not been achieved. On the other hand the operational phase measurements of
Noh et al. are quite practical for the weak fields of interest and have been shown to measure
what they are designed to measure very well [5]. Unfortunately they were not designed to
measure, nor do they measure, the canonical phase distribution. Indeed their results show
that their operational phase distribution is significantly different from the canonical phase
distribution. Thus the projection synthesis method measures the canonical phase distri-
bution in principle while the operational method does not; but the operational method is
practical while the projection synthesis method is not.

In this paper we show how the apparatus used for measuring the operational phase
distribution can be used to measure the canonical phase distribution for weak fields in
conjunction with a reference field in a binomial state. We show how a binomial state, in
contrast to a reciprocal binomial state, can be very well approximated by a squeezed state,

making this method much more practical than the original projection synthesis method.

II. PROJECTION SYNTHESIS
A. Beam splitter

In the projection synthesis method of [15] the aim was to use photodetection in conjunc-
tion with a beam splitter and a special reference state to synthesize the projection of an

unknown state onto a truncated phase state
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where M must be sufficiently large for the density matrix of the reproducible weak field that
is to be measured to be well approximated in the number state basis by a matrix with only
the first (M + 1) x (M 4 1) elements non-zero. This projection event is associated with the
detection of M photons in one output mode of the beam splitter and no photons in the other.
We label this detection event (M,0). The probability of the event (M,0) is obtained from
the occurrence frequency in successive repeated measurements of the field. The procedure is
to measure this probability as € is changed in small steps over the 27 range. The changes in
6 can be achieved simply by altering the phase either of the reference field or of the field to
be measured. A histogram is then plotted which, when suitably normalized, produces the
canonical phase distribution.

The mechanism underlying projection synthesis can be described as follows. Suppose
the measured and reference fields are in the beam splitter input modes 0 and 1 respectively
and the event (M, 0) is that for which M photons are detected in output mode 0 and zero
photons are detected in output mode 1. The combined output state corresponding to this
measurement result is the M-photon state |M), |0),. Following the unitary evolution of this
state backwards through the beam splitter transforms this to an M-photon entangled input

state of the form
M

|f> = me |n>0 |M - n>1 (3)

n=0

which displays photon number conservation. If the measured field is in a pure state |1),

and the reference state is given by

o0
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n=0
then the amplitude for the detection event (M,0) is o(¢0| 1(r|f), that is, the projection of
|th)o onto 1(r|f). By choosing appropriate coefficients r, for n = 0 to M, we can make
this amplitude proportional to the projection of |¢), onto the truncated phase state |0)
given by (2). We note that the values of r, for n > M are irrelevant, merely affecting the
normalization factor for the complete probability distribution. For a 50:50 symmetric beam
splitter we find that the values of |r,| need to be proportional to the reciprocal of the square
root of the binomial coefficient (]\f) for n =0 to M.

As mentioned earlier, the difficulty with projection synthesis is generating the reciprocal
binomial state required for the reference field. As reciprocal binomial states have a finite

number of photon number state coefficients, they can be prepared as travelling fields in
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principle by the generic methods given in Refs. [16] and [17] by means of beam splitters.
Unfortunately, however, in such techniques the state generated is conditioned on measuring
particular outputs from the beam splitters and so the method is quite inefficient and difficult

and has never been implemented.

B. Multiport device

Projection synthesis relies on transforming projections onto photon number states into at
least one projection onto a truncated phase state. As phase is not an absolute quantity, it is
necessary to have a transformation device with at least two inputs for phase measurement:
one for the field to be measured and one for the reference field. The projection synthesis
method of [15] uses the minimal necessary device, a beam splitter with two inputs and two
outputs. More flexibility can be obtained by using a more general multiport device with
N + 1 inputs and N + 1 outputs with a photodetector in each output. This would require,
in addition to the field in state 1)) to be measured being in input mode 0, say, N reference
fields being in modes 1,2 ... N. Rather than exacerbate the problem of preparing special
reference states, it is preferable simply to have one reference field in input mode 1 with
vacuum fields in the remaining inputs. These input states are transformed by a unitary
operator R into the output states. If a total of M photons are detected in the output
states then, from photon number conservation, the corresponding M-photon output state
evolved backwards through the multiport device will be transformed to an entangled M-
photon input state. Projecting the combined vacuum input state |0),[0),...|0), onto this
entangled state will result in a two-mode M-photon entangled state in input modes 0 and 1
of the form |f) in (3). The coefficients f,, will depend on the unitary transformation R and
on the manner in which the M photons are detected, that is, how they are distributed over
the output modes. As these coefficients determine the values of r, required to synthesize
the projection of the state to be measured onto a truncated phase state, use of a multiport
device should increase the flexibility in choosing a convenient reference state |r);.

