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Abstract 

Small insertions/deletions (INDELs) of ≤21 bp comprise 18% of all recorded mutations causing human 

inherited disease, and are evident in 24% of documented Mendelian diseases. INDELs affect gene 

function in multiple ways: for example, by introducing premature stop codons that either lead to the 

production of truncated proteins or affect transcriptional efficiency. However, the means by which they 

impact post-transcriptional regulation, including alternative splicing, have not been fully evaluated. In 

this study, we collate disease-causing INDELs from the Human Gene Mutation Database (HGMD) and 

neutral INDELs from the 1000 Genomes Project. The potential of these two types of INDELs to affect 

binding-site affinity of RNA binding proteins (RBPs) was then evaluated. Resultantly, we identified 

several sequence features that can distinguish disease-causing INDELs from neutral INDELs. Moreover, 

we built a machine learning predictor called PinPor (predicting pathogenic small insertions and deletions 

affecting post-transcriptional regulation, http://watson.compbio.iupui.edu/pinpor/) to ascertain which 

newly observed INDELs are likely to be pathogenic. Our results show that disease-causing INDELs are 

more likely to ablate RBP-binding sites and tend to affect more RBP-binding sites than neutral INDELs. 

Additionally, disease-causing INDELs give rise to greater deviations in binding affinity than neutral 

INDELs. We also demonstrated that disease-causing INDELs may be distinguished from neutral 

INDELs by several sequence features, such as their proximity to splice sites and their potential effects 

on RNA secondary structure. This predictor showed satisfactory performance in identifying numerous 

pathogenic INDELs, with a Matthews Correlation Coefficient value (MCC) of 0.51 and an accuracy of 

0.75. 
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Introduction 

Micro-insertions and micro-deletions of ≤ 21 bp (INDELs) comprise the second largest category of 

pathogenic genetic variations in the human genome (after single nucleotide substitutions), accounting 

for 18% of all documented genomic variants (1). Similar to single nucleotide polymorphisms (SNPs) 

and large structural variations, INDELs are of significant clinical interest, due to their potential to affect 

gene function and hence cause disease. Based on the Human Gene Mutation Database (HGMD) (2), 

single nucleotide variations (SNVs) represent the largest class of genetic variant, responsible for >50% 

of known Mendelian diseases, followed by small INDELs, which are evident in 24% of known 

Mendelian diseases. 

INDELs may affect gene function through multiple mechanisms. First, frameshifting INDELs 

insert/delete a number of nucleotides that is not divisible by three, and therefore result in the shift of the 

entire reading frame and an altered protein sequence after the site of the INDEL; these INDELs often 

lead to premature termination of translation (3-10) and/or nonsense-mediated decay. Non-frameshifting 

INDELs, on the other hand, insert/delete a multiple of three nucleotides and lead to the addition or 

removal of amino-acid residues at the INDEL locus, thereby also affecting protein function. In addition 

to altering protein amino acid sequences, INDELs within promoter regions have the potential to disrupt 

existing transcription factor-binding sites (or alternatively, generate new transcription factor binding 

sites), thereby affecting gene expression (11, 12). For example, an INDEL within the ACE gene 

promoter has been reported to be a causative factor for coronary heart disease (13). Overall, functions of 

INDELs have been studied among many types of disease, including inflammatory bowel disease (14), 

Alzheimer’s disease (15, 16), heart disease (17, 18), and numerous cancers.  

In addition to impacting protein function by altering amino acid sequence, INDELs in exonic and 

intronic regions can also interfere with binding sites of RNA-binding proteins (RBPs) and hence may 
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influence RNA processing, including RNA editing (19), alternative splicing (20, 21), microRNA binding, 

and polyadenylation (22). Despite pathogenic small INDELs being a frequent cause of inherited disease, 

bioinformatics tools for prioritizing INDELs are not well established, with only a few tools available 

that utilize high-throughput sequencing-derived micro-insertion/-deletion data; such tools include PriVar 

(23), SIFT-INDEL (24), and DDIG-IN (25). However, all of these tools focus on the potential roles of 

INDELs in changing amino acid sequences (and hence protein structures), and do not attempt to assess 

their roles in RNA processing. Therefore, the prioritization of disease-causing INDELs that interrupt 

post-transcriptional regulation remains a little-studied, formidable challenge.  

