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Abstract

In spite of the extensive research which has already been undertaken, the issue as to
whether Purchasing Power Parity (PPP) empirically holds, continues to be strongly debated.
Existing studies have been criticised for their reliance on unit root tests which are deemed
to suffer from certain weaknesses such as the size distortion bias arising from
heteroskedasticity. In this paper, we provide new evidence on PPP based on a new
methodology that overcomes this problem. We use the widely accepted KSS (Kapetanios,
Snell, and Shin (2003)) non-linear unit root tests which we, however, wild bootstrapped.
Through Monte Carlo simulation, we demonstrate that the wild-bootstrapped KSS is robust
to heteroskedasticity-induced size distortion problem. We apply this method to test PPP
across 61 countries over the period 1994 to 2012 — a period characterised by a number of
crises such as the Asian Financial Crisis, Russian Crisis, dotcom crisis, Global Financial Crises,
among others, and therefore, intense heteroskedasticity. Our results provide strong
evidence against PPP. This paper contributes to both the international financial economics
and econometrics literatures.
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[1] Introduction

Purchasing Power Parity (PPP), as first articulated by Cassel (1918, 1922), is one of
the key assumptions in open macroeconomics and international finance models; however,
after thirty years of intensive research, the empirical validity of PPP remains far from
conclusive. PPP is a simple idea based on the law of one price which postulates that
identical goods should sell at the same price in different countries and that the exchange
rates between currencies will allow this to happen. In the absolute version of the PPP, the
exchange rate would simply be the ratio of the price levels between countries. On the other
hand, in the relative version of the PPP, the change in exchange rates offsets the differential
in the relative change in prices between countries which implies that the real exchange rate
(RER) will be stationary (see Taylor, 2006 and Sarnoff and Taylor, 2002 and Taylor and
Taylor, 2004 for a detailed discussion of PPP). Hence, the PPP hypothesis is typically
examined by testing if RERs are stationary using unit root tests. Earlier studies, which were
often based on the Dickey-Fuller (DF) tests, found little evidence to support PPP (e.g. Adler
and Lehmann (1983)). The failure has been attributed to the low power of the DF tests and
the literature has consequently moved on to enhance the testing power using various
approaches (see, for example, Rogoff (1996) and Taylor and Taylor (2004)).

One of the new developments in the PPP empirics is the use of nonlinear unit root
tests. Due to the existence of transactions costs, according to Michael et al (1997) and
Taylor et al (2001), RERs may revert to the long-run equilibrium only when they are
sufficiently distant from the long-run equilibrium; in other words, RERs are globally

stationary but adjusted in a nonlinear (threshold-like) fashion. The DF-type tests, which are



developed in a linear (autoregressive) context, may exhibit low power against such
nonlinear stationarity. To address the problem, a range of nonlinear unit-root tests have
been suggested — see, for example, Enders and Granger (1998), Kapetanios et al. (2003)
(hereafter, KSS), Bec et al. (2004), Sollis (2009). Among these, KSS (2003) is probably the
most widely recognized and applied. KSS (2003) proposed a unit-root test using an auxiliary
regression model that approximates the exponential smooth transition autoregressive
(ESTAR) process by Taylor series. Using the KSS test, stronger supporting evidence of PPP
has been found — see, among others, KSS (2003), Liew et al. (2004), Bahmani-Oskooee et al.
(2007), Pesaran et al. (2009), Zhou and Kutan (2011).

Unit root tests may suffer non-trivial size distortion in the presence of conditional
heteroskedasticity (e.g. generalized autoregressive heteroskedasticity (GARCH)) as well as
unconditional time-varying variance (non-stationary volatility). As shown in Valkanov (2005),
with strong GARCH effect (i.e. when the GARCH process is nearly integrated and the
volatility parameter is relatively large) often observed in economic/financial time series,
convergence of the finite-sample DF distribution to the asymptotic distribution appears to
be very slow. As a result, the usual DF test tends to be oversized in the presence of strong
GARCH effect (see also Kim and Schmidt (1993) and Su (2011)). Cook (2006) also found that
the size distortion due to GARCH can be even more severe when the (nonlinear) KSS test is
considered. In addition, many economic and financial variables (including foreign exchange
rates) are characterized by the existence of permanent volatility breaks (see, for example,
Loretan and Phillips (1994) and Busetti and Taylor (2003)). In theory, permanent shifts in
volatility can greatly affect linear unit root inference not only in finite samples but also

asymptotically (Hamori and Tokihisa (1997), Kim et al. (2002) and Cavaliere (2004)).



However, the impact of volatility shifts to nonlinear unit root tests remains largely
unexplored.

We propose to use the wild bootstrap method to overcome the aforementioned size
problems. The idea behind this method is to replicate in resampled data the pattern of
heteroskedasticity in the original data. As shown in Cavaliere and Taylor (2008, 2009) the
wild bootstrap inference is robust to both conditional and unconditional heteroskedasticity
and is able to achieve the (infeasible) size-corrected power of the usual (/inear) unit root
tests. Interestingly, even though the statistical performance of wild-bootstrapping has not
yet been examined in the literature for the nonlinear unit root tests, there are two empirical
works that have already incorporated the wild bootstrap method to the KSS test (Arghyrou
and Gregoriou (2007, 2008)). Both papers found apparently conflicting results between the
standard and bootstrapping inferences. On one hand, Arghyrou and Gregoriou (2007) found
that the standard and bootstrap approaches arrive in the same conclusion when the DF test
is considered: none of the 7 bilateral RERs (against the US dollar) they examined is
stationary. On the other hand, Arghyrou and Gregoriou (2008) reported that non-
stationarity is rejected in 6 out of the 7 RERs when the standard KSS inference is applied but,
strikingly, only 1 rejection with the associated wild bootstrap inference.' Given the findings
of Arghyrou and Gregoriou (2007, 2008), one might doubt if the results that are biased
toward PPP from the KSS test is nothing but a product of size distortion owing to
heteroskedasticity. Once heteroskedasticity is appropriately accounted for, can KSS test still

produce more support for PPP than DF?

! We note that Arghyrou and Gregoriou (2008) do not deal with GARCH or time-varying volatility; instead, the wild
bootstrap method is used to account for non-normality.



