Quantum jumps between dressed states: a proposed cavity-QED test using feedback
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A strongly driven cavity containing a single resonant
strongly coupled atom exhibits a phase bistability. The phase
of the field is strongly correlated with the phase of the atomic
dipole. It has been shown previously that phase-sensitive
monitoring of the field emitted by the cavity would induce
conditional quantum jumps between orthogonal atomic dipole
states (“dressed” states). Here we show that such monitor-
ing can be used to fix the atom into a single dressed state.
As soon as a state-changing quantum jump is inferred from
the measurement of the field, the atomic state is flipped us-
ing a w-pulse. We study this feedback scheme analytically
and numerically. We show that the occupation probability of
the desired fixed state can be as high as 1 — 1/8nC1, where
C1 > 1 is the single-atom co-operativity and 7 the detection
efficiency (which does not have to be close to unity). The
control of the atomic dynamics is manifest in the fluorescence
spectrum. The widths of all three peaks are modified from the
usual Mollow spectrum, and almost all of the area under one
of the sidebands is transferred to the other sideband. This is
as expected, as one of the dressed states is essentially unoc-
cupied, and transitions out of it do not occur. In addition,
the width of the central peak goes to zero. This indicates
coherent scattering due to the non-zero mean atomic dipole
created by the feedback.

I. INTRODUCTION

Bohr’s quantum jumps between atomic states [1] were
the first form of quantum dynamics to be postulated.
Of course Bohr’s old theory did not survive the quantum
revolution of the 1920s. In its aftermath, quantum jumps
were revived [2] with a new interpretation as state reduc-
tion caused by measurement. However, simple quantum
jump models for atoms were never entirely forgotten. For
example, the dressed state model [3] was used successfully
to give an intuitive explanation of the Mollow triplet [4]
in resonance fluorescence.

It was the electron shelving experiments of Itano and
co-workers [5] which focussed attention on the condi-
tional dynamics of individual atoms. Subsequent work

on waiting time distributions [6,7] led to a renewal of in-
terest in quantum jump descriptions [8]. It was shown
by Carmichael [9] that quantum jumps are implicit in
standard photodetection theory. Around the same time,
stochastic quantum jump equations were introduced as a
tool for simulating the dynamics of a dissipative system
with a large Hilbert space [10,11], and their links with
quantum measurement theory were also noted [12,13].
This measurement interpretation is generally known as
quantum trajectory theory [9,14]. By adding filter cav-
ities as part of the apparatus, even the quantum jumps
in the dressed state model can be interpreted as approx-
imations to measurement-induced jumps [15].

The measurement interpretation of quantum trajecto-
ries has proven invaluable for understanding and predict-
ing quantum optical correlation functions, especially in
certain cavity QED experiments [16,17]. However, cor-
relation functions traditionally were, and always can be,
calculated within a deterministic formalism [18,19]. Is
there more direct evidence for the existence of interest-
ing quantum states conditioned upon continuous moni-
toring? In Ref. [20] one of us suggested that “condition-
ing is realized by feedback”. That is, the way to see a
conditioned state is by using the measurement results on
which it is conditioned in a feedback loop to change the
system dynamics [21]. This has recently been realized by
two of us and co-workers [22] in a weakly driven cavity
QED system. In that experiment, changing the driving
field a precise time after the detection of a photon from
the cavity freezes the conditioned state until the driv-
ing is returned to its initial value, when it resumes its
evolution.

This paper proposes another way of realizing condi-
tioning by feedback, this time in a strongly driven cav-
ity QED system. We assume a single, strongly cou-
pled (C; = g*/k7y > 1) atom resonant with the cavity.
This system was shown [23,24] to exhibit optical phase
bistability, with the phase of the field strongly correlated
with the phase of the atomic dipole. The case of many
atoms was shown to exhibit optical phase multistability
[25]. Previously, two of us [26] have shown quantita-
tively how phase-sensitive monitoring of the field emit-



ted by the cavity would enable one to infer the atomic
state. This was also noted (in a different context) in
Ref. [27]. Such a measurement would cause “retroactive”
[26] quantum jumps between orthogonal atomic dipole
states (“dressed” states), as predicted by the dressed
atom model [3]. As noted above, these jumps could
be induced directly (not retroactively) by measuring the
atomic fluorescence using filters. But in practice, the ef-
ficiency of such a measurement would be so low that the
cavity QED scheme is much more likely to be realized
experimentally.

In this paper we show that with feedback, one of these
conditioned dressed states can be stabilized. The idea is
simply to flip the atomic state using a 7 pulse as soon as
a state-changing quantum jump is inferred from the mea-
surement of the field. We consider the simplest measure-
ment and feedback scheme, and obtain quantitative pre-
dictions for how well the atomic state can be fixed in one
dressed state. This turns out to be only weakly depen-
dent upon n, unlike other feedback-stabilization schemes
(see Ref. [28] and references therein). We also calculate
the complete spectrum of the feedback-modified atomic
fluorescence, which shows the enhancement of one side-
band at the expense of the other. This is also as would
be predicted from the dressed atom model [3]. This ex-
periment would thus be a test for the conditional states
predicted by this model, and, more importantly, a test
of the conditional states predicted by the full quantum
trajectory theory.

This paper is structured as follows. In Sec. II we in-
troduce the cavity QED system, and various ways to de-
scribe it. This includes a semiclassical picture of the field
and atomic dipoles, an approximate quantum descrip-
tion which reflects this, and a quantum description of the
atom alone in the regime where the field can be slaved to
the atom. In Sec. III we investigate the stochastic condi-
tional dynamics in the latter two descriptions. Based on
this understanding of the system, in Sec. IV we propose
our feedback scheme. We show that for this scheme we
do wish to work in the slaved-field regime, so that the
system can be modelled by the state of the atom alone.
Using a feedback-modified master equation for the atom
we obtain quantitative predictions for the atomic state
and the resonance fluorescence spectrum in Sec. V. We
compare this with the results of a numerical simulation of
the full system. We conclude with a discussion in Sec. VI.