A natural multiport extension of the 50:50 symmetric beam splitter is one where R is
such that a photon entering any input appears with equal probability at any output [18, 19]
and a photon in any output is equally likely to have come from any input. In this case it is

not difficult to show that, when the M photons are detected in output mode 0 and none are



detected in the other modes, the coefficients f,, are similar to those for the beam splitter case
for the event (M,0) and we again require the reference field to be in a reciprocal binomial
state. Thus 1t is worth examining other possible distributions of the detected photons over
the output modes.

A particular case of the above device is one that performs a discrete Fourier transform
[19], that is where the set of mode photon creation operators and the set of transformed

operators form a discrete Fourier transform pair:

N
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w
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with w = exp[—i27 /(N +1)], that is, a (N +1)th root of unity. Recently [20], we found that,
if the number M of photons detected is equal to NV and these photons are distributed such
that one is detected in each output of such a multiport device except one, then projection
onto a truncated phase state is synthesized providing the reference field is in a binomial
state. Specifically, if the detection event is such that it is the mth output detector that
records a zero count while all the other detectors record one count each, then the state |¢)g

to be measured is projected onto a state proportional to

Z mn [0 (8)

that is

1
[0 )o = WZGXP (in05n) n)q (9)

where

0, =m2m /(N 4+ 1) (10)

which is just the required truncated phase state. The amplitude for this detection event is
proportional to o(0,, 1) [20].

In addition to requiring photodetectors that only need to distinguish among zero pho-
tons, one photon and more than one photon, this multiport device has the advantage that

the required binomial reference state is much closer to commonly available states such as



coherent states than is a reciprocal binomial state. Binomial states have been studied for
some time [21]. They have interesting properties such as interpolating between coherent
states and number states and, with the photon number state coefficients positive, they are
partial phase states with a mean phase of zero [22]. It is not difficult to show that they have
a smaller phase variance than truncated phase states with the same number of number state
coefficients. As binomial states have a finite number of photon number state coefficients,
they can be prepared as travelling fields by the generic methods given in Refs. [16] and
[17] by means of beam splitters. Unfortunately, however, these inefficient techniques offer
no real advance when used for measuring the phase distribution over the use of a reciprocal
binomial state in [15], which can be prepared by the same generic means. For a practical
experiment we require the binomial state to be approximated by a state which is reasonably
straightforward to prepare on demand.

As mentioned earlier, the values r,, of the number state coefficients of the reference state
for n > M are irrelevant so here, where M = N, only the coefficients r, with 0 < n < N
are important, and thus only these need to be proportional to square roots of binomial
coefficients. Further, as we are interested in fields with broad phase distributions, and
states with broad number state distributions tend to have narrow phase distributions, then
normally only a small group of number state coefficients o(n|i)q of the state of the measured
field will differ significantly from zero. From (3) with M = N and (4), if the coefficient
o{n|t)o is significant then the value of ry_, is important. Thus, for example, if o(n|¢)o
are significant only for a small number of values of n equal to or slightly less than a value
n', say, then we would choose N = n’ and require the small number of coefficients r,
with n equal to, or near, zero to be proportional to square roots of appropriate binomial
coefficients. We show in the Appendix how such a state can be approximated by a squeezed
state with squeezing parameter tanh™ 0.5. On the other hand if the significant values of
o{n|th)o occur for n equal to or near zero, as will be the case for very weak fields, then we
require coefficients r,, with n equal to or slightly less N to be proportional to square roots
of the appropriate binomial coefficients. In the Appendix we find a squeezed state, also
with squeezing parameter of tanh™" 0.5, that is a very good approximation for the binomial
reference state needed for measuring the phase distribution of very weak fields with the

eight-port interferometer examined below.
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FIG. 1: Eight-port interferometer for measuring the canonical phase distribution of weak fields.
The field in state |1)g to be measured is in the input port labelled In 0, the reference field in state
|r)1 is in input port In 1 and vacuum state fields are in In 2 and In 3. A photodetector is in each
output port. The dotted phase shifters are for mathematical convenience only, and do not affect

the results.