To investigate the potential impact of INDELs on post-transcriptional regulation, we systematically 

evaluated several RNA processing-related genomic features of disease-causing INDELs already 

documented in the HGMD. We found that pathogenic INDELs are preferentially located in alternatively 

spliced exons, and more than likely disrupt binding sites of RNA-binding proteins. In the current work, 

we further performed a comparative study of disease-causing INDELs and neutral INDELs (documented 

in the 1000 Genomes Project database) to show how they may be discriminated in terms of sequence 

features, stabilization of RNA secondary structure, and evolutionary conservation. Such characteristics, 

together with the effects of INDEL on RBP binding affinity, were utilized to build a classifier (“PinPor”, 

predicting pathogenic small insertions and deletions affecting post-transcriptional regulation) that can be 

used to predict the disease relevance/irrelevance of newly discovered INDELs, in relation to post-

transcriptional regulation.  
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Results 

In this study, we investigated how INDELs affect post-transcriptional regulation by altering RNA-

processing, including the dysregulation of alternative splicing patterns. In the RNA sequences flanking 

INDEL loci, we examined several nucleotide sequence specific features that could affect splicing 

regulation. We systematically compared the differences between disease-causing (from the HGMD) and 

neutral (reported by the 1,000 Genomes Project) INDELs.  The selection of neutral INDELs was based 

on the fact that none of the individuals sequenced in the 1,000 Genomes Project had any overt signs of 

disease. Since most (96.4%) of the INDELs in the HGMD were located within gene coding regions, we 

removed all examples of INDELs residing in intergenic, intronic and untranslated (UTR) regions from 

further analysis. In summary, our disease-causing and neutral datasets respectively included 27,422 and 

1,379 (non-UTR, exonic) INDELs. 

Disease-causing INDELs tend to alter the binding affinities of RNA-binding proteins 

To establish whether the presence of an INDEL would affect the binding affinity of an RNA-binding 

protein (RBP), we evaluated RBP-binding score changes in the presence and absence of INDELs at the 

variant-containing loci; the scores were calculated based on the position weight matrix (PWM) of the 

RBP and the RNA sequence of the putative RBP-binding site. Briefly, a posterior probability of the 

likelihood that an INDEL would change a given RBP-binding site, and the magnitude of that change, 

were calculated for each INDEL-RBP pair, using a strategy reported previously (see Methods) (26). 

Positive and negative magnitude values indicate gain and loss of RBP binding, respectively. We focused 

our analysis on 53 RBPs whose PWMs were derived from experimental evidence, and were documented 

in the RBPDB database (27). The PWMs of these RBPs were acquired using various technologies, 

including NMR (28, 29), EMSA (30), SELEX (31) and CLIP-Seq (32).  
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We first examined whether disease-causing INDELs (documented in the HGMD) were more likely to 

affect the binding sites of the RBPs that play regulatory roles in RNA processing. We found that the 

disease-causing INDELs gave rise to significantly larger binding score deviations, as compared to the 

neutral INDELs (in the 1,000 Genomes Project). Using the RBP ELAVL2 (embryonic lethal, abnormal 

vision, Drosophilia-like 2) binding motif as an example, 811 (2.96%) and 12 (0.87%) of disease-causing 

and neutral INDELs, respectively, caused changes in the potentials of protein binding, (odds ratio = 3.34, 

p-value < 0.01). Overall, among 53 RNA binding motifs evaluated, 28 showed significantly higher rates

(p-value < 0.05) of binding changes elicited by disease-causing vs. neutral INDELs (Figure 1).  On the 

contrary, only two RBPs showed significantly lower rates of binding changes (p-value < 0.05) caused by 

disease-causing INDELs than neutral ones. No significant differences were observed for the other 23 

RBPs.

We further examined whether the potential for disease-causing INDELs to alter RBP binding was 

consistent among different disease states. We first identified all the diseases associated with more than 

50 disease-causing INDELs documented in the HGMD database. For each RBP-disease pair, we 

calculated the proportion of disease-causing INDELs that could potentially change the binding of the 

specific RBP, and further evaluated whether this proportion was statistically different from the neutral 

INDELs in the 1000 Genomes Project.  For instance, of 68 INDELs in the HGMD documented as being 

associated with Paraganglioma, 10 (14.7%) were predicted to change the binding of the RBP ELAVL2. 

This proportion was significantly higher than the proportion for neutral INDELs, which was only 0.87% 

(12 out of 1379); the odds ratio for this difference was 19.6. Figure 2 is a heatmap showing the odds 

ratios for all RBP-disease pairs, in which red and blue colors indicate higher and lower percentages of 

disease-causing INDELs (as compared to neutral ones) predicted to change the binding of the specific 
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RBPs. The heatmap clearly shows that, with a few exceptions, disease-causing INDELs tend to change 

RBP binding with a higher probability, as compared to neutral INDELs.  