II. THE SYSTEM

The cavity QED system we consider is defined by a
single, two-level atom (TLA) strongly coupled to a sin-
gle mode of a Fabry-Perot cavity. This system is well
described by the Jaynes-Cummings Hamiltonian [18,19]

Hjo = hwao. + hwb'b — ihg(o'b — blo), (2.1)

where o, 0, and o, = [0, o] are the Pauli spin operators
for raising, lowering, and inversion of the atom, and bf
and b are the standard raising and lowering operators for
the internal cavity field mode with frequency w.. The
strength of the atom-field coupling is characterized by
the dipole coupling constant, g, and is given by
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where p is the transition dipole moment, w,, is the atomic
transition frequency, and V' is the cavity-mode volume.

The cavity QED system radiates energy through two
channels. The first channel is along the cavity axis (i.e.
through the cavity mirrors) and causes decay of the field
amplitude at the rate of k. The second channel is sponta-
neous emission from the two level atom into modes other
than the cavity mode. This causes decay of the atomic
dipole at the rate of 7/2, where we assume the atomic
radiative decay is essentially unmodified by the cavity.
We use the single atom co-operativity C; = ¢?/k7y to
describe the strength of the coherent atom-field coupling
relative to the rate of decay of the system through these
two channels. We consider the strong coupling regime
C1 > 1 throughout this paper.

Figure 1 presents a simplified picture of the single atom
cavity QED setup. We define the driving field as £, mean-
ing that in a frame rotating at the driving laser frequency
it produces a Hamiltonian

(2.2)

Hy = —ih&(b —bT). (2.3)

We assume that the driving laser frequency is on reso-
nance with both the cavity and atomic transitions (w; =
We = Wa)-
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FIG. 1. An illustration of the single-atom cavity QED sys-
tem.

A. Master Equation

The closed cavity QED system is well described by the
Jaynes-Cummings Hamiltonian in Eq. (2.1). Perform-
ing measurements on any system requires opening the
system to environmentally induced fluctuations. This
leads to dissipation which modifies the Jaynes-Cummings



dynamics. If the system interacts weakly and homoge-
neously with many modes of the environment such that
the Born-Markov approximation is valid then these envi-
ronmental degrees of freedom may be traced out to leave
a modified system evolution [19,29]. This evolution is de-
scribed by a quantum master equation of the Lindblad

[30] type,

M
p=—ilH,p|+ Y _ Dleulp = Lp,

p=1

(2.4)

where M is the number of environmental channels avail-
able for the system to decay through. Given arbitrary
operators A and B, the superoperator D is given by

D[A|B = ABA" — (ATAB + BATA)/2. (2.5)

We incorporate v and « into the master equation with
the following substitutions,

c1 =+/y0o, (2.6)
ca = V/2kb. (2.7)

Combining Egs. (2.1), (2.3) and substituting Egs. (2.6)
and (2.7) into Eq. (2.4) leads to the following expression
for the quantum master equation for an open cavity QED
system,

p=[g (b'o —a'b) — i€y, p| + 26D[b]p +yDlolp, (2.8)

where y = —ib+1ib' is the phase quadrature of the cavity
field and therefore x = b+b' is the amplitude quadrature.

B. Semiclassical Fixed Points

We begin our analysis of Eq. (2.8) by reviewing the
semiclassical results in the large field regime obtained by
Alsing and Carmichael [23].

Constructing the equations of motion for the semiclas-
sical variables, a = (b), s = (o), and w = (0, ), we find

& =—ka+ €&+ gs,
§ = gwa — 37s, (2.10)
w=—-2g(a*s+ s"a) — y(w+1).

We assume that v is so small as to be negligible. Then the
atomic steady state will be pure: (02) + (07) + (07) = 1.
This condition can be recast in terms of the variables w
and s as

w? + 4]s]* = 1, (2.12)

where we used the fact that o, = —¢ (O’T — U) and o, =
(O’T + U).

There exist two sets of fixed points for Egs. (2.9-2.11)
in the v = 0 case. One corresponds to ag, = 0 (for

2€ < g) and the other to wgx = 0 (for 26 > g). Since
we are interested in the limit of high driving, we consider
the latter case which leads to the following set of fixed
points.

E+ gsj.[X
+ g _ . /1 ( g )2
== S 2.14
T Ty TV \ag) (2.14)
wex = 0. (2.15)

In the strong driving limit, £ > g, these expressions
simplify to

E_ 1 .
af = ;¥—sz$z(g/2ﬁ)7 (2.16)
7
sp. = Ty (2.17)

These semiclassical fixed points correspond to the follow-
ing set of quantum states

Vi) = lag) 22 [lg) File)] = lag,) ),

where |aZ ) is a coherent state [18].

We simplify further analysis by separating the mean
coherent component of the cavity field from its fluctua-
tions. Rewriting Eq. (2.8) explicitly in terms of a = b—a,

(2.18)

p=[g(alo —o'a) —i(Q/2)a,,p] + Dol p

+ 25D [a] p, (2.19)

where Q = 2¢g€/k is the Rabi frequency.

Figure 2 shows the @ distribution [18] for the cavity
field in steady state. Notice the bimodal structure which
corresponds to the two fixed points in Eq. (2.13).

FIG. 2. The Q(a-@) distribution calculated numerically
from Eq. (2.19) in steady state. The bimodal structure of
this distribution illustrates the two fixed points for the cav-
ity field. These fixed points are separated along the phase
quadrature by g/k. Parameters used for this calculation are
(g, %, )/~ = (60,20,1200). These parameters were chosen so
as to show the clear separation of the fixed points.



C. Secular Approximation for Rabi frequency {2

In this section we show that the semiclassical fixed
points of the preceding section are central to the full
quantum dynamics in the limit where €2 is much greater
than all other relevant rates. Apart from its last part,
where we derive an explicit expression for the steady state
p, this section is taken from Ref. [26].

Consider the dynamics in the interaction picture with

respect to the Rabi Hamiltonian Hy = Qo,/2. This
changes Eq. (2.19) into
p=lg(a'd —a%a),p] +2xDla] p+ Do) p, (2.20)

where the bar indicates the operator is in the interaction
picture. The transformed atomic lowering operator is
i

7 (t) = —5 (ne™™ + pu.