In this paper, we aim to shed lights on these issues. First, we show that the KSS test
is more size-distorted than the DF test in the presence of non-constant variances. Second,
we show that the wild bootstrap method that works well with the DF test also works
satisfactorily with the KSS test. Third, we apply the DF and KSS tests to 61 real effective
exchange rates (REERs) with data from the Bank of International Settlement (BIS). We find
that wild bootstrap implementation of the KSS test produces much less rejection of non-
stationarity than standard implementation but the KSS test still rejects more often than the
DF test, suggesting that the real exchange rates are non-stationary in most of these
countries. This finding also implies that the PPP does not hold and arbitrage opportunities
exist. Possible economic explanations include transaction costs (Dumas, 1992; Sercu, Uppal
and Van Hulle, 1995; Obstfeld and Taylor, 1997), limits to arbitrage (Zussman, 2002),
heterogeneous agents (Reitz and Taylor, 2008), presence of target zones (Krugman, 1991),

central bank interventions (Dominguez, 1998; Lee, 2011).

Our paper contributes to both the international financial economics and the
econometrics literatures. In terms of its contributions to the international financial
economics literature, our paper provides fresh evidence on PPP — an issue that is still highly
debated notwithstanding the large body of research on this topic which has built up since
the early 1970s. It has been suggested that in order to move this debate forward
constructively, there is a need for empirical studies which incorporate non-linearities, as
first pointed out by Rogoff (1996) and use data sets with more extensive coverage (Sarno
and Taylor, 2002; Taylor and Taylor, 2004; Taylor, 2006). Our study fills these important
gaps in the literature. As mentioned, our paper examines an extensive number of countries

- 61 in total, and is based on a more updated data set over a period of 18 years (1994-2012)



that is characterised by the occurrence of a number of financial crises and therefore, of high

heteroskedasticity.

In relation to our paper’s contribution to the econometrics literature, through Monte
Carlo simulation, we demonstrate that wild bootstrapping the KSS test eliminates the size
distortion problem induced by heteroskedasticity. This has not been done previously in the
literature. Arghyrou and Gregoriou (2008) incorporated wild bootstapping into KSS test but
they did not conduct any simulation to prove that the KSS test works well with wild
bootstrapping. The statistical properties of wild bootstrapping has been examined in the
literature but this is only in relation to linear unit root tests such as the DF tests (see, for

example, Cavaliere and Taylor (2008, 2009)).

The rest of the paper proceeds as follows. Section 2 discusses the Monte Carlo
simulation setups and presents results from the simulations. Section 3 reports the empirical
results and Section 4 concludes. A brief review of the unit root tests and wild bootstrapping

procedure can be found in Appendix A.

[2] Monte Carlo Simulation Setup and Results

Setup for size issue and results

To investigate the size properties of the DF and KSS tests. The data-generating

process is a drift-less integrated processy, =y, ; +¢,, t=1,..,T, with heteroskedastic errors:



&, =w, o, where o, is iid N(0,1) and the volatility parameter ), is specified as the following
models.

1. Nobreak: @, =1.

2. GARCH: @, =@, + &%, +d,w, ;.

3. (Exponential (Near-)Integrated) Stochastic volatility (SV): @, =w,exp(b<, /ﬁ)

where &, =(1-c/T)¢,  +k,, with k,~iid N(0,1).

t
4. Single break (SB) in volatility: @, = @, + (@, — wO)I(F > rj, 7€(0,1).
5. Double break (DB) in volatility: @, = @, + (@, —a)O)I(z'l < % < 72), 7,7, €(0,1).

6. Trending Volatility (TV): @, = @, + (@, - a)o)(%)

Model 2 is the standard GARCH(1,1) model the parameters of which are set as

follows: (¢,,4,)= (0.29, 0.7), (0.2, 0.7), (0.19, 0.8), (0.1, 0.8) and ¢, =1—-¢ —¢,. The SV

process of Model 3 is generated with b = 2 and ¢ = 0, 10. Models 4-6 refer to those non-

stationary volatility cases considered in Cavaliere and Taylor (2008, 2009). Note that the
variance of ¢, is var(e,) = »’ . Model 4 corresponds to a single abrupt variance shift from
. to @} occurring att =77 . Model 5 is with double shifts: the first shift at t =z,7 (from
¢ to ) and the second shift at t=7,7 (from @} to @). Model 6 generates smooth

(trending) breaks over the whole sample period t=1 to T. For these three models, we let

@, =1 and set o (= a)02 /a)f) equal to 1/2, 2, 1/5, 5, respectively. We note that o<1



corresponds to a downward shift while 6 >1 upward shift. For Model 4 (SB): we considert

= 0.2 (early break), 0.8 (late break). For Model 5 (DB), we set 7, = (1—17,) and 7,=0.2, 0.8.

All simulations are based on 20,000 replications with T=100, 250 and done by
GAUSS. For the wild bootstrapping, we use the warp-speed Monte Carlo method of
Giacomini et al. (2013) using a single bootstrap re-resample (i.e. M=1 in Step 3 of the
bootstrap procedure described in Appendix A) and the bootstrap critical values are obtained
based on the 20,000 Monte Carlo replications. Rejection frequencies are calculated at the
5% nominal significance level with the DF and KSS tests using the standard and bootstrap
inferences, respectively. For simplicity, in both tests we set the augmentation equal to zero.?
We report the simulation results in Table 1 and the results can be summarized as follows.
First, in the absence of variance break all tests are correct-sized. Second, both standard (DF
and KSS) tests over-reject the null hypothesis in the presence GARCH errors and the scale of
over-rejection is larger as the sample size increases. Also, consistent with the findings of
Cook (2006), the KSS test tends to over-reject significantly more often than the DF test.? In
contrast, the size of the wild-bootstrapped tests (DF-WB and KSS-WB) is about right. Third,
in the SV models, both the DF and KSS tests are oversized and the KSS test is far worse than
the DF test. On the contrary, the bootstrap tests are about correct-sized. Fourth, with a
single abrupt variance break (SB), standard tests are oversized with downward variance
shifts and, in line with Cavaliere and Taylor (2007, 2008), the oversizing problem is more
severe in the Level case (Case A) for early (7 = 0.2) and strong contraction (6 = 1/5). In the
case of an upward variance shift, both DF and KSS tests can be over-sized or under-sized.

Again, the bootstrap tests are about correct-sized. Fifth, the size properties for both DF and

? We have also considered augmented tests and, as expected, the results are very similar.
* As Cook (2006), we have also considered tests with the White standard error. But we find that the bootstrap
tests outperform the White tests in terms of size and power.
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KSS tests in DB and TV models are similar to those with SB. However, the magnitude of size
distortion is relatively moderate comparing with SB. Again, the rejection rate for the DF-WB
and KSS-WB tests are close to the 5% nominal rate regardless of whether or not the variance
shift is downward or upward, early or late, and with abrupt or smooth breaks.

Overall, our simulation results show that the standard KSS test tends to be more
vulnerable to size distortion than the DF test in models with conditional and unconditional
heteroskedasticity. When it comes to controlling size, the wild bootstrap method not only

works well for DF test but also for the KSS test too.