Disease-causing INDELs are enriched in alternatively spliced exons 

In both the disease-causing (HGMD) and neutral (from 1000 Genomes Project) datasets, we calculated 

the proportion of INDELs predicted to change RBP binding affinity that were located within 

alternatively spliced exons (including upstream and downstream flanking exons). We found disease-

causing (HGMD) INDELs to be significantly enriched in those exons documented in the alternative-

splicing database (33). Among 27,422 disease-causing INDELs listed in the HGMD, 6,131 (22.4%) 

were found to reside within cassette exons (including flanking exons) derived from RefSeq, Ensembl, 

UCSC or other databases (34-36). By contrast, only 176 (12.8%) of the 1,379 neutral INDELs in the 

1,000 Genomes Project dataset were located in these regions (p-value < 2.2×10-16). Similarly, disease-

causing INDELs also displayed significant enrichment in gene regions, subject to alternative 5’ and 3’ 

splicing events (Figure 3). 

INDELs in close proximity to splice sites tend to be disease-causing 

The spatial relationship between RBP binding-site positions and splice sites can provide important 

mechanistic insights to molecular function. It is reported that many RBPs, including SFRS1 and NOVA-

2, tend to bind close to splice sites (37, 38). In addition, we (38) and others (39) have previously 

reported that disease-causing single nucleotide substitutions tend to disrupt the RBP sites that are in 

close proximity to splicing junctions. Therefore, we examined whether the distances between splice sites 

and INDEL loci follow a different distribution between disease-causing and neutral INDELs. Based on a 

comparison between 27,422 and 1,379 non-UTR, exonic INDELs in the HGMD and 1000 Genomes 

Project databases, we clearly observed that disease-causing INDELs tend to locate in closer proximity to 
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splicing sites than neutral INDELs, and this trend is consistent for both 5’- and 3’-splice sites (Figure 4). 

The median distance (in nucleotides) between the variant loci and the 3’ end of the exons was 89 and 

123 nt for HGMD and 1000 Genomes Project INDELs, respectively. Similarly, the median distance to 

the 5’ end of exons was 91 and 143 nt for HGMD and 1000 Genomes Project INDELs. This result is 

consistent with previous observations that disease-causing single nucleotide variants (SNVs) locate 

closer to splicing sites, as compared to non disease-causing SNVs (39, 40). 

GC content of flanking sequences 

GC content influences pre-mRNA local structure and displays a positive correlation with structural 

stability, as measured by sequence minimum free energy (41). Consequently, the GC content difference 

of exons and adjacent introns may influence mRNA splicing, and INDELs located within the pre-mRNA 

coding regions with differing GC contents may elicit different splicing outcomes (42). For each INDEL, 

we calculated the GC content of bp sequence flanking the site of mutation. We observed clear 

differences in the GC content between the regions harboring HGMD INDELs, as compared to those 

harboring 1000 Genomes Project INDELs (Figure 5), with disease-causing INDELs more prone to 

reside within regions with low GC content (0.35 to 0.5). 

Disease-causing INDELs tend to affect pre-mRNA secondary structure 

Pre-mRNA structure conformational changes can influence the utilization of both splicing signals (5’ SS, 

3’ SS, branch point) and cis-regulatory elements (exonic/intronic splice enhancers, exonic/intronic splice 

silencers) (43-45). To evaluate the changes in pre-mRNA structure caused by INDELs, we compared the 

structural distance scores between the reference sequence and the mutated sequence using the 

RNADistance program in Vienna RNA package using default parameters (46). Structural distance is 

measured as the edit distance (the number of operations required to convert one structure into another) 
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between two aligned RNA secondary structures. The RNA secondary structure was predicted using the 

RNAfold program (V2.0) in Vienna RNA package with default parameters (46). Similar to the 

evaluation of the GC content difference, 100-bp pre-mRNA sequences flanking the INDEL loci were 

extracted, with 50-bp on both the 5’- and 3’-sides. As shown in Figure 6, disease-causing INDELs tend 

to give rise to greater changes in RNA secondary structure.  

Sequence conservation 

Nucleotide conservation is higher in constitutive exons than in alternatively spliced exons (47-50). It is 

almost axiomatic that evolutionarily conserved DNA/RNA sequences are more likely to be of functional 

significance, since mutations in highly conserved regions are eliminated through natural selection. To 

examine this feature, phyloP (51) scores, which evaluate evolutionary conservation across 46 vertebrates, 

were downloaded from the UCSC Genome Browser conservation (phyloP46wayPrimates) track. For 

each INDEL, the average phyloP score for the nucleotides comprising the deletion site, or the average of 

the two nucleotides flanking the insertion site, was calculated. Positive or negative phyloP scores 

indicate that the site is evolutionarily conserved or fast-evolving, respectively. Our results indicate that 

HGMD INDELs tend to be disproportionately located at evolutionarily conserved sites, as compared to 

neutral INDELs from the 1,000 Genomes Project (p value < 2.2e-16, fisher exact test, Figure 7). This 

result strongly suggests that pathogenic INDELs tend to disrupt functional regulatory elements. 