: _ MTeiQt) 7

(2.21)
where p = |+)(—|, p. = [uf, 4] = o,. Notice that the
cavity field is invariant under this transformation.

Substituting Eq. (2.21) into the first term of Eq. (2.20)
and assuming that € > ¢ allows the use of the ro-
tating wave approximation (RWA). This lets us ignore
the rapidly oscillating terms in the Jaynes-Cummings
Hamiltonian. This leads to the following simplification
of Eq. (2.20)

5= —ig/2[ops, 7] + 26D a] 5+ Do) (2.22)

This simplified master equation will be used in Sec. IT D
in our discussion of the adiabatic elimination.

Continuing on, we now substitute Eq. (2.21) into the
third term of Eq. (2.22). We apply the RWA to arrive at

= —ig/2[opsp] + 26D a) p

+ (/4 (P + D)+ D) 5. (223)

Figure 3 illustrates the transitions described by the last
terms in Eq. (2.23). The D[u] and D[u'] correspond to
the atom flipping from the |—) to |+) states, and the
reverse, respectively. These transitions correspond to
the upper and lower sidebands of the atom’s fluorescence
spectrum respectively. The D[u,] terms corresponds to
transitions between the same atomic dressed states. If
the atom is in one dressed state then the rate of state-
changing jumps and non-state-changing jumps are both
~v/4. This gives a total rate of spontaneous emission of
~v/2, as expected for a strongly driven atom (which is
half-excited).

l+>

QI Y [+>

FIG. 3. Energy level diagram for the dressed state of the
atom. Transitions a and d correspond to the D[] and D[]
switching terms respectively. Transitions b and ¢ correspond
to the D[u.] term and are on resonance with the driving field.

Now consider the following ansatz [26] for the density
operator p,

g/K
i=S lshsl @ / dyP.(y)liy/2) (/2 (2.24)
s==+

—g/k

where |iy/2) is a coherent state for the operator a. This
ansatz assumes the cavity field can be described with a
Glauber-Sudarshan coherent field distribution [18,19] on
a line connecting the two semiclassical fixed points of
different phases. It also assumes that the atomic state is
diagonal in the dressed-state basis, and that its state may
be correlated with the phase of the field. Substituting
Eq. (2.24) into Eq. (2.23) shows that these assumptions
are correct, and leads to the following dynamic equations
for Py, the field P-functions associated with the the |+)
atomic states,

Paly) = 8% (g + 59) Pu(y) + (v/4) [~ Ps(y) + Px(y)].

(2.25)

The probability for the atom to occupy the state |s) is
given by ps = [dyPs(y) = Tr[p|s)(s|]. In steady state,
we find that

Pi5(y) = C(g — ky)"/* (g + rky)/ 271,
P_*(y) = C(g — ky)"** (g + wy)"/?",

where C is a normalization constant. It is worth noting
that in the v — 0 limit we recover the semiclassical fixed
points as P$(y) — d(y F g/k).

Figure 4a and b show plots of Eqgs. (2.26) and (2.27)
for two regimes. These illustrate the distribution of the
field states for this system. Notice that the field is only
defined in the region —g/k < y < g/k. We see that in the
limit with v < 2k that the field distributions are centered
around the fixed points. In the other limit with v > 2k
we see that the atomic states are not as well centered
on the fixed points of the field. We will study stochastic
dynamics in Sec. III to further illustrate the dynamics
that lead to these distributions.
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FIG. 4. Steady state distributions of the cavity field for
two different values of . The top graph corresponds to the
semiclassical fixed point limit with v/2x = 0.067. The lower
graph shows the mixing of the field states when ~/2x = 2.5.
g/k = 0.33 for both plots.

D. Adiabatic Approximation

As we will show in Sec. IV, it turns out that for the
feedback protocol we propose it is necessary to have k
much larger than g and . In this limit the cavity field
dynamics will be slaved to the atomic dipole. This al-
lows for the adiabatic elimination of the cavity field as in
Ref. [39]. We begin by expanding the density operator in
the field state basis to include the zero and one photon
excitations.

p=p"0)(0] + (p'10) (L] + H.c.) + p*[1)(1].  (2:28)

Substituting Eq. (2.28) into Eq. (2.22) leads to the

following set of equations:

P’ = —ig(p=p'" = p'n2) /2 +7DE1° + 2kp°,  (2.29)
pt = —ig(p=p® — p°u=)/2+D[5lp" — kp',  (2:30)
PP =—ig/2(n-p' — pTpz) +9DlolP? — 2607 (2.31)

The atomic density operator is the full density operator
traced over the cavity field, p, = Tr.(p) = p° + p%. From
Eq. (2.29) and Eq. (2.31) we find that p, is given by

pa = —i9/2[u=, p" + p'7] +1D[5] pa- (2.32)

Equation (2.30) is dominated by the linear term in .
This term quickly damps the cavity mode and we ignore

initial transients so that ﬁl = 0. To leading order this
leads to
g

fjl = iipolj'z-
K

5 (2.33)

In effect, we have slaved the cavity field state, determined
to leading order by the off-diagonal p', to the atomic
state, determined to leading order by p°.

Substituting Eq. (2.33) into Eq. (2.32) gives the follow-
ing expression (to leading order) for the master equation
of the atom alone.

2
= g — —1—
Pa = 5-Dlpz]pa +vD[5]pa-

o (2.34)

Transforming Eq. (2.34) out of the interaction picture
recovers the original driving term.

2

pu = Dl0lpa + 5Dl pu = 100y pa] = Lapa- (2:35)
We thus see that the bad cavity limit allows for the adia-
batic elimination of the cavity field, yielding a simplified
master equation for the two-level atom alone. The first
term describes spontaneous emission events that occur at
the slowest rate . The field contributes the second and
third terms. The second term corresponds to a quantum
non-demolition (QND) measurement on the state of the
atom. This “measurement” can be viewed as the lossy
cavity introducing a noisy driving term in combination
with the strong driving given by the third term. This is
shown in more detail in appendix A.