Setup for power issue and results

We now turn to the power of the wild bootstrap tests. Simulations are performed

for two sets of experiments: a stationary AR(1) process:

ytzpyt—l—l_gt' (1)

and a statioanry ESTAR process:
V=Vt rva {l-em (-0l ) +e, (2)

We set p=0.9 for the AR(1) model and 8=0.01 and y=-1, -0.5 for the ESTAR model.
For the error term ¢,, various models from Models 1 to 6 (as in the size case) are examined.”*

Rejection frequencies are calculated at the 5% nominal significance level with the DF and

KSS tests using the standard and bootstrap inferences and for the standard tests, the

* Other sets of AR and ESTAR parameters and variance break models are considered, the main results are very
similar.



(infeasible) size-corrected power is considered. We report the power at the 5% level in

Table 2.

The key findings in Table 2 can be summarized as follows. First, as expected, the DF
test is more powerful than the KSS test against stationary AR while the KSS test is in general
more powerful against stationary ESTAR, regardless of the sample size, variance break, level
or trend, standard or bootstrapped. Second, for both standard DF and KSS tests, the size-
corrected power varies over break models. Comparing with the no-break case, the power is
lower for cases with over-sizing (e.g., GARCH[1], SV[1] and SB[1], see Table 1) but higher for
cases with under-sizing (e.g., SB[3]). Third, in most cases, the bootstrap power, for both DF-
WB and KSS-WB tests, is either close to or even better than the corresponding (infeasible)
sized-correct power of DF and KSS tests. This result confirms that the wild bootstrap method

works not only for the linear DF test but also for the nonlinear KSS test as well.

[3] PPP empirics

In this section, we apply the standard and bootstrapped DF and KSS tests to the
monthly real effective exchange rate (REER) compiled by the Bank for International
Settlement (BIS) over the period 1994 to 2012. There are 228 monthly observations per
REER. The BIS broad-weighted REER dataset contains 61 currencies worldwide using time-
varying weights based on the average trade share over three-year periods, starting from
1993. The time-varying weights are used to capture the rapid change of the world trade

pattern over the last two decades (particularly, for the so-called BRICS countries — Brazil,



Russia, India, China, and South Africa). See Klau and Fung (2006) for the details of
construction of the BIS REER dataset and Bahmani-Oskooee et al. (2009) for an application

that examines PPP with this dataset.

To assess the behaviour of volatility in the BIS REER series, we estimate the variance

profile, n(s) in (A3), of each series by:

ZEST]AAIZ +(sT - [sT])A)A/[Zsr]Jfl

=1
- 3)
Xl

n(s) =

where Ay, the first difference of the detrended series. Cavaliere and Taylor (2007) show

that M(s) is a consistent estimator forn(s). We plot 1(s) against the 45° line in Figure 1 and
note that substantial deviations from the 45° line signals variance shifts. Among the 61
REERs, some (e.g. France, Luxemburg and Malta) show constant variance process but many
others appear to be with time-varying variances. For some series (e.g. Argentina, Indonesia
and Malaysia) the shifts follows relatively abrupt transition paths, while for others (e.g.
Estonia, Hungary and ltaly) the path tends to be slower and consistent with smooth-
transition breaks. For examples, the estimated variance profile of Estonia follows a relatively
smooth arc above the 45° line and is consistent with downward trending volatility — in
contrast, Hungary's profile is consistent with upward trending volatility. Note that for REERs
with considerable variance breaks, according the simulation result in Section 3, the standard

unit root test results might be misleading due to size distortion.

To adjust for serial correlation that may exist in the data, we adopt the re-scaled

modified Akaike information criterion (RSMAIC) for the selection of augmentation lags in the
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ADF regressions (i.e., p in Equation (A1)).>® Cavaliere et al. (2013) shows that RSMAIC can
avoid a tendency to over-fit the lag order under heteroskedasticity.” RSMAIC may be

calculated as

Ccr+ir(k)

RSMAIC (k) = Ing + k

(4)

where Cr =2, t7(k) = (6) 77 2p et 1TE1D? 0 Gk = (T = Pmax) ™ Li=pparr1(Eee)?
y and e”,‘it are the coefficient of lagged dependent variable and the OLS residual estimated

from a k™ order ADF regression on $&, which is the OLS detrended series of y,. Following

Cavaliere et al. (2013), we set pmax =int(12*(t/100)1/4) where int(.) means taking integer part
out of (.). As a further refinement, the sieve (recoloring) procedure of Chang and Park (2003)
and Palm et al. (2007) is also used. The procedure is to generate a series of new residual
recursively from a k™ order moving average process using the k coefficients estimated from
the ADF regression and to substitute this residual and the bootstrap residuals into the

partial sum process as described in Step 1 of the wild bootstrap algorithm (see Appendix A).

Table 3 reports the outcome of the (standard and bootstrap) DF and KSS tests for the
61 BIS REERs. Tables 3(a) and 3(b) show that the ADF test performs quite consistently in
both asymptotic and wild bootstrap p-values.® We cannot reject the unit root null
hypothesis in most of the 61 countries. At the 10% significance level, in the constant mean

cases stationarity can only be found in 5 countries (i.e., Algeria, China, Estonia, Indonesia

> Note that to focus on assessing the impact of heteroskedasticity our simulation setup assumes away the
problem of serial correlation that may be commonly found in reality.

® It has been found in Su et al. (2013) that setting the number of augmented lags for the KSS regression (q) the
same as that of the DF regression (p) results in better performance. Given this finding, throughout this section,
we set g=p.

’ Other methods of augmentation lag selection are considered. While the results may vary somewhat, the key
conclusion does not change.

¢ The asymptotic p-value in Table 3 is obtained using the simulated DF and KSS distributions while the

bootstrap p-value is obtained using the bootstrap distributions.
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and Lithuania) when the asymptotic distribution is referred to and in 7 countries (i.e.,
Algeria, Estonia, Indonesia, Korea, Lithuania, Poland and South Africa) using the bootstrap
distribution; if a linear trend is assumed to catch the Balassa-Samuelson effect, then 6
countries (i.e., Estonia, Taipei, India, Norway, Slovenia and Turkey) referring to the
asymptotic distribution and 5 (i.e., Taipei, India, Norway, Slovenia and Turkey) with the
bootstrap distribution are found to have stationary exchange rates. Out of the 61 REERs,
there are only three (one) exceptions in the constant mean (linear trend) case where the
asymptotic and bootstrap p-values provide conflicting signals. In two cases (i.e., China and
Estonia) the asymptotic p-value indicates rejection but the wild bootstrap p-value says the
opposite. In another two cases (i.e., Poland and South Africa), the asymptotic p-value

recommends no rejection but the wild bootstrap p-value suggests the otherwise.