Prioritizing INDELs with a role in inherited disease 

In order to predict whether a newly discovered INDEL could be disease-causing, we constructed a 

machine learning predictor, PinPor, based on the various genomic features that potentially affect RNA 

processing. The disease-causing and neutral INDEL datasets were respectively compiled from the 

HGMD and 1,000 Genomes Project databases. When compiling these data sets, we aimed to remove all 
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INDELs deemed likely to impact protein function through other known mechanisms. For instance, 

frameshifting INDELs may either change the protein sequence downstream of the INDEL or induce 

nonsense-mediated decay. Similarly, INDELs located in regions lacking stable tertiary structure 

(disordered region) are less likely to affect protein function, while INDELs within regions of very 

specific tertiary structure (structured regions) more likely affect protein function, by disrupting protein 

structures. Such INDELs were removed from the training dataset. Overall, of 27,422 exonic INDELs 

listed in the HGMD database, 3,342 were non-frameshifting, and 624 of these were located in regions 

that were deemed unlikely to form structural proteins (with disorder score >0.4). For the 1,000 Genomes 

Project data, 685 of the 1,379 exonic INDELs were non-frameshifting, while 531 located within 

disordered protein regions.  These INDELs were further used as a “gold standard” for training the 

predictors.  

Features 

The following genomic features that best discriminate between disease-causing and neutral INDELs 

were used for training the predictor: 1) distance to the splicing donor sites (i.e., the 3’-end of an exon);  

2) distance to the splicing acceptor sites (the 5’-end of an exon); 3) GC content of the flanking sequence

in the reference form ( ); 4) GC content of the flanking sequence in the mutated form ( ); 5) 

disruption of the RNA secondary structure, i.e., the edit distance of the flanking sequences in the 

reference and mutated forms (a higher edit distance indicates larger differences on RNA secondary 

structure in two forms); 6) conservation score, i.e., the phyloP scores (51) of the deleted nucleotides or 

the two nucleotides flanking the inserted sequences; 7) alt-event indicator, i.e., whether or not a given 

INDEL is located within an annotated alternative splicing event; 8) maximal magnitude of RBPs binding 

changes by an INDEL. This measurement represents the largest magnitude of potential change in 
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binding (as defined in Eq. 5) by an INDEL among 53 RBPs. 9) the number of RBPs whose binding 

could be potentially altered by the INDEL, as evaluated in Eq. 6. 

To develop a computational model capable of predicting INDEL disease relevance, we evaluated five 

machine learning and statistical classification algorithms available in the Weka software package (52), 

including Bayesian Network (BN) (53), Multilayer Perceptron (MLP) (54), Naïve Bayes (NB) (55), 

Random Forest (RF) (56), and Logistic Regression (LG) (57). Each model was trained and tested based 

on the extracted genomic features using default parameters. To evaluate the performance of each 

classifier, ten-fold cross-validation was employed. Briefly, in each iteration, 9/10 of the gold standard 

(624 disease-causing and 531 neutral INDELs) dataset were used to train the model, and the remaining 

1/10 of the dataset was used to evaluate the model performance. The performance of each model was 

evaluated by several metrics, including MCC: Matthews correlation coefficient (58); accuracy: the 

percentage of correctly classified samples; and AUC (area under the curve) of the ROC (Receiver 

Operating Characteristic) curve. Those measurements were averaged across all 10 iterations to 

determine the overall performance. Based on the testing results, as shown in Figure 8A, Bayesian 

network achieved the best performance of all five predictors, with MCC = 0.51, accuracy = 0.75 and 

area under curve (AUC) = 0.83. 

To identify the most discriminative subset of features, we evaluated the performance of each subset of 

the nine features based on a Bayesian Network classifier. In total, there were 511 (29-1) subset of 

features combinations. For each of them, the same ten-fold cross validation strategy was employed to 

evaluate its predicting power as an MCC value. The subset of features that achieved the best prediction 

performance (MCC as 0.51 and accuracy as 0.75) was composed of the following seven features: 1) 

distance to splicing donor site; 2) distance to splicing acceptor site; 3) GC content of mutated sequences; 

4) disruption of the RNA secondary structure; 5) conservation score; 6) maximal magnitude of RBPs



12 

binding changes by an INDEL; and 7) the number of RBPs whose binding could potentially be altered 

by the INDEL. We also divided the selected features into two subcategories: splicing-related features 

(i.e., disruption of RNA secondary structure, maximal magnitude of RBPs binding changes by an 

INDEL and number of RBPs whose binding can be potentially altered by the INDEL) and sequence 

composition features (i.e., 5’ end proximity, 3’ end proximity, , and conservation score). The 

performance of each subcategory of features was tested separately using Bayesian Network through ten-

fold cross validation. The subcategory of splicing-related features outperformed sequence composition 

features. The MCC values of using splicing-related features and sequence composition features alone 

were 0.448 and 0.246, respectively (Figure 8B). 