ITI. STOCHASTIC DYNAMICS
A. Quantum Trajectories

A brief review of the theory of quantum trajectories is
provided in appendix B, to which we refer readers unfa-
miliar with this field.

We begin unraveling Eq. (2.20) with direct cavity de-
tections by introducing the following cavity “jump” op-
erator,

Jp = 2kapal. (3.1)
Tracing over the cavity we arrive at an expression which
describes the effect that Eq. (3.1) has on the atom.

Tr.(Jp) = 2kp°. (3.2)

In the bad cavity limit one can slave the populated on-
diagonal cavity field element with the vacuum element
by setting 52 = 0. Then, to leading order, one finds the
following expression for p2,

) 2
ﬁ —

-7 (3.3)

HzPafbz-



Substituting Eq. (3.3) into Eq. (3.2) we find

2

_ g _ _
Trc(jp) = s MHzPalz = japm

o (3.4)

which is equivalent to the “jumps” associated with the
noisy QND measurement term from Eq. (2.34).
We continue by constructing the (£ — J)p operator
from Eq. (2.22)
(£ - )5 = —ig/2lops, 7] - w(alap — pala).  (3.5)
Substituting Eq. (2.28) into Eq. (3.5) we find that the
non-jump evolution is described by

92

Tre [(£—T)p) = *ﬂﬁa = (Lo — Ta)Pa- (3.6)
Equation (3.6) together with Eq. (3.4) demonstrate the
equivalence of unraveling the full density operator with
cavity detections and unraveling the atomic density op-
erator with the p.pp. detections. Therefore, under the
adiabatic approximation, monitoring the state of the cav-
ity is equivalent to monitoring the state of the atom.

The above measurements are insensitive to the phase
of the cavity field. For feedback we wish to distinguish
different phases of the cavity field, and hence different
atomic states. This requires interfering the light emit-
ted from the cavity with a suitable local oscillator. An
obvious possibility, considered in Ref. [26] is to use a
large local oscillator to do homodyne detection. Atomic
jumps could be detected by looking for positive or nega-
tive transitions in the filtered photocurrent, although the
optimal signal extraction algorithm is much more com-
plicated [26] andwould require processing the current us-
ing digital electronics, as in Ref. [31]. Analysis of the
resulting non-Markovian feedback would be quite diffi-
cult. In this paper we consider a much simpler sort of
feedback, which is Markovian and which is based upon
detecting the cavity light after a weak local oscillator has
been added.

Figure 5 illustrates how one could use a local oscillator
to offset the large output cavity field. The intuitive idea
is to set the phase and amplitude of the local oscillator
so as to cancel the output of the cavity when the field
is in the semiclassical fixed state |a™) corresponding to
the |+) dressed state of the atom. Detecting a single
photon from the cavity plus local oscillator field indicates
that the field has left that fixed state, so implying that
the atom has undergone a jump from the desired dressed
state |[4+) to the other |—).

Signal Single Photons

éﬂ_z.. .

Local Oscillator

FIG. 5. The proposed direct detection scheme with a local
oscillator to offset the large coherent field. The photodetector
efficiency is given by 7.

We have already added the real part of the local oscil-
lator when we changed from the full field operator b to
the fluctuation field operator a. All that remains is to
further offset the cavity field by an appropriate amount.
If we wish to stabilize the atom in the |+) state, the extra
field is equal to 8 = ig/2k. The conditional dynamics in
this case can be understood with the help of the identity

Dlalp = Dla + ] - }[8%a - Ba', gl. (3.7)

With the local oscillator in place, cavity jumps will now
correspond to the following operator [9,39]

_ g\ _(: 19
= 2 —_— [—— .
Jp =26 (a * 2/@) P (a 2/@)

By tracing Eq. (3.8) over the cavity field and follow-
ing a procedure similar to the one used to arrive at
Eq. (3.4) we find that unraveling the master equation
with Eq. (3.8) is equivalent to unraveling with the fol-
lowing “jump” operator

(3.8)

2

Tee(TP) = L (12 — V)alpz — 1).

5 (3.9)

For the atomic density operator, it turns out that

Dlpz]pa = Dlpz — 1]pa- (3.10)

Thus the rewritten master equation (transformed back
out of the interaction picture) is simply
2 i

. 9
pa =Dlo]pa + S-Dloy — 1pa — —-[oy, pal-

A1
2K 2 (3.11)

The new jump operator, which corresponds to detecting
a photon as shown in Fig. (5), is 0, — 1. Note that this
takes |4+) to |—) as desired. When this happens, the
detected photon can be used to trigger a m-pulse to take
the atom back to state |+). This will be described in
detail in Sec. IV.



B. Field Dynamics under the Secular Approximation

The above analysis assumed x large enough to adiabat-
ically eliminate the cavity field. We stated in Sec. IT D
that this was required for the particular feedback proto-
col in this paper. To justify this it is necessary to give up
that assumption, and examine the stochastic dynamics of
atom and field. This is tractable if we make the secular
approximation of Sec. IT C.

Imagine that we are constantly monitoring the cavity
output along with all of the spontaneous emissions from
the atom, and resolving the three peaks of the Mollow
triplet. Then the total state will be a pure state, and
from Eq. (2.24) the field will be in a coherent state |iy/2)
and the atom in one of the dressed states.

The final term in Eq. (2.23) shows the atom will jump
between the |[+) and |—) states at a rate of /4. Assume
that the atom is initially in the |+) dressed state and
the field is y = —g/k. From Eq. (2.23) we find the state
of the cavity field following a jump into the |—) dressed
state is given by

y=—(9+nry), (3.12)
which implies that y decays exponentially at rate x to-
wards the other fixed point, g/x. Each atomic state flip
is followed by the cavity field reversing its direction of
motion. Figure 6a demonstrates such a trajectory with
v < 2k. The field spends most of the time near one or the
other fixed point. If the rate of atomic flips is increased
such that v > 2k, then we find a trajectory like the one
shown in Fig. 6b. The field spends most of its time in
between the two fixed points. These two figures provide
the dynamic evolution which, upon ensemble averaging,
leads to the steady state distributions shown in Fig. 4.
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FIG. 6. Stochastic evolution of the cavity field following
spontaneous emission events. The top figure corresponds
to v/2k/ = 2.5 while the bottom figure corresponds to
v/2k = 0.067 which are the same values used to calculate
the distributions in fig. 4. The parameter f = y/2 4 g/2k is
the field displacement from the |+) fixed point.