IT1I. EIGHT-PORT INTERFEROMETER
A. Binomial reference state

The eight-port interferometer [23] used by Noh et al. [4, 5] and Torgerson and Mandel
[5, 6] is illustrated in Fig. 1. There are four 50:50 symmetric beam splitters at the corners
of a square. The phase shifter labelled —: between the two beam splitters on the right shifts
the phase by /2. The field state [¢))¢ to be measured is in input port 0. The phase shifter
in input port 1 allows the phase of the reference field state |r); to be changed. The dotted
phase shifters in input port 2 and before detectors D;, Dy and D3, which are not present
in the original interferometer, are merely inserted here for mathematical convenience. As
the field in input port 2 is the vacuum it will not be affected by a phase shift and, as the
detectors detect photons, their operation will not be affected by phase shifters in front of
them.

A single 50:50 symmetric beam splitter transforms the input creation operators bt and ¢f
in accord with [24]

RiOIRT = 2712t 4 it (11)



Rt BRI = 27120 4 &) (12)
where R, is the unitary operator for the action of the single beam splitter. By using this

relation successively, it is not difficult to show that the input creation operators for the

eight-port interferometer, including the dotted phase shifters, are transformed as

3
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with w again being exp[—i27 /(N + 1)], provided we set the phase shifter in input 1 to shift
the phase by m/2, that is to attach a value —i to it. Expressions (13) and (14) are in
agreement with (6) and (7) for N = 3 apart from the phase factor exp(iv), which depends
on the difference between the distance between beam splitters and an integer number of
wavelengths. This phase factor does not affect the photocount probabilities and can be
ignored.

Thus we see that the eight-port interferometer, without modification, can be used to syn-
thesize the projection of the state to be measured onto one of four phase states. Specifically
the probability of measurement event (0, 1, 1, 1), that is the detection of zero photocounts in
detector Dg and one in each of Dy, Dy and D3, is proportional to the square of the modulus

of the projection of the measured state onto the truncated phase state
[00) = 271(10) + [1) +[2) + 13)) (15)

while the probability of the event (1,0,1,1) is proportional the square of the modulus of the

projection of the measured state onto the truncated phase state

[01) = 27(10) + 4 [1) — [2) —i[3)) (16)

and so on, in accord with (9) with N = 3. Repeating the experiment a number of times
with a reproducible state will allow a probability Pas(6,,) with m = 0,1,2,3 to be measured
for each of the four events (0,1,1,1), (1,0,1,1), (1,1,0,1) and (1,1,1,0) respectively.

To use these four measured probabilities to construct the phase distribution we first

normalize them to
2Py (0,,
y(0n) = b(0r)

= Pu(0) PalO)’ (17)
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We note that, as shown in general in Ref. [20], Pa(,,) o< [{(¥]0,,)|?, where here |6,,) is given
by (9) with N = 3 and we have omitted the subscripts zero for convenience. This allows
us to replace Pp(60,,) in (17) by [(1|6,.)]?. Substituting for 6,, from Eq. (10) with N =3
yields eventually

3
D (W10 1* = (100 + [0 1)* + [ [2)* + [(I3) . (18)
m=0

If the measured field is sufficiently weak for the number state components (i|n) to be

negligible for n > 4 then the right-hand side of Eq. (18) is just unity and so, from (17),

y(0n) = ZIwl0)
= Pl0,), (19)

with the last line being obtained from Eq. (1) in the same weak-field approximation.

Thus, if we normalize the four measured probabilities by dividing each by the sum of the
four and then multiplying by 2/7, we obtain four points on the canonical phase probability
distribution given by Eq. (1) for a weak field. We note that, with this normalization
procedure, if the points y(6,,) are used to draw a histogram, the area of the histogram
would unity, because the width of each rectangle is 7 /2.

Shifting the phase of the phase shifter in the input 1 to change the phase of the reference
field by Af and repeating the procedure gives four more points of the distribution shifted
from the original points by Af. A sixteen point curve, for example, can be constructed by

shifting the phase by /8 three times and repeating the experiment after each shift.