Turning to the KSS test, we note that the KSS test rejects the PPP hypothesis more
frequently than the DF test regardless of whether the asymptotic or bootstrap distribution is
referred to. We note that the wild bootstrap p-value depicts results different from that of
the asymptotic p-value. Table 3(a) shows that out of the 61 countries, the asymptotic p-
value identifies 19 stationary cases while the wild bootstrap p-value finds 9 cases only. If a
linear trend is assumed, then Table 3(b) identifies 17 stationary cases with asymptotic p-
value and 11 similar cases with wild bootstrap p-value. In addition, there are nine and seven
cases in Table 3(a) and Table 3(b), respectively, where these p-values provide inconsistent
results — in some countries. We note that the two KSS p-values can be rather different for
some countries — for example, Bulgaria, Mexico and Iceland in the constant mean case and
Bulgaria, Malaysia and Venezuela in the trend case. Referring to the variance profile of

these countries depicted in Figure 1, we can obviously see the variance of theses REERs is
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considerably time-varying and, based on the simulation results from the previous section

the asymptotic p-value in these cases may result in over-rejection.

There are four cases in Table 3(a) and seven cases in Table 3(b) where the KSS-WB
test cannot reject the PPP hypothesis while the ADF-WB test suggests the otherwise. This is
consistent with the view that REERs are stationary with nonlinear mean reversion.
Interestingly, most of these cases in the two tables happen to be the same and they are
China, Romania, Switzerland and Thailand, respectively. Note that China maintains a
crawling peg while Romania and Thailand both adopt a managed float systemg; the former
allows exchange rate to float within a narrow band that can be periodically adjusted or
aligned while the latter allows governments to intervene when they think fit. The target
zone model of Krugman (1991) and subsequent refinements show that a credible
commitment to intervene at both edges of the band can produce a nonlinear relationship
between exchange rates and fundamentals. Recently, Lee (2011) also builds an exchange
rate model of managed float under conditional official intervention where the dynamics of
exchange rates are also shown to be nonlinear (i.e., regime-switching). Both systems are
shown to exhibit nonlinear exchange rate dynamics. Even in the case of Switzerland which
was regarded by IMF as an independently floating system, the announcement by the Swiss
National Bank on 6 September 2011 that it will set a minimum exchange rate of 1.20 francs
to the euro, effectively says to the world that Switzerland has abandoned the clean float

system and adopted a managed float system.™®

° IMF (2008).

1% wille (2011).
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As clearly shown in Figure 1, the variance profile reveals that heteroskedasticity is
qguite common in the exchange rates of many countries, we focus our discussion on the
results of the wild bootstrapping implementation of KSS test because it allows for
heteroskedasticity. The result shows that at 10% significance level we can only reject the
unit root null hypothesis for 9 countries in the constant mean case (Table 3(a)) and 11
countries in the linear trend case (Table 3(b)), respectively. In other words, after accounting
for heteroskedasticity, we find strong evidence that there is a non-stationarity problem in

the REERs of many countries in the sample.

Finally, it is worth noting that our empirical results corroborate the findings of
Arghyrou and Gregoriou (2007, 2008) in testing for PPP. For the DF test, the standard and
bootstrap approaches arrive at a similar conclusion. However, the standard KSS inference
rejects the PPP hypothesis much more often than the associated wild bootstrap inference
(due to the existence of time-varying volatility). In other words, part of the rejection arising
from the standard KSS inference might be spurious because of over-sizing. We also note
that Arghyrou and Gregoriou (2007, 2008) do not consider the Balassa-Samuelson effect

which matters for many countries (e.g. Taiwan and Japan).

[4] Conclusion

We re-examine whether PPP holds given that the issue is still being highly debated due
significantly to crucial shortcomings of the econometric techniques used to examine this

issue in previous studies. In particular, we refer to the inference problem in unit root tests
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in the presence of conditional and unconditional heteroskedasticity. This heteroskedasticity
may result in a non-trivial size distortion problem in unit root tests. In order to overcome
these problems, we apply the widely used KSS non-linear unit root test but we wild
bootstrapped this test. Using Monte Carlo simulation, we have confirmed that the KSS test
also suffer from the size distortion problem. More importantly, the KSS test is found to be
more size-distorted than the linear DF test in the presence of heteroskedasticity. However,
our simulation results show that the wild bootstrap strategy works very well with both
linear unit root test (i.e., ADF test) as well as nonlinear unit root test (i.e., KSS test) in
controlling the size problem. We apply the wild-bootstrapped KSS test to a Bank of
International Settlement dataset of monthly real effective exchange rates (REERs) for 61
countries over the period 1994 to 2012, a period which has been identified to have
substantial heteroskedasticity in REERs as a result of the occurrence of a number of crises
such as the Asian Financial Crisis, Russian Crisis, dot come crisis, Global Financial Crisis,
among others. Our results show that most of the REERs are non-stationary. Thus, after
accounting for heteroskedasticity as well as non-linearity through the use of the wild-

bootstrapped KSS test, we found strong evidence against the PPP hypothesis

Appendix A. Wild bootstrapping unit root tests

The basic idea behind the tests discussed in this section is to use the wild bootstrap

method to control for the size distortion due to heteroskedasticity. Let y,, t=1,2,...,T, be an
observed time series (e.g., RER) which can be decomposed into a deterministic part d, and

a stochastic (mean-adjusted) part v,: y, =d, +v,. For the deterministic part, we consider
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two cases: Case A (level): d, = ; Case B (trend): d, =a+ ft. Following the PPP literature,

the level case is the baseline setting while the trend case is often referred to as the case that
adjusts for “productivity bias” due to the so-called Balassa-Samuelson effect; see Bahmani-
Oskooee and Nasir (2005) for a recent review on this matter. We first obtain the OLS

residuals (v,) from either case then the residuals are used for the following augmented

regression models:

~ ~ p ~
(DF) AV, =y, + 2 0,AV,_; +¢,, (A1)
=i
q
(KSS) AV, =802, +> 0,AV_; +e,. (A2)
j=1

The (augmented) DF and KSS tests are based on the usual t-test from the above regressions

for the unit root null hypothesis H,:y=0 and H,:6=0, respectively. Both DF and KSS

tests are left-tailed tests. We note that the KSS regression is derived from the first-order
Taylor approximation of the ESTAR model and the lag augmentations are entered in a linear

fashion (KSS (2003)).