IV. FEEDBACK
A. Field Dynamics with Feedback

We begin our feedback analysis in the secular approxi-
mation, to examine the cavity field dynamics. There are
several time scales involved in our problem and in this
subsection we establish what the relative sizes for these
should be in order to give us the most effective feedback
results.

Let the atom be in the |+) dressed state and the field
in the corresponding fixed point coherent state f = 0,
where f = y/2 + g/2x. With the weak local oscillator
as described above, this means the detector sees a vac-
uum output for the cavity field. The feedback protocol
involves switching the state of the atom only when we
detect a photon from the cavity.

The following field dynamics illustrate a typical feed-
back event. Say the atomic state flips from |+) to |—) at
t = 0 by a spontaneous emission. Then the field f will
subsequently grow as

f@)=(g9/k)(1—e™") for 0 <t <t,. (4.1)
Here t, is the time at which we first detect a cavity pho-
ton emission. Since (in this picture where the atomic
state change is treated as a known event), the field is al-
ways in a coherent state, this detection has no effect on
the conditional system state. However, with feedback,
the detection triggers a 7 pulse which switches the state
of the atom. This “flip” will cause the field to reverse
and head back towards the “vacuum” as
f(t) = (g/r)(1 —e ") "tt) fort > t,.  (4.2)
For long times, the system is restored to the desired state
of [4) and f =0.

We consider two possible events that will disrupt the
effectiveness of the feedback protocol. The first is a “bad”
detection, following the “good” detection at time t,, as
shown in Fig. 7. It is a bad detection because, with
our simple feedback protocol (to switch the atomic phase
whenever a cavity photon is detected), this detection will
switch the atom back into the wrong dressed state |—).
We wish to minimize the probability for this event.

The probability for a bad detection can be written as

o0 o0
o= [ [ anmlont). @)
0 te



Here py(tb|tg) is the conditional probability density for
detecting a “bad” photon at time ¢}, following a “good”
cavity detection at time ¢,. With a detection efficiency
n, It is given by

po(tlty) = 26n[f ()7,

since the coherent field amplitude f(t) depends upon t,
already in Eq. (4.2). Similarly, pe(ty), the probability
density for detecting the first photon at time ¢, is given
by

(4.4)

pe(ty) = 2&77[f(tg)}2P(no g before t4).

Here P(no g before tg), the probability for there to be no
detections prior to ¢4, is equal to the solution of

(4.5)

P = —2w[f(1)]° P, (4.6)

with P=1at ¢t =0.
Using all of the above expressions we arrive at the fol-
lowing for the probability of a bad detection:

P, = Z;/OOO du [l(w)]? exp {—z/ou dvk(v)}, (@.7)

where we have defined the parameter z = 2ng?/k? and
the function k(u) = (1 — e~ %)%, As stated, we wish to
minimize this probability, which depends only upon z. It
is not difficult to show that it is monotonically increasing
with z, and is therefore minimized for small z. In this
regime Eq. (4.7) reduces to

Thus we require g < k.

1.0 1

0.8

good cavity

detection bad cavity

f 0.6 detection
0.4 1

0.2 A

0.0

FIG. 7. Dynamics of the cavity field. A spontaneous emis-
sion flips the atomic state at ¢ = 0. This is detected from the
“good” detection at time ¢z, and a feedback pulse applied.
If a “bad” detection subsequently occurs at time t, then an
unwanted second feedback pulse is applied, which puts the
atom in the wrong state and drives the cavity field in the
wrong direction. The dashed line shows were the field should
go without the bad detection at t,. As before the field is
measured with the displaced operator f = (y + g/k)/2.

The second disrupting event occurs if the atomic state
flips back to state |+) due to a spontaneous emission be-
fore its excursion into state |—) has been noticed through
the detection of a cavity photon at time ¢4. At first glance
this event seems to be helpful because it is forcing the
atom back into the desired |+) dressed state. However,
this ignores the fact that we wish to judge the success of
the feedback by the elimination of the lower sideband in
the Mollow triplet.

Figure 8 illustrates why this occurs if a feedback pulse
forces the atom back into the proper state. If the atom
flips back of its own accord, this corresponds to the D[u]
term in Eq. (2.23) which means a photon emitted into
the low energy sideband of the spectrum.

More generally, the occurrence of a second dipole-
changing spontaneous emission before the first one has
been noticed indicates that the measurement is failing to
keep track of the state of the atom. We would thus expect
this to have other, less obvious, adverse consequences for
our ability to control the atomic state through feedback.

D

—®

"sideband"
photon

Y

1+
el

D e e e - - ®
= >

cavity photon apply
feedback

—_ - —_—|
P

FIG. 8. Two possible events will keep the system in the |+)
dressed state. The top event goes undetected by the feedback
loop, but leads to an unwanted sideband fluorescence photon.
The bottom event is detected and suppresses the sideband
photon.

To suppress these events we first find, in a similar pro-
cedure as above, the full expression for the probability of
the system undergoing a state flip before the cavity has
emitted a photon at time ¢,. This is

o0
P, =1- / dtg P(no v before tg)pg(ty). (4.9)
0
Since the rate of state-changing spontaneous emissions is
~/4, the probability that there is no such event before
time ¢ is simply given by



P(no v before t) = e~ 74/4, (4.10)

Thus P, evaluates to

o0 u
P, =1- z/ du eiW/Q"k(u)efzfo dvk(v) (4.11)
0

This function is monotonically decreasing with the
variable z. However, since we know from consideration
of the first disrupting process that we require z < 1,
we find an approximate analytic expression for P, in the
limit of small z,

2 —1
pz(HHZ) .
v

For this to be small we evidently require v/x < z, or
v < ng*/k. This condition can be understood from
the adiabatic equation (2.35) for the atomic state. This
shows that the rate of the state-changing atomic jumps
scales as v, whereas QND measurement term (which is
all that allows us to follow the state of the atom) has a
strength scaling as g?/k. To follow the state of the atom
well, we require the former to be small compared with
the latter.