B. Squeezed reference state

The above analysis and suggested procedure assumes that the reference field is in a perfect
binomial state. If, instead, we use the squeezed state approximation to the binomial state
as derived in the Appendix, then the vacuum state coefficient differs from the ideal value
and the measured state is no longer projected onto the truncated phase state |6,,) but is

instead projected onto a state proportional to
|0) 4+ exp(i0,)|1) + exp(2:6,,)]2) + 1.0146 exp(3i6,,)|3). (20)

We would expect that this would lead to some small errors when the procedure suggested

above is applied. In practice, if we are measuring a state, such as a coherent or squeezed
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FIG. 2: Canonical phase probability distribution P(6) for a coherent state field with a mean photon
number of 0.076. The full line is the theoretical result and the dots are simulated measured results

with ideal detectors for four different phase settings of the squeezed reference field.

state, that does not have a truncated photon number distribution, the error caused by
the modulus of the three-photon coefficient in expression (20) differing from unity may in
general be smaller that the error caused by the truncation of expression (20) after the three-
photon component. In Fig. 2 we show the points obtained from a simulated experiment for
a coherent state with a mean photon number of 0.076, which is is comparable to the field
strength of interest in Ref. [6], using a squeezed reference state. The close agreement with the
canonical distribution is apparent. For weaker fields, for example the other field of interest
in Ref. [6] with a mean photon number of 0.047, the agreement is even closer. Agreement
is still good for stronger coherent state fields with mean photon numbers of 0.139 and 0.23,
as used in Ref. [7], with divergence from the canonical distribution becoming apparent for
mean photon numbers of around 0.4. Figure 3 shows simulated results for a coherent state
with a mean photon number of 0.5. The error here is almost entirely due to the truncation
of the phase state rather than to the non-unit coefficient of the fourth term in (20). A mean
photon number of 0.5 represents the approximate limit to the field strength for a coherent

state for which this measurement technique is suitable.

IV. SOME PRACTICAL CONSIDERATIONS

To obtain an idea of the number of experiments needed to measure the required probabil-
ities, we note that, for weak coherent fields of the strengths discussed here, the coefficient of

the vacuum component dominates, so the probability of detecting a total of three photons

11



P(6)

1/(2m)

-7 0 7
0 (rad)

FIG. 3: Simulated measurements (dots) and the theoretical canonical phase distribution (full line)

for a coherent state field with a mean photon number of 0.5 with ideal detectors.

will be approximately the probability that the binomial reference state contains three pho-
tons, which is 12.5%. These photons can be detected as a variety of events such as (0,1,1,1),
(0,0,2,1) or (0,0,0,3). The fraction of these events that are required events, that is three
separate counts of one photon and one count of zero, is 3/32. Thus approximately 4.7%
of experiments will produce one of the four desired events. After running the experiment
sufficient times to obtain the four probabilities with the desired accuracy, the phase of the
reference state is then changed and the procedure is repeated to obtain four more probabili-
ties. The question therefore arises: how many probabilities, that is points on the probability
distribution, do we need to determine the distribution with reasonable accuracy? The fact
that we are synthesizing a projection onto a truncated phase state with four non-zero pho-
ton number-state coefficients means that the weak fields being measured must, by necessity,
have negligible coefficients for components with photon numbers greater than three. From
Eq. (1) this means that the most rapidly oscillating Fourier component of the distribution
P(0) behaves as exp(i36). To detect this oscillation we would need a minimum of about
12 equally spaced values of P(#). Thus running the experiment with four different phase
settings, giving a total of 16 points on the distribution curve as shown in Fig. 2, should
normally be sufficient.