We further evaluated the contribution of each feature by the following steps: for each iteration, one 

feature was removed and the remaining features were used to train the Bayesian Network predictor 

using the same ten-fold cross-validation strategy. Thus, larger decreases in MCC value caused by 

excluding that feature indicated a greater contribution. Among all the features tested, ‘disruption of 

RNA secondary structure’ was the most important feature, followed by ‘maximal magnitude of RBPs 

binding changes by an INDEL’, and ‘3’ end proximity’ (Table 2). 

Discussion 

In addition to their potential roles in disrupting protein structure and function, disease-causing genomic 

variants in exonic regions can also influence transcriptional and post-transcriptional regulation by 

changing the interaction between cis-acting RNA elements and trans-acting regulatory proteins. It is 

known, for example, that many diseases are caused by the dysregulation of splicing (59), with 15-50% 

of human disease mutations affecting splice site selection (60, 61). It has been hypothesized that genetic 
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variants can give rise to phenotypic differences by interfering with the splicing code (61), and we 

recently found that synonymous single nucleotide variations (SNVs) residing in alternatively spliced 

exons have minor allele frequencies (MAFs) similar to non-synonymous SNVs, but lower than neutral 

SNVs (62). This finding suggests that dysfunctional RNA regulation is a major consequence of disease-

causing SNVs, and it is reasonable to assume that INDELs can cause similar, if not greater, disruption of 

RNA regulation.  

In this study, we systematically evaluated nucleotide sequence features that served to discriminate 

disease-causing from neutral INDELs, based on their potentials to disrupt interactions with RNA-

binding proteins (RBPs). These features differ between disease-causing INDELs (catalogued in the 

HGMD database) and neutral INDELs (generated by the 1000 Genomes Project), indicating that these 

features have the potential to be used to predict disease-causing INDELs that disrupt post-transcriptional 

regulation.  

Our analysis clearly showed significant differences between the neutral and disease-causing INDELs in 

terms of their potential to change the binding affinities of RNA-binding proteins, based on the position-

weight matrices of 53 RBPs documented in the RBPDB database (27). We found that disease-causing 

INDELs associated with significantly larger binding score deviations than neutral INDELs. Further 

analysis confirmed that this trend held true for most of diseases studied, clearly suggesting that INDELs 

can give rise to new phenotypes by interacting with RBP-binding sites, consistent with previous findings 

on SNVs (26, 62). 

In addition to the potential for the direct disruption of RBP binding, we also found marked differences in 

other genomic features between disease-causing and neutral INDELs. For example, we noted that 

disease-causing INDELs tend to occur closer to splice sites (both 5’ donor and 3’ acceptor sites), as 
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compared to neutral INDELs (Figs 4A and 4B). The genomic loci harboring disease-causing INDELs 

tend to be more evolutionarily conserved (Fig 7), and tend to be located within exons for which there is 

evidence for alternative splicing (Fig 3). We also evaluated the GC content and potential disruption of 

RNA secondary structures of the nucleotide sequences adjacent to the INDEL sites (50 nt upstream and 

downstream); both features showed significant differences between disease-causing and neutral INDELs. 

Moreover, the DNA sequence surrounding disease-causing INDELs was generally found to be more 

prevalent in low-GC content region than those DNA sequences flanking neutral INDELs (Fig 5). We 

further observed that disease-causing INDELs tend to disrupt RNA secondary structure to a greater 

extent than neutral INDELs, as predicted by the RNADistance (46) program (Fig 6). The ability of these 

features to clearly distinguish disease-causing from neutral INDELs confirms the importance of using 

RNA-based features for INDEL discrimination. All these measures indicate that INDELs significantly 

impact the regulation of RNA processing. 

Of the five different machine learning predictors tested, Bayesian Network achieved the overall best 

performance. Using a greedy feature selection strategy, we identified the most informative subsets of 

features: RNA secondary structure, maximal magnitude of RBP binding changes by an INDEL, 3’-end 

proximity to splice junctions, number of RBPs whose binding could potentially be altered by the INDEL, 

conservation score, 5’-end proximity to splicing junction, and GC content for the variant form. 