We finally combine all the inequalities that we have
established so far for obtaining good feedback control of
our two level system

(4.12)

Q> r>g> ¢ /k>n. (4.13)

It is worth noting that Eq. (4.13) corresponds to the same
inequalities that were assumed in order to justify the adi-
abatic elimination method in section IT D. Also note that
in order to minimize both A, and P, the optimal g would
scale as
1
g~ (Kv/n*)*.
It should be noted that photo-detector dark counts
will also be a source of error for the feedback scheme.
We ignore them because their typical rate (less than
10%s71) is much less than the rate of photo-detections
(g%/k ~ 107s71). However, in practice there will be ex-
cess “dark” counts due to imperfect mode-matching be-
tween the cavity output beam and weak local oscillator.
In addition, imperfect cavity locking (length stabiliza-
tion) will lead to excess effective noise in the relative
phase of the cavity output and local oscillator. Although
this would have little deleterious effect on a homodyne
scheme, it will contribute more dark counts to the adap-
tive photon counting scheme. This scheme would require

interferometric stabilization of the entire optical setup,
as in Ref. [32].

(4.14)

B. Feedback Master Equation

The general method for deriving a direct detection
feedback master equation has been developed by one of

us [21]. In the limit of Markovian feedback Eq. (2.8) is
modified in the following way

o= ~ilH,p) + DWeslo+ Y Dleulo

p=1

(4.15)

Here U is the unitary feedback operator which acts fol-
lowing a detection from channel c;.

In this proposal the desired feedback operator U flips
the state of the atom. This could be accomplished with
the application of a 7 pulse along a mode which differs
from the cavity mode. This can be represented by the
following operator

U =i (1)~ = =) (+]) = oz (4.16)

This approach is valid providing the feedback is applied
instantaneously, as we will assume for the remainder of
the paper. This approximation will be valid in the limit
where the duration of the feedback pulse is shorter than
1/Q, as Q is the fastest relevant atomic frequency. If this
were not possible, then a more complicated pulse would
have to be applied in order to have the desired effect in
the interaction frame rotating at frequency (2.

The feedback is conditioned upon detections of the cav-
ity field in interference with the local oscillator. We fully
restate the master equation Eq. (2.19) using the iden-
tity (3.7) which displays the decay channel with the local
oscillator added:

p= [g (QTO' - JTa) —iQoy /2 — igac/Q,p]

+ D o] p+ 26D [a + ig/2k] p. (4.17)

We condition our feedback upon detections of the field,
¢y = V2k(a +ig/2k). Upon substitution of Eq. (4.16)
into Eq. (4.17) as in and Eq. (4.15), we arrive at the
following expression for the feedback master equation

p=g (aTa — oTa) —iQ0y/2 — igx /2, p]

+ 2kD[o,(a +1ig/2k)]p + YD[o]p. (4.18)

One further improvement of our analysis is the inclu-
sion of the detector efficiency, . This requires the fol-
lowing modification [21]

p= [g (aTa — aTa) —iQo, /2 —igx/2, p]
+ 26nDlos(a +ig/2K)]p

+ 26(1 — n)D|(a + ig/2x)lp + vDlo]p. (4.19)

C. Adiabatic Feedback Master Equation

We begin our analysis of Eq. (4.19) with the assump-
tions in Eq. (4.13). This permits the use of the adiabatic
elimination that was discussed for the non-feedback mas-
ter equation in Section II D. Following the same method



used there, we first transform into the interaction picture
defined by H; = Qo,/2 and make the RWA as was done
to arrive at Eq. (2.22)

p = —ig/2[x(p. + 1), p| + 26nD[54(a + ig/2x)]p
+ 26(1 —n)D[(a +ig/2k)|p + vD[7]p. (4.20)
Adiabatically eliminating the field and then transform-

ing out of the interaction picture leads to the following
feedback master equation for the atom alone

2

o = —i0/2[0y, pa] +1Dlolpu + (1 = 1) L-Dlay o
+ " Do, - Dlpa (421

We study both the fluorescence spectrum of the atom
and the steady state population of the |+) state. Both
of these are obtained from the dynamic equations for the
quantities (o) and (o,). These are found to be

0= - (3+ L+ - (£-12) o

+Qo2)/2 - %, (4.22)

L) o= (42

(6:) = (o) + (o)) - (14 &

From these we find the steady state values for (o,), (oy)
and (0.) to be

2027y
T/)ss — s 4.24
{oz) v2K2 4+ 202K2 4 3yKg2 + 2g* ( )
-1
K
(0y)ss = (1 + 4?792> : (4.25)
Ky (ky + 2¢2

K22 + 202K2 4 3kvg? + 2g*

Note that only o, is changed from its no-feedback value
(zero) which is obtained by letting n — 0.

V. RESULTS

We present both analytical and numerical results for
our feedback protocol. Numerical studies were carried
out by solving Eq. (4.19) with the quantum optics tool-
box software for MATLAB [33]. Analytical calculations
of Eq. (4.22) and Eq. (4.23) were performed with alge-
braic manipulation software (MAPLE). We find that in
the proper limits defined by Eq. (4.13) the two methods
are in agreement. The results we present are for more
typical cavity QED values [34].

We begin by solving for the steady state population of
the |+) state. This is a direct measure of the effectiveness
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of our feedback protocol. The steady state population is
related to the steady state expectation of o, by

P _ (1+<20y>ss).

Figure 9 shows a plot of the steady state population as a
function of the detector efficiency for parameters consis-
tent with the adiabatic approximation. Note that in this
regime the feedback is not sensitively dependent on the
detection efficiency.