When the errors in the DF regression (Al) are heteroskedastic, the DF test is
considerably size-distorted. In particular, with nonstationary volatility, Cavaliere and Taylor
(2007, 2008) showed that linear unit root tests are no longer asymptotically pivotal as their
limiting null distribution depends on a nuisance parameter: the variance profile that
characterizes the time-series behaviour of the volatility. Assume that the error term in (Al):

g, =o,u, where p, isiid (0,1) and the volatility term satisfies c;,,; =o(s) for all s (0,1)

with ®(s) > 0. The variance profile is defined as
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n(s)=( j;m(r)zdr)l [ o()dr. (A3)

The variance profile satisfies n(s) =s when the variance is constant, while it deviates from s
if o, is not constant. It is straightforward to show that if the error term in (A2) has a time-

varying volatility, the usual KSS test is not asymptotically valid as its limiting null hypothesis

depends on the variance profile.

Cavaliere and Taylor (2008) proposed the use of wild-bootstrapping in handling the

size issue. Basically, the wild bootstrap algorithm is as follows.

[Step 1] Generate the bootstrap residuals: &’ = &7, where &, is the ADF residuals in (A1) and
n, is a random sequence with E(7,)=0 and E(5°)=1. Form the bootstrap sample by
constructing the partial sum process v? = vf + Y, €2 (t=1,2,.,T), and set the initial
condition vé’ZO. Note that we may generate bootstrap residuals based on the KSS

regression residuals (from (A2)), the DF residuals (from (A1)), or simply the first difference of

¥, (so that both DF and KSS tests are actually based on the same bootstrap series). In our
case, the (mean-adjusted) first difference is used in simulation.

[Step 2] Compute the ADF statistic based on {vf’}fl1 and label the new statistic DF-WB.
[Step 3] Repeat Step 1 and 2 M times to form a wild-bootstrap distribution of the DF

statistic: {DF- WB(j)}inl.

Here are a few remarks on the bootstrap procedure. First, according to Cavaliere and

Taylor (2008), the bootstrap residuals gf’ do not have to be generated based on ¢,, using

the first difference of the observed data y, (with a mean correction in the trend case) can
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also do the job (and sometimes, even perform better in finite samples). Second, a sieve
(recoloring) procedure can be added in Step 1 to achieve refinement (see Palm et al.
(2008)). Third, the random sequences 7, are generated based on the two-point distribution
suggested in Liu (1988) and Mammen (1993)

f1+ 5

2

~5-1
245 (A4)
with probability p=1- p,

with probability p

&

N‘

which meets the necessary requirements for wild bootstrapping (i.e. E(x,)=0 and
E(n?)=1) and E(5})=1." Fourth, based on {DF- WB(j)}.;, the bootstrap critical value
c, is selected as ¢ = max{c:zyzll(DF —WB(j) < c) < a} where I (¥ is an indicator
function.

For the KSS test, the wild bootstrap procedure is fairly the same as that of the DF

test described above. The only difference is, instead of using the DF statistic, the KSS

statistic is employed.

! Cavaliere and Taylor (2008) suggested drawing n, from iid N(0,1) and claimed that the results are similar
with the standard normal and the Liu-Mammen distribution. We find that this is only true when the linear DF
test is considered. For the nonlinear KSS test, bootstrapping with the Liu-Mammen distribution clearly
outperform the standard normal distribution.
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Table 1: Size at 5% significance level

Case A: Level

T=100 T=250
Volatility KSS KSS-WB DF DF-WB KSS KSS-WB DF DF-WB
No Break 0.051 0.050 0.050 0.050 0.049 0.050 0.050 0.050
GARCHI[1] (¢;=0.29,¢,=0.7) 0.146 0.050 0.092 0.051 0.187 0.052 0.100 0.051
GARCH[2] (¢1=0.2,¢,=0.7) 0.093 0.049 0.066 0.050 0.093 0.049 0.062 0.049
GARCH[3] (¢1=0.19,$,=0.8) 0.116 0.052 0.079 0.052 0.148 0.048 0.087 0.051
GARCHI4] (¢1=0.1,$.=0.8) 0.067 0.049 0.057 0.050 0.065 0.050 0.053 0.049
SV[1] (b=2, c=0) 0.247 0.051 0.159 0.048 0.261 0.049 0.161 0.049
SV[2] (b=2, c=10) 0.099 0.048 0.064 0.054 0.099 0.047 0.064 0.049
SB[1] (5=1/2,7=0.2) 0.103 0.051 0.091 0.051 0.101 0.052 0.093 0.054
SB[2] (6=1/2,7=0.8) 0.058 0.046 0.056 0.048 0.060 0.048 0.057 0.049
SB[3] (5=2,7=0.2) 0.036 0.052 0.033 0.049 0.035 0.048 0.032 0.049
SB[4] (5=2,1=0.8) 0.050 0.050 0.043 0.049 0.052 0.052 0.046 0.050
SB[5] (5=1/5,7=0.2) 0.262 0.049 0.196 0.052 0.281 0.053 0.202 0.050
SB[6] (6=1/5,7=0.8) 0.074 0.049 0.062 0.049 0.077 0.049 0.069 0.052
SB[7] (5=5,7=0.2) 0.038 0.051 0.024 0.053 0.036 0.049 0.025 0.051
SB[8] (5=5,1=0.8) 0.098 0.051 0.050 0.051 0.102 0.052 0.050 0.052
DB[1] (8=1/2,7=0.2) 0.086 0.047 0.077 0.052 0.089 0.050 0.081 0.050
DB[2] (6=2,1=0.2) 0.041 0.052 0.035 0.051 0.041 0.049 0.036 0.047
DB([3] (5=1/5,1=0.2) 0.167 0.049 0.134 0.049 0.170 0.050 0.130 0.048
DB[4] (5=5,1=0.2) 0.053 0.052 0.031 0.050 0.052 0.049 0.032 0.048
TVI1] (5=1/2) 0.071 0.051 0.066 0.051 0.076 0.052 0.069 0.050
TV[2] (6=2) 0.039 0.050 0.035 0.048 0.040 0.049 0.038 0.050
TV[3] (6=1/5) 0.120 0.051 0.102 0.053 0.122 0.051 0.099 0.050
TV[4] (6=5) 0.043 0.049 0.032 0.051 0.041 0.048 0.030 0.047
Case B: Trend
T=100 T=250
Volatility KSS KSS-WB DF DF-WB [ KSS-WB DF DF-WB
No Break 0.050 0.050 0.051 0.048 0.051 0.048 0.051 0.051
GARCH[1] ($:=0.29,0,=0.7) 0.156 0.048 0.088 0.049 0.225 0.050 0.105 0.052
GARCHI2] (¢1=0.2,0,=0.7) 0.104 0.053 0.070 0.053 0.119 0.049 0.068 0.048
GARCHI[3] (¢:=0.19,,=0.8) 0.117 0.048 0.077 0.048 0.170 0.053 0.090 0.050
GARCH[4] (¢,=0.1,$,=0.8) 0.069 0.048 0.056 0.047 0.081 0.052 0.058 0.052
SV[1] (b=2, c=0) 0.251 0.052 0.145 0.051 0.280 0.051 0.149 0.053
SV[2] (b=2, c=10) 0.117 0.050 0.068 0.050 0.120 0.049 0.065 0.051
SB[1] (5=1/2,7=0.2) 0.089 0.048 0.079 0.049 0.094 0.052 0.077 0.051
SB[2] (5=1/2,7=0.8) 0.059 0.049 0.058 0.049 0.060 0.052 0.055 0.052
SB[3] (6=2,1=0.2) 0.042 0.049 0.040 0.049 0.044 0.051 0.038 0.050
SB[4] (86=2,1=0.8) 0.056 0.051 0.050 0.053 0.054 0.050 0.048 0.051
SB([5] (5=1/5,7=0.2) 0.227 0.047 0.154 0.049 0.255 0.050 0.160 0.049
SB[6] (5=1/5,1=0.8) 0.075 0.049 0.063 0.049 0.078 0.049 0.065 0.051
SB[7] (6=5,1=0.2) 0.047 0.050 0.036 0.049 0.047 0.050 0.034 0.048
SB[8] (6=5,1=0.8) 0.113 0.049 0.057 0.050 0.123 0.050 0.055 0.046
DB[1] (5=1/2,7=0.2) 0.077 0.052 0.067 0.048 0.082 0.047 0.068 0.049
DB[2] (5=2,1=0.2) 0.048 0.049 0.041 0.048 0.050 0.049 0.044 0.051
DB[3] (5=1/5,1=0.2) 0.159 0.051 0.110 0.050 0.157 0.047 0.103 0.047
DB[4] (6=5,1=0.2) 0.072 0.052 0.045 0.051 0.073 0.052 0.043 0.051
TV[1] (6=1/2) 0.067 0.048 0.062 0.048 0.067 0.048 0.065 0.051
TV[2] (6=2) 0.044 0.051 0.044 0.050 0.046 0.049 0.043 0.050
TV[3] (6=1/5) 0.104 0.049 0.086 0.048 0.103 0.047 0.087 0.053
TV[4] (6=5) 0.053 0.052 0.039 0.053 0.053 0.053 0.038 0.054
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Table 2: Power at 5% significance level (Note: DF & KSS are with size-corrected power.)