We further ranked the seven most informative features based on their relative contribution to the overall 

performance measured by MCC value. Disruption of pre-mRNA secondary structure was shown to be 

the single most informative genomic feature. This is consistent with previous reports that RNA-binding 

proteins recognize their target RNA not only by the sequence features of RBP-binding sites, but also 

through target site accessibility, which is in part regulated by RNA secondary or tertiary structure 

conformation (43). In fact, several bioinformatics tools have used this as a major feature to study 
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protein-RNA interactions (63-65). Our findings further confirm those observations, and show that 

INDELs can disrupt RNA processing both by changing the structural conformation (rank #1) and by 

interrupting splicing factor assembly around the boundary of exons (donor/acceptor splice site) (ranks 

#3 and #6). Our model also demonstrated that the evolutionary conservation score of the locus harboring 

the INDEL is a major determinant for predicting INDEL pathological relevance (ranked #5 among all 

the features tested). Evolutionary conservation is widely regarded as one of major indicators of the 

biological functionality of a DNA sequence element. Indeed, many studies have reported that RNA-

binding proteins tend to bind to sites that are evolutionarily conserved (66-68). Thus, similar to RNA 

secondary structure, evolutionary conservation levels have been widely used as predictors of protein-

RNA interactions (69, 70).  

The accuracy of the current model is limited by our current knowledge of RBP-binding motifs. Our 

current study was based on only 53 RBP-binding sites, and since this number only represents a small 

proportion of all RNA-binding proteins, the current model is inevitably limited in terms of its general 

predictive potential. With rapid developments in high-throughput genomic technologies and supporting 

biological assays, our ability to identify RBP-binding sites should increase dramatically. Such 

information, once available, will help to increase the accuracy of model prediction, and thus provide a 

better understanding of these very important elements (INDELs). 

Materials and Methods 

INDEL lists from the 1,000 Genomes Project and the Human Gene Mutation Database (HGMD) 

The human genomic mutation database (HGMD, http://www.hgmd.org/) contains 28,223 INDELs 

(micro-insertions/-deletions, HGMD professional release 2012.2) causing or associated with human 
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inherited disease; 27,422 (97.15%) of these are located in non-UTR exons. The 1000 Genomes Project 

catalogs 1,443,514 small INDELs (version 3 of release 20101123, http://www.1000genomes.org/). We 

excluded those INDELs located in introns and UTR regions (3’UTR, 5’UTR), yielding a total of 1,379 

(0.096%) INDELs located in non-UTR exonic regions for further analysis. 

Estimating the probability of an INDEL changing the binding affinity of an RNA-binding protein 

(RBP) 

Our analysis focused on 53 RBP-binding motifs cataloged in the RBPDB (71) database; these 53 RBP-

binding domains represent the binding sites of 30 unique RNA-binding proteins. For each of the 53 RBP 

binding motifs, a position weight matrix (PWM) was derived from multiple sequence alignments of the 

experimentally determined RBP-binding sites. A PWM is a matrix of values that gives the count of each 

nucleotide at each locus of the binding site. The binding affinity between the n-nt DNA sequence and 

the PWM is described by a matching score  as: 

(1) 

where is the count of the j-th nucleotide on the i-th position in the PWM, k is the width of the 

binding site, and  is the pseudocount for the j-th nucleotide on the i-th position in the PWM. N is the 

total number of experimentally validated binding sites for each RBP. dj is the prior base frequency for 

the j-th nucleotide (dj = 0.25 for j = A,T,G,C). Similar strategies have been used previously (72).  

In Eq. 1, a high or low matching score indicates that the putative sequence has, respectively, a high or 

low likelihood to be a potential binding site. Each position of a binding site is assumed to be 

independent of the other. The matching score distributions for binding and non-binding events are both 
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estimated based on the position-specific scoring matrix (PSSM) of an individual RBP. The PSSM is 

derived from the PWM, with each value at the i-th column and the j-th row defined as: 

(2) 

where , , N, dj are the same as in the definition in Eq. 1.  

The mean and variance of the binding scores for specific RBP binding events are defined as: 

(3) 

, 
(4) 

where   is equivalent to the value of the i-th column and the j-th row in the PSSM  is the 

approximation of the true frequency of each nucleotide at each binding locus. For binding events, 

, and for non-binding events, fi,j= 0.25.   