(5.1)

1

0.9 - —. -
08 - .
P+ T o
07 -
06 -
05 ‘ ‘ ‘ ‘
0 0.2 0.4 06 08 1

FIG. 9. Steady state occupatior? of the |+) state as a
function of the detector efficiency. Numerical values are
represented by dots and the approximate analytical expres-
sion is shown as a solid line throughout the rest of the pa-
per. This plot was calculated with the following parameters:
(Q,k,9)/v = (50,15,5).

Figure 10 shows the population as a function of the
ratio of the coupling, g, to the cavity decay rate k. The
agreement between the theory and numerical results is
good in the limit of g/k < 1, but fails at larger values
of g/k. This is as expected from Eq. (4.13), and also
explains the discrepancy in Fig. 9. We also note that the
effectiveness of this feedback begins to decrease as the
values for g are increased beyond k. This is consistent
with the arguments presented in section IV. A.

1

0.9
0.8
+
0.7 1
0.6
0.5 T ; T
0 0.5 1 1.5 2

g/x
FIG. 10. Numerical calculation of the steady state occu-
pation as a function of g/k. The system parameters are the
same as those used in Fig. 9 but with n = 1.



The fluorescence spectrum of the atom provides an ex-
perimentally accessible method for studying the effective-
ness of this feedback. The spectrum of the atom is given
explicitly by the Fourier transform of the two-time cor-
relation function

o0
/.

v
Slw) = 27
An analytic expression for Eq. (5.2) follows by apply-
ing the quantum regression theorem to Egs. (4.22) and
(4.23). Using textbook methods [19] we arrive at an
expression for the spectrum of the atom which is too
lengthy to report. Instead we consider some of the more
salient features of our results.

The spectrum, in the adiabatic regime, is described
rather well by the sum of three Lorentzians and a 0-
function. Therefore it is the location, width, and area
under these three peaks that is of most interest. Rewrit-
ing Eqgs. (4.22-4.23) in matrix form,

$ = Ms, (5.3)

with s = ((0), (o), (0,))T, the position and widths of
the three peaks are given by the eigenvalues of the M
matrix,

Ay = —37/4— g% /K £/72/16 — Q2 ~ T +1iQ,
Ao = —7/2 = 2¢°n/k = Ty.

where we have assumed that 2 > ~, as required for the
above equations to be valid.

Using these results, we write an approximate expres-
sion for the total spectrum of the atom in which the area
under each peak is apparent.

e T (oT(1)0(0))ssdr. (5.2)

(5.4)

S(w) = Aw) + g i ((F:/I zz)Q
C(To/r)  D(i/m)

. 5.5
2+ (w)?2 TP+ (w—0)2 (5:5)
Here A is the coherent (w = 0) component of the spec-
trum, coming from (07)y(0)ss. This is non-zero with
the feedback precisely because the feedback stabilizes the
atom in a state |+) with a definite dipole moment. To
leading order this term evaluates to
v

4n?C?
et W
Taramc? 1

= (5.6)
Here the limit is for nC; — oo, where Oy = ¢2/kv is
the single atom co-operativity. The Lorentzian peaks at
w —Q, w =0 and w = Q have areas B, C' and D
respectively. In the limit of large € they simplify to

ol 1

=——— =0 5.7
81+4nC, (5:7)
Yy 1+87701

= 5.8
4 (1+ 4nCy)? — U (5.8)
y1+8C; ~

=—-— -, 5.9
81+4anC, 4 (59)
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Here the limits again are for nC7; — oo. In this limit
we see that emission is divided equally between the w =
0 coherent peak, and the w = ) Lorentzian peak. By
contrast, in the no feedback case (n = 0), one may quickly
observe that the area under each of the sideband peaks
is one-half that of the central peak. In all cases the sum
of all peaks is equal to v/2.

Figures 11 and 12 show plots of the fluorescence spec-
trum of the atom derived analytically from the adiabat-
ically eliminated master equation and numerically from
the full master equation. Figure 11 has no feedback and
the sidebands are equal in size. The scale of both plots
was set to show the change in the relative sizes of the
sidebands. By turning the feedback on in Fig. 11 we see
that the low energy sideband is suppressed with the high
energy sideband enhanced. Also notice the appearance of
the §-function component on resonance. These features
should be measurable experimentally.
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FIG. 11. Numerical (dots) and analytic (solid line) calcu-

lations for the fluorescence spectrum with no feedback. The

parameters used are the same as in Fig. 9. Both axes are

measured in units of ~.
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FIG. 12. Numerical (dots) and analytic (solid line) calcu-

lations for the fluorescence spectrum with feedback. Other

details are as in Fig. 11.
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VI. DISCUSSION

We have shown that feedback can be used to stabilize
a strongly-driven atom in one dressed state, by revers-
ing its polarization whenever its conditional state jumps
into the other dressed state. The atomic state is condi-
tioned upon phase-sensitive detection of the light emitted
by a cavity mode which is strongly coupled to the atom.
The cavity field acts as a QND measuring device for the
atom. When the conditional state of the atom is forced
to stay in one dressed state, one of the sidebands in the
atomic fluorescence spectrum vanishes and the other dou-
bles. These qualitative features are as would be predicted
by the simple quantum jump model using dressed states
[3]. However, to predict quantitatively the best regime,
the effectiveness of the feedback, and the exact shape of
the fluorescence spectrum, requires the rigorous quan-
tum theory of feedback we have used here [21], based on
quantum trajectories.

For our feedback scheme (which involves photon count-
ing with a small local oscillator), the best regime is
7 < ¢?/k € g € k < Q. Homodyne detection, as
considered in Ref. [26], could also be used as a basis for
feedback although it would be more difficult to model and
in some ways more difficult to implement experimentally.
With homodyne-based feedback the considerations that
led to the condition g < k do not obviously apply, and
indeed in Ref. [26] the opposite condition held. However
the condition C; = g?/k7y > 1 would still be necessary,
as the single-atom co-operativity determines how much
the field is influenced by the atomic state.