Case A: Level

T=100 T=250

DGP Volatility KSS KSS-WB DF DF-WB KSS KSS-WB DF DF-WB
AR No Break 0.254 0.261 0.327 0.338 0.740 0.736 0.972 0.972
(p=0.9) | GARCH [1] (¢,=0.29,$,=0.7) 0.173 0.175 0.233 0.232 0.399 0.386 0.823 0.800
GARCH[2] (¢1=0.2,¢,=0.7) 0.220 0.233 0.294 0.302 0.598 0.594 0.927 0.921

SV[1] (b=2, c=0) 0.086 0.089 0.112 0.113 0.217 0.217 0.514 0.530

sV[2] (b=2, c=10) 0.200 0.206 0.307 0.304 0.587 0.587 0.922 0.923

SB[1] (5=1/2,7=0.2) 0.163 0.159 0.227 0.221 0.580 0.572 0.902 0.893

SB[3] (5=2,7=0.2) 0.333 0.323 0.434 0.423 0.784 0.788 0.986 0.984

TV[1] (6=1/2) 0.201 0.200 0.268 0.268 0.661 0.660 0.940 0.942

TV[2] (5=2) 0.300 0.298 0.389 0.384 0.764 0.760 0.975 0.977

ESTAR[1] | No Break 0.487 0.478 0.317 0.333 0.991 0.991 0.999 0.999
(6=0.01) | GARCH [1] (¢=0.29,$,=0.7) 0.204 0.199 0.160 0.160 0.518 0.504 0.517 0.499
(y==0.1) | GARCH[2] (¢:=0.2,$,=0.7) 0.416 0.393 0.309 0.286 0.965 0.957 0.988 0.987
SV[1] (b=2, c=0) 0.469 0.428 0.463 0.438 0.763 0.732 0.748 0.735

SV[2] (b=2, c=10) 0.566 0.522 0.497 0.467 0.985 0.981 0.994 0.993

SB[1] (5=1/2,1=0.2) 0.211 0.197 0.150 0.139 0.876 0.861 0.817 0.781

SB[3] (6=2,1=0.2) 0.807 0.788 0.745 0.720 1.000 1.000 1.000 1.000

TV[1] (8=1/2) 0.296 0.311 0.195 0.200 0.954 0.953 0.957 0.962

TV[2] (8=2) 0.707 0.688 0.575 0.582 0.999 0.998 1.000 1.000

ESTAR[2] | No Break 0.233 0.232 0.176 0.178 0.885 0.888 0.855 0.841
(6=0.01) | GARCH [1] ($:=0.29,$,=0.7) 0.135 0.132 0.108 0.112 0.339 0.311 0.329 0.310
(y==0.5) | GARCH[2] (¢:=0.2,$,=0.7) 0.226 0.227 0.169 0.174 0.790 0.775 0.774 0.762
SV[1] (b=2, c=0) 0.249 0.222 0.314 0.303 0.595 0.575 0.610 0.607

SV[2] (b=2, c=10) 0.308 0.279 0.233 0.221 0.884 0.874 0.895 0.896

SB[1] (6=1/2,7=0.2) 0.114 0.111 0.103 0.096 0.532 0.525 0.362 0.360

SB[3] (6=2,1=0.2) 0.498 0.483 0.372 0.369 0.984 0.985 0.999 0.999

TV[1] (6=1/2) 0.153 0.156 0.129 0.134 0.714 0.709 0.542 0.547

TV[2] (6=2) 0.397 0.374 0.279 0.274 0.970 0.968 0.985 0.985

Case B: Trend
T=100 T=250

DGP Volatility KSS KSS-WB DF DF-WB KSS KSS-WB DF DF-WB
AR No Break 0.158 0.159 0.196 0.202 0.551 0.549 0.840 0.844
(p=0.9) | GARCH [1] (¢:=0.29,$,=0.7) 0.115 0.120 0.153 0.151 0.258 0.247 0.623 0.613
GARCHI[2] ($:=0.2,$,=0.7) 0.138 0.144 0.170 0.180 0.400 0.414 0.757 0.783