Evaluating the magnitude of the change in RBP binding 

As defined in in our previous work (26), the magnitude  of an INDEL affecting the binding of an 

RBP is defined as a likelihood ratio of the INDEL loci being a binding event as opposed to it being a 

non-binding event in reference and alternative forms, respectively: 

(5)
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where  and  are respectively the mean and variance of the matching score for non-binding 

events. R and A indicate the reference and mutated sites, respectively, whereas B and NB denote binding 

and non-binding events, respectively. SR and SA each represent the matching scores of the reference and 

mutated sites. A positive score indicates a gain of an RBP-binding site, whereas a negative score 

indicates the loss of an RBP-binding site. 

Bayesian posterior probability of RBP binding site gain/loss 

We further calculate a Bayesian-based posterior probability for RBP-binding site gain/loss, defined as 

the probability that a genetic locus could switch between binding and non-binding, with and without the 

INDEL variant: 

(6)

where P(B) is the prior probability that a specific locus is a RBP-binding event. Here, we assign P(B) to 

be a beta distribution with a mode value as 1/2Ms, where MS is effectively equal to information content of 

specific motif. The terms  and  represent the 

probability density function ( ) denoting loss or gain, respectively, of a RBP-binding site caused by 

an INDEL.  

RNA secondary structure prediction 

The effects on local RNA secondary structure with the presence of INDEL was evaluated using the 

programs RNAfold and RNADistance from the Vienna RNA package (46). The fragment flanking the 

locus of one INDEL with 50bp on each side was extracted for both the reference form and the mutated 

form of the DNA sequence. First, the minimum free energy structure was calculated by the RNAfold 



19 

program for each fragment. Then, the two structures were aligned and compared by means of the 

RNADistance program to calculate the edit distance between them.   

Protein Disorder score calculation 

We used the program SPINE-D (73) to determine the disordered (or unstructured) region of each protein 

which overlapped an INDEL. Disordered regions are more flexible in three-dimensional structure than 

structured regions. Each amino acid was assigned a probability (disorder score) indicating whether it 

was located in a disordered region or not. The higher the disorder score, the more likely the amino acid 

was to be located in an unstructured region. One INDEL was taken as not affecting protein structure if it 

was located in a disordered region; these regions were defined as the average disorder scores of the 

corresponding amino acids greater than 0.4. 

Evaluation of classifier performance 

The performance of each classifier was evaluated by accuracy, MCC and the cumulative area under the ROC 

curve (AUC, which is often used for model comparison). The accuracy was defined as INDELs correctly 

classified out of all INDELs in the dataset. In other words, accuracy = , where 

denotes true positives (correctly classified non-frameshifting HGMD INDELs),  denotes true negatives 

(correctly classified non-frameshifting neutral INDELs),  denotes false positives (non-frameshifting 

neutral INDELs predicted to be disease-causing) and  denotes false negatives (non-frameshifting 

disease-causing INDELs predicted to be neutral). Consequently, 

MCC= , and MCC values range from -1 

and +1, where -1 indicates all samples are incorrectly classified, +1 indicates all are correctly classified, 

and 0 represents random prediction.
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Figure Titles and legends 

Figure 1: Disease-causing INDELs tend to alter the binding sites of RBPs to a greater extent than neutral INDELs. 

The X-axis plots the proportion of disease-causing INDELs (derived from the HGMD) that change the RBP 

binding affinity with a posterior probability > 0.5. The Y-axis plots the proportion of neutral INDELs (from 1000 

Genomes Project data) that change the RBP binding affinity with a posterior probability > 0.5. Each dot 

represents one RBP and is plotted against the proportion of disease-causing INDELs and neutral INDELs that 

have the potential to change RBP binding. Among the 53 RBPs, 28 were affected at a significantly (p value < 0.05) 

higher rate by INDELs from HGMD than neutral ones (filled ellipse). Additionally, only two RBPs showed a 

significantly lower affection rate by INDELs from HGMD than neutral ones (p value < 0.05). The open ellipses 

indicate RBPs with an insignificant ratio. 

Figure 2: Heatmap of the relative proportion of INDELs that change RBP binding between disease-causing 

INDELs and neutral INDELs. Each dot, corresponding to one disease-RBP pair, represents the log2-transformed 

ratio of the proportion of disease-causing INDELs that change RBP binding affinity, and the proportion of neutral 

INDELs. Only significant (P < 0.05) disease- RBP pairs are plotted. Red dots indicate significantly higher 

proportions of disease-causing INDELs potentially changing RBP binding than neutral INDELs, and blue dots 

indicate lower proportions. 