In a practical experimental situation errors can arise from collection inefficiencies, non-
unit quantum efficiencies for one, two and multiple photon detection, dead times and acci-
dental counts arising from dark counts and background light. The fact, however, that Noh

et al. [4] have performed successful experiments involving the measurement of joint detec-
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tion probabilities with an eight-port interferometer, by means of photon counting, for states
with field strengths similar to those of interest in this paper is an encouraging indication
that there should be no insurmountable difficulties for the method proposed here arising
from such errors. It is worth considering some specific aspects of the sources of error. In
the experiments of Noh et al. [4] photon count rates were of the order of 10* per second
with a counting interval of about 5 us, to give the required small mean photon number, and
dead-time effects were negligible. In the present proposed experiment dead times are even
less important because it is only necessary to discriminate among zero, one and many counts
rather than among general numbers of counts [25]. Dark counts can be reduced to about 200
per second [4] or even to 20 per second [26] by cooling the detectors and background light
can be reduced by appropriate shielding. In the event that the residual dark and background
counts are not negligible, the measured joint probabilities of the four photocount events can
be corrected by a deconvolution procedure using the data obtained by blocking the input
signals [4].

Concerning detector efficiencies, even if collection efficiencies are made to approach unity
by, for example, suitable geometry and reflection control, there will still be some detector
inefficiency due to non-unit quantum efficiency, so some correction for detector inefficiency
may be needed. Conventional single-photon counting module detectors can have an efficiency
of around 0.7 [27], while visible light photon counters that distinguish between single-photon
and two-photon incidence can have quantum efficiencies of about 0.9 with some sacrifice of
smallness of dark count rate [27]. We denote the one-photon detection efficiency, that is the
probability of recording one photocount if one photon is present, by n. Then, as dead times
are not important, the general multiple detection efficiency is such that the probability of
recording n photocounts if N photons are present is (]Z) n"(1 —n)¥=" where the first factor
is the binomial coefficient [28]. If 5 is the same for all four detectors the probability for the
joint four-count detection event (m,n,p,q) is given by

P - £ 555 () ()

S=m t=n u=p v=q m p q

m+n+p+q(1 _ 77)s+t-l—u+v—m—n—p—q P[(S, t, u, U) (21)

X7

where Pj(s,t,u,v) is the probability that an ideal detector would have detected the joint
four-count event (s,¢,u,v). The relation (21) can be inverted by use of the four-function

Bernoulli transform, which is straightforward to derive in a similar manner to that of the
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FIG. 4: Uncorrected simulated measurements (dots) and the theoretical canonical phase distribu-
tion (full line) for a coherent state field with a mean photon number of 0.076 where the photode-

tectors have an efficiency n = 0.6.

two-function transform derived in Ref. [29]. This allows us to calculate the ideal probabilities
from the measured probabilities and thus correct for non-unit efficiencies.

Although we can correct for non-unit efficiencies an analysis shows that the effect of not
correcting for them is not as serious as it may first appear. Essentially this is because the four
measured probabilities are always normalized so their sum is 2/7. The major effect of 1 not
being unity is, as can be seen from (21), that the probabilities for the four events (0,1,1,1),
(1,0,1,1), (1,1,0,1) and (1,1,1,0) to be actually recorded are reduced by a factor n®. As this
affects the event probabilities uniformly, however, the effect vanishes upon normalization.
The next order effect is that some ideal four-count events, such as (1,1,1,1) and (0,2,1,1),
are registered, for example, as (0,1,1,1) because of the inefficiency. The effect of this is only
partially removed by the normalization. Ideal higher-count events also contribute to the
error, but for weak fields the probability of ideal high-count events is not large. A numerical
calculation of the total effect of non-unit efficiency, including the effect of normalization,
shows that the proposed procedure is not highly sensitive to detector inefficiency, provided
the efficiency is reasonable, for the weak states of interest. More precisely, for coherent states
with a mean photon number up to 0.5 photons, as discussed above, the error in the final
normalized probabilities is less than 2% for n > 0.9. For a mean photon number of 0.076,
the error is less that 0.5% for such efficiencies. In Fig. 4 we show the effect of a poorer
efficiency of n = 0.6 for a mean photon number of 0.076.

To produce the squeezed state required as an approximate binomial state, we note that

14



squeezed vacuum states can be transformed into various types of squeezed states, the squeez-
ing axis can be rotated, coherent amplitude can be added and the squeezing can be controlled
independently of the coherent amplitude. The degree of squeezing needed here is of a mag-
nitude that is a realistic expectation either now or in the near future [30].

Our discussion has focused mainly on measuring the phase probability distribution of
pure states of light. It is straightforward, however, to show that our procedure can also be
used to measure the distribution of a mixed state. If the mixed state is represented by a
density operator that is a weighted sum of pure state density operators |¢))(¢)| for various
states [¢), then the phase probability density is just the corresponding weighted sum of
values of P(f) given expression (1) for the various states |¢)). To measure this, we can use
precisely the same procedure as described in this paper with the same binomial reference

state.