SV[1] (b=2, c=0) 0.073 0.070 0.089 0.091 0.159 0.163 0.417 0.419

SV[2] (b=2, c=10) 0.115 0.123 0.173 0.174 0.395 0.390 0.763 0.768

SB[1] (5=1/2,7=0.2) 0.124 0.121 0.155 0.168 0.443 0.454 0.752 0.765

SB[3] (5=2,1=0.2) 0.166 0.168 0.216 0.215 0.573 0.573 0.867 0.871

TV[1] (8=1/2) 0.130 0.129 0.173 0.171 0.500 0.481 0.811 0.805

TV[2] (6=2) 0.167 0.176 0.210 0.211 0.552 0.559 0.859 0.858

ESTAR[1] | No Break 0.279 0.261 0.204 0.200 0.941 0.940 0.948 0.958
(0=0.01) | GARCH [1] (¢:=0.29,$,=0.7) 0.156 0.145 0.129 0.123 0.383 0.347 0.394 0.366
(y=—0.1) | GARCH[2] (¢:=0.2,¢,=0.7) 0.262 0.252 0.200 0.201 0.839 0.817 0.882 0.875
SV[1] (b=2, c=0) 0.425 0.374 0.454 0.438 0.702 0.660 0.731 0.702

SV[2] (b=2, c=10) 0.367 0.320 0.325 0.299 0.927 0.909 0.957 0.956

SB[1] (5=1/2,7=0.2) 0.147 0.141 0.126 0.127 0.677 0.659 0.561 0.571

SB[3] (6=2,7=0.2) 0.528 0.509 0.406 0.415 0.997 0.996 1.000 1.000

TV[1] (8=1/2) 0.189 0.180 0.155 0.151 0.832 0.815 0.773 0.769

TV[2] (6=2) 0.437 0.419 0.321 0.319 0.987 0.987 0.998 0.999

ESTAR[2] | No Break 0.144 0.142 0.127 0.123 0.643 0.641 0.547 0.545
(6=0.01) | GARCH [1] (¢:=0.29,$,=0.7) 0.106 0.102 0.095 0.093 0.251 0.233 0.250 0.238
(y=—0.5) | GARCHI[2] ($:=0.2,$,=0.7) 0.150 0.148 0.120 0.126 0.528 0.523 0.499 0.516
SV[1] (b=2, c=0) 0.207 0.183 0.289 0.279 0.516 0.493 0.592 0.572

SV[2] (b=2, c=10) 0.182 0.173 0.167 0.158 0.695 0.671 0.714 0.702

SB[1] (6=1/2,7=0.2) 0.095 0.092 0.091 0.089 0.318 0.325 0.249 0.268

SB[3] (5=2,1=0.2) 0.248 0.243 0.197 0.198 0.909 0.898 0.922 0.918

TV[1] (6=1/2) 0.108 0.102 0.105 0.106 0.460 0.450 0.353 0.342

TV[2] (6=2) 0.204 0.201 0.165 0.169 0.836 0.837 0.814 0.811
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Table 3 (a): Empirical results on 61 Real Effective Exchange Rates (Constant Mean)

Currency ADF A. P-value WB p-value KSS A. P-value WB p-value
Algeria -4.608 0.000*** 0.023** -15.718 0.000*** 0.000***
Argentina -1.319 0.624 0.484 -2.200 0.256 0.202
Australia -0.871 0.799 0.734 -1.048 0.823 0.750
Austria -1.810 0.376 0.494 -2.236 0.240 0.413
Belgium -1.699 0.433 0.473 -2.046 0.331 0.381
Brazil -1.578 0.495 0.450 -2.240 0.238 0.274
Bulgaria -1.763 0.399 0.928 -5.091 0.000*** 0.271
Canada -0.867 0.800 0.694 -1.744 0.505 0.439
Chile -2.268 0.185 0.151 -1.882 0.424 0.387
China -2.584 0.097* 0.114 -2.787 0.072* 0.083*
Chinese Taipei (Taiwan) -1.334 0.617 0.673 -2.062 0.323 0.324
Colombia -1.687 0.439 0.385 -1.563 0.609 0.572
Croatia -1.799 0.381 0.441 -1.783 0.481 0.552
Cyprus -1.397 0.587 0.657 -2.706 0.089* 0.116
Czech Republic -1.324 0.622 0.579 -1.962 0.378 0.323
Denmark -2.117 0.239 0.233 -2.418 0.168 0.194
Estonia -4.022 0.001*** 0.018** -4.377 0.000*** 0.009***
Euro area -1.745 0.409 0.343 -1.943 0.388 0.324
Finland -2.140 0.231 0.326 -2.147 0.280 0.467
France -1.363 0.604 0.622 -1.931 0.395 0.447
Germany -1.458 0.556 0.539 -1.814 0.463 0.477
Greece -1.501 0.535 0.588 -1.834 0.451 0.483
Hong Kong SAR -0.543 0.881 0.838 -1.754 0.499 0.438
Hungary -0.905 0.788 0.688 -1.655 0.558 0.530
Iceland -1.279 0.643 0.428 -2.703 0.089* 0.286
India -2.551 0.104 0.119 -2.573 0.120 0.107
Indonesia -2.579 0.098* 0.091* -4.525 0.000*** 0.154
Ireland -1.395 0.588 0.558 -1.742 0.506 0.446
Israel -1.279 0.643 0.634 -1.496 0.645 0.576
Italy -2.129 0.235 0.530 -4.258 0.000*** 0.120
Japan -1.843 0.361 0.385 -2.116 0.295 0.296
Korea -2.480 0.122 0.076* -3.232 0.021%** 0.082*
Latvia -2.515 0.113 0.154 -2.490 0.144 0.208
Lithuania -4.102 0.000*** 0.010*** -3.867 0.002*** 0.060*
Luxembourg -1.637 0.465 0.502 -1.884 0.423 0.496
Malaysia -2.065 0.260 0.415 -2.074 0.316 0.590
Malta -1.537 0.516 0.464 -1.359 0.712 0.573
Mexico -2.266 0.186 0.577 -4.241 0.000*** 0.507
Netherlands -1.715 0.424 0.450 -2.113 0.297 0.339
New Zealand -1.705 0.430 0.296 -2.224 0.245 0.180
Norway -1.626 0.470 0.404 -2.695 0.091* 0.102
Peru -1.794 0.384 0.415 -2.134 0.287 0.344
Philippines -1.543 0.513 0.628 -1.450 0.669 0.795
Poland -2.431 0.134 0.081* -1.970 0.373 0.289
Portugal -0.963 0.769 0.780 -1.785 0.480 0.460
Romania -1.775 0.393 0.676 -4.425 0.000*** 0.080*
Russia -1.934 0.317 0.512 -2.846 0.062* 0.343
Saudi Arabia -1.466 0.552 0.515 -1.936 0.392 0.370
Singapore -0.750 0.833 0.830 -0.657 0.892 0.878
Slovakia -0.572 0.875 0.935 -0.844 0.864 0.903
Slovenia -1.872 0.346 0.364 -2.016 0.347 0.415
South Africa -2.478 0.122 0.066* -2.951 0.048* 0.041%**
Spain -1.141 0.703 0.717 -2.109 0.298 0.385
Sweden -2.100 0.246 0.266 -2.614 0.109 0.118
Switzerland -2.042 0.269 0.301 -4.399 0.000*** 0.011%**
Thailand -2.551 0.104 0.145 -7.548 0.000%*** 0.005%**
Turkey -2.250 0.191 0.217 -2.952 0.047** 0.229
United Arab Emirates -1.714 0.425 0.374 -1.461 0.664 0.587
United Kingdom -1.139 0.704 0.623 -2.573 0.120 0.132
United States -0.935 0.778 0.749 -1.299 0.739 0.718
Venezuela -1.746 0.408 0.367 -2.973 0.045** 0.102
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Table 3 (b): Empirical results on 61 Real Effective Exchange Rates (Linear Trend)