In the regime g >> k, the field states correlated with the
atomic polarization states have a phase difference much
larger than the phase uncertainty of a coherent state.
Hence they may be reliably distinguished and the cav-
ity takes on the role of a meter, with distinct “pointer
states” [35] correlated with orthogonal states of the mi-
croscopic system (atomic dipole). Indeed, coherent states
with macroscopically different phases were one of the
pointer states considered in the early work of Ref. [36].
However it is worth emphasizing that this macroscopic
difference between states of the intracavity field is not
necessary for feedback. In our regime, the two intracav-
ity field states are barely distinct. Over timescales that
are long compared to the cavity decay time, the light con-
tinuously leaking from the cavity reveals sufficient infor-
mation (through continuous sampling) about the phase
of the cavity field to enable the experimenter to discrim-
inate between the two atomic states. Feedback stabiliza-
tion of the atomic state is thus possible as long as the
timescale for gaining this information is short compared
to the average time between spontaneous emissions.

It is also interesting to compare our regime with that
where k > ). In this regime it is possible to adiabatically
eliminate the cavity without first making the secular ap-
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proximation in the frame rotating at Rabi frequency 2.
Thus the cavity mode acts as a one-dimensional vacuum
field for the atom [37], so detecting the light from the
cavity is equivalent to detecting the atomic emission into
the other vacuum modes. Since we assume g2/k > 7,
emission into other modes can be ignored compared to
emission through the cavity. In this regime, measuring
the cavity emissions using exactly the same (small local
oscillator) technique as we have proposed in this paper
turns out to be practically identical to a measurement
scheme proposed by one of us and Toombes [15] for de-
tecting quantum jumps between dressed states. Thus
the feedback scheme we have proposed here would work
in principle irrespective of the ratio of x to 2. However,
in the regime k >  the purity of the conditioned state
(and hence that of the feedback-stabilized state) would
depend strongly upon the detection efficiency 5. This is
in contrast to the regime of this paper where the purity of
the feedback-stabilized state depends only weakly upon
7.
The fact that the effectiveness of the conditioning (and
hence feedback) is not compromised by a detection ef-
ficiency less than unity is an attractive feature of the
scheme we propose here. Paradoxically, other detection
imperfections may even improve its effectiveness. Real
detectors have finite dead-time following a detection, dur-
ing which they cannot detect again. If this time were
comparable to g?/k then the probability of a “bad detec-
tion”, as discussed in Sec. IV. A, would be much reduced.
In fact, this could lift the ¢ < & restriction derived in
that section, and thereby make the realization of the ex-
periment more flexible.

Feedback with a detector having a finite dead time
could still be modeled relatively easily within the master
equation formalism by using the theory of realistic de-
tectors proposed by Warszawski and two of us [38]. The
same theory could in principle be expanded to encom-
pass the delay time and response function of the feedback
loop. However, at some point the model would become
so unwieldy that a quantum trajectory simulation would
be the better option. A quantum trajectory simulation
would also be the only practical way to simulate another
experimental option, namely to use the feedback to flip
the phase of the cavity field, rather than the phase of the
atomic dipole. Since the dressed state is really defined by
the relative phase of the atom and field, in principle this
would have the same effect, and may be easier to achieve
experimentally. The exploration of these experimental
possibilities using quantum trajectory theory is a topic
for future work.



APPENDIX A: EQUIVALENCE OF NOISY
DRIVING AND ATOMIC QND MEASUREMENT

We establish the equivalence of the Dloy,] term in
Eq. (2.35) and a noisy driving Hamiltonian. We begin
by adding a stochastic noise term to Eq. (2.3)

Hy(t) = (Q + \/92?5(75)) 7y.

This stochastic term can be interpreted as the quantum
noise in the amplitude of the cavity mode which is cou-
pled to the atom. Eq. (2.35) is recovered by noting that
0% + dpS = et peeifldt and that the noisy term &(t)
in Eq. (6.1) obeys the usual Wiener increment statistics
with (£(¢)) = 0 and (£(¢)?) = 1/dt.

(6.1)

, g

Chdpt = —i |+ —=£(t), pC | dt

pg +dp m&()p
92

= E(0)%dt* (o5 + pioy — oypaoy) s (6.2)

where p¢ is the conditioned density operator for the atom
alone. Upon ensemble averaging over all possible trajec-
tories we recover the last two terms in Eq. (2.35).

APPENDIX B: BRIEF REVIEW OF QUANTUM
TRAJECTORIES

The simplest measurement-based unraveling of a mas-
ter equation separates the evolution of the system into
two parts [9]. The first is the jumps which correspond to
detections at some detector outside the system. The sec-
ond corresponds to the non-unitary but smooth evolution
of the system between these jumps. A quantum trajec-
tory is the evolution of the conditioned system state p°(t),
consisting of alternating jumps and smooth evolution for
various times. A weighted average over all possible con-
ditioned evolutions leads to the unconditioned density
operator, p(t). We follow the presentation in Ref. [39] in
providing a more quantitative discussion of these ideas.

We begin by stating the formal solution of Eq. (2.4)

p(t) = e“'p(0).

The effect of a photodetection on the system state is de-
scribed by

(6.3)

JIp=cpct. (6.4)

We rewrite the master equation in terms of this jump
superoperator, Lp = Jp + (L — T) p, and use a gener-
alized Dyson expansion to separate out the two types of
evolutions of the monitored system

(1) :ni) /0 it /O ity /O T a0, (6.5)
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with

5o(t) = S(t — t;) TS (tm — ti1)-.TS(t1)p(0).  (6.6)

The unnormalized, conditioned density operator, 5(t),
describes a particular series of jumps and smooth evolu-
tion according to S(t) = e~ To normalize the con-
ditioned density operator we simply divide by its trace,
pe(t) = p(t)/Tr[pc(t)]. This trace is also equal to the
exclusive probability density for a particular series of
photodetections, p,, = Tr[p¢(¢)]. Therefore, the uncon-
ditioned density operator becomes a weighted sum (or
equivalently, ensemble average) over all trajectories:

0 t tm
p(t) = Z/ dtm/ dt—1...
m=0"0 0

/Ot b pm (b1, oo b [0, )0 (8). (6.7)
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