V. CONCLUSION

We have shown in this paper how the eight-port interferometer used by Noh et al. [4, 5]
to measure their operational phase distribution can used to measure the canonical phase
distribution given by Eq. (1), where the canonical phase is defined as the complement of
photon number. The procedure is applicable for weak fields in the quantum regime, by
which we mean explicitly states for which number state components for photon numbers
greater than three are negligible. For coherent states, this requirement translates to a mean
photon number of a half a photon or less. This is precisely the quantum regime in which
large differences between the operational phase and the canonical phase distributions are
most apparent. For example fields of interest in Refs [6, 7] are coherent states with mean
photon numbers of 0.23, 0.139, 0.076 and 0.047. The success of the experiments in the
foregoing references indicates that the procedure proposed in this paper should be viable,
given a reliable source of the required reference state.

The procedure in this paper has advantages over the original projection synthesis method
proposed for measuring the canonical phase distribution. The most significant of these
is that the present procedure requires a binomial reference state rather than a reciprocal
binomial state. We have shown that the required binomial state can be approximated by a

squeezed state sufficiently well for our purpose. Another advantage is that we require only
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photodetectors that can distinguish among zero, one and more than one photocounts. The
measurements are not particularly sensitive to photodetector inefficiency and, for reasonably
good detector efficiencies, no corrections should be needed. Overall, we feel that the proposal
in this paper brings the measurement of the canonical phase distribution for weak optical

fields closer to reality.

APPENDIX: BINOMIAL STATES

In this Appendix we show how the required binomial reference state can be approximated
by a suitably squeezed state. The particular binomial state of interest to us is given by
N NN\ ?
=3 =2y (V) A
n=0 n=0 n
where (]Z) is the binomial coefficient. The binomial state derived in Ref. [20] with alternating
signs for the number state coefficients can be obtained by phase shifting this state by .

The general form for a squeezed state is [31]

o0

o, ¢y = > ann)

n=0

- <cosh|<|>—1/2exp{—§na|2+t<a*>21}

> W [ (A2)

1/2 (2t)1/2

where ¢ = |[(|exp(i¢) with |(| being the squeezing parameter, t = exp(i¢)tanh|(| and
H,(z) is a Hermite polynomial of order n. o is the complex amplitude of the coherent state
obtained in the limit of zero squeezing.

The first case we study is where we are interested in finding a squeezed state whose
coefficients «,, are proportional to the coefficients (3, of binomial state for the early terms,

that is for n << N. In this case we can approximate the binomial coefficient by

N %[1_%] (A.3)

We can approximate the Hermite polynomial for large = by its leading terms:
H,(z) =~ (22)" — n(n — 1)(22)"? (A4)
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We find remarkably that choosing ¢ = 0.5 and o = (2/3)N'/? allows us to write

(V) [oe] s

n (n!)1/2 (2t)1/2

for n << N. Thus the first n number state coefficients of a squeezed state with these values
of t and « will be proportional to the required binomial coefficients to a good approximation.
With this degree of squeezing, the squeezed quadrature variance is 1/3 that of the vacuum
level, that is, 4.77 dB below the standard quantum limit.

The opposite case to the above is where we require a small number of coefficients «, for
n=NN-—1,N—2...to be proportional to 3,. It is not as easy to obtain as general a
relationship as the above so we look at each case individually. In this paper we are interested
in the particular case with four values of (3, that is, N = 3. By using the explicit form of
the Hermite polynomials in Eq. (A.2) and setting as/as = B2/fs and aq/as = (1/5s we
find that the values ¢ = 0.5 and o = (2 4 2'/2)/3 satisfy the two simultaneous equations
obtained. We note that the required squeezing parameter tanh™" 0.5 is the same as for the
first case above but the value 1.138 of a varies slightly from 1.155, the value of (2/3)N'/2
with N = 3, which is required to make the first few coefficients of |, () proportional to
binomial coefficients. We also note that with perfect matching of the last three coefficients
the ratio ag/ag becomes 1.0146, a mismatch of only 1.5% with the corresponding binomial

coeflicient.
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