Currency ADF A. P-value WB p-value KSS A. P-value WB p-value
Algeria -2.492 0.332 0.375 -3.413 0.047** 0.122
Argentina -2.786 0.202 0.102 -4.023 0.006*** 0.168
Australia -2.368 0.395 0.324 -2.629 0.271 0.282
Austria -1.989 0.604 0.678 -2.353 0.413 0.532
Belgium -1.723 0.738 0.747 -2.062 0.580 0.607
Brazil -1.641 0.773 0.743 -2.183 0.510 0.534
Bulgaria -2.825 0.188 0.415 -5.912 0.000*** 0.124
Canada -2.540 0.308 0.231 -2.471 0.348 0.378
Chile -2.298 0.432 0.389 -1.948 0.644 0.622
China -2.589 0.286 0.288 -3.241 0.074* 0.064*
Chinese Taipei (Taiwan) -3.133 0.099* 0.076* -3.637 0.025** 0.030**
Colombia -1.866 0.668 0.647 -1.610 0.801 0.823
Croatia -2.532 0.312 0.341 -2.349 0.415 0.468
Cyprus -2.417 0.370 0.345 -3.886 0.011** 0.017**
Czech Republic -1.846 0.679 0.588 -1.537 0.826 0.789
Denmark -1.983 0.608 0.588 -2.528 0.319 0.336
Estonia -3.231 0.079* 0.179 -2.938 0.149 0.362
Euro area -1.742 0.729 0.649 -1.934 0.651 0.606
Finland -2.850 0.180 0.258 -2.905 0.160 0.274
France -1.669 0.762 0.749 -1.734 0.751 0.736
Germany -1.910 0.646 0.682 -2.360 0.409 0.445
Greece -2.129 0.527 0.483 -1.387 0.869 0.866
Hong Kong SAR -2.057 0.568 0.499 -2.073 0.574 0.520
Hungary -1.453 0.842 0.811 -2.601 0.284 0.332
Iceland -1.731 0.734 0.715 -2.953 0.144 0.495
India -3.181 0.089* 0.057* -3.863 0.012** 0.014**
Indonesia -2.652 0.257 0.237 -4.553 0.001%** 0.318
Ireland -1.197 0.908 0.862 -1.834 0.703 0.609
Israel -1.664 0.764 0.701 -1.847 0.697 0.624
Italy -2.303 0.429 0.713 -5.057 0.000*** 0.064*
Japan -2.013 0.592 0.600 -3.066 0.112 0.097*
Korea -2.503 0.326 0.188 -3.114 0.101 0.197
Latvia -2.072 0.560 0.613 -2.022 0.602 0.598
Lithuania -2.627 0.269 0.346 -3.041 0.118 0.250
Luxembourg -1.935 0.633 0.617 -1.711 0.761 0.750
Malaysia -2.186 0.495 0.462 -6.013 0.000*** 0.149
Malta -2.291 0.436 0.435 -1.758 0.740 0.684
Mexico -2.319 0.421 0.740 -4.441 0.001*** 0.560
Netherlands -1.634 0.776 0.752 -2.301 0.443 0.435
New Zealand -2.012 0.592 0.502 -2.343 0.419 0.375
Norway -3.156 0.095* 0.062* -2.929 0.152 0.199
Peru -1.522 0.819 0.834 -0.784 0.955 0.959
Philippines -1.539 0.813 0.824 -1.447 0.853 0.922
Poland -2.783 0.203 0.129 -3.107 0.102 0.101
Portugal -1.300 0.885 0.905 -2.032 0.597 0.551
Romania -1.906 0.648 0.691 -7.002 0.000*** 0.032**
Russia -2.397 0.380 0.416 -2.017 0.605 0.792
Saudi Arabia -1.539 0.813 0.798 -2.096 0.560 0.562
Singapore -0.508 0.983 0.997 -0.059 0.985 0.981
Slovakia -1.901 0.651 0.592 -2.994 0.132 0.178
Slovenia -3.797 0.016** 0.019** -4.341 0.002%** 0.005%**
South Africa -2.639 0.263 0.187 -2.447 0.361 0.355
Spain -1.555 0.807 0.805 -2.252 0.470 0.489
Sweden -2.600 0.281 0.260 -2.996 0.132 0.142
Switzerland -2.017 0.589 0.543 -4.338 0.002%** 0.048**
Thailand -2.468 0.343 0.339 -8.143 0.000*** 0.010%**
Turkey -3.788 0.017** 0.015** -4.363 0.002%** 0.031**
United Arab Emirates -1.935 0.633 0.548 -2.502 0.332 0.315
United Kingdom -1.620 0.781 0.727 -2.426 0.373 0.415
United States -1.448 0.843 0.845 -1.544 0.824 0.822
Venezuela -2.195 0.489 0.497 -3.378 0.052** 0.185

Note: *, ** and *** denote rejection at 10%, 5% and 1%, respectively, using the asymptotic p-value
(A. p-value) and wild bootstrap p-value (WB p-value).
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Figure 1: Variance Profile for 61 Real Effective Exchange Rates
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Figure 1: Variance Profile for 61 Real Effective Exchange Rates (continued)
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