Figure 3: Proportion of INDELs located in a portion of the gene that is involved in alternative processing events, 

comparing disease-causing INDELs and neutral INDELs. Each grey bar represents one of 15 diseases studied, 

whereas the dashed line represents neutral INDELs. The height of each bar and the dashed line represent the 

proportion of associated INDELs of a particular gene that is involved in one specific type of alternative 

processing event: (A) Cassette exon, including upstream and downstream flanking exons, (B) Alternative 3’ 

splicing site (A3SS) and (C) Alternative 5’ splicing site (A5SS). 
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Figure 4: Comparison of proximity to splice site between disease-causing INDELs and neutral INDELs. The 

solid line represents the proximity distribution of disease-causing INDELs, whereas the dashed line represents the 

proximity distribution of neutral INDELs. (A) Distributions of proximity to 5’ end boundary of exon (acceptor 

site). (B) Distributions of proximity to 3’ end boundary of exon (donor site). 

Figure 5: Comparison of GC content of 100bp fragments surrounding gene loci harboring disease-causing 

INDELs and neutral INDELs. The solid line represents the GC content for disease-causing INDELs, whereas the 

dashed line represents the GC content for neutral INDELs. (A) Distributions of GC content calculated from 

mutant form fragment. (B) Distributions of GC content calculated from reference form fragment. 

Figure 6: Comparison of INDEL effect to local RNA secondary structure between disease-causing INDELs and 

neutral INDELs. The solid line plots the distance distribution for disease-causing INDELs. The dashed line 

represents the distance distribution for neutral INDELs. When the edit distance between the RNA secondary 

structure of the mutation and reference forms is greater than 20, the proportion of disease-causing INDELs is 

higher than that of neutral INDELs. 

Figure 7: Comparison of conservation score of deleted nucleotides (or two adjacent nucleotides) to inserted 

nucleotides. The solid line plots the phyloP score distribution for disease-causing INDELs. The dashed line plots 

the phyloP score distribution for neutral INDELs. Disease-causing INDELs exhibit a higher rate of occurrence at 

evolutionarily conserved regions than neutral INDELs. 

Figure 8: ROC curves of each individual classifiers and subcategories of features. (A) Performance comparison 

of different classification models evaluated using ten-fold cross-validation. BN: Bayesian Network. LG: Logistic 

Regression. MLP: Multilayer Perceptron. NB: Naïve Bayes. RF: Random Forest. Each ROC curve represents one 

model. The number in the parentheses indicates the area under curve (AUC) of each ROC.  The BN outperformed 

all other predictors. (B) ROC curves for using subcategory of features to classify disease-causing INDELs and 

neutral INDELs. Blue curve is the ROC curve generated by using all the seven selected features. The red curve is 

generated by using only splicing-related features (i.e., change in RNA secondary structure, maximal magnitude of 
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RBP binding changes by an INDEL, and the number of RBPs whose binding is altered by the INDEL). The black 

curve is generated by using only sequence features (5’ end proximity, 3’ end proximity,  and conservation 

score). The numbers in parentheses are the area under curve (AUC). The dotted line is the 45 degree line.
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Tables 

Table 1: Proportion of INDELs in alternative splicing events and non-alternative splicing events. 

Alt-event 
HGMD 

(Disease-causing) 

1000 Genomes Project 

(neutral) 

3'SS 2.21% 2.47%

5'SS 2.52% 1.52%

upper exon 8.77% 3.77% 

central exon 4.80% 2.76% 

down exon 8.78% 6.24% 

other(non-alt) 72.92% 83.24% 

Abbreviations are as follows: 3’SS, alternative 3’ splicing site; 5’ SS: 

alternative 5’ splicing site; upper exon: the exon which is located 

immediately upstream of a cassette exons; central exon: the cassette 

exon; down exon: the exon located immediately downstream of a 

cassette exon 
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Table 2: Feature selection based on accuracy decrease, using Bayesian Network:

Feature MCC FPR TPR ACC
RNA secondary structure 0.375 0.281 0.659 0.687
maximal magnitude of RBPs binding 
changes by an INDEL 0.463 0.435 0.87 3 0.732 
3’ end proximity 0.479 0.328 0.803 0.743 
number of RBPs whose binding was 
altered by the INDEL 0.486 0.412 0.875 0.743 
conservation score 0.493 0.299 0.791 0.750
5’ end proximity 0.495 0.207 0.705 0.745
GC_mut 0.503 0.254 0.760 0.753
Use all features 0.506 0.250 0.760 0.755 
Abbreviations are as follows: MCC: Matthews correlation coefficient; FPR: false positive rate; 
TPR: true positive rate; ACC: accuracy. 
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List of abbreviations 

BN: Bayesian Network; HGMD: Human Gene Mutation Database; INDELs: insertions/deletions; LG: Logistic 

Regression; MAFs: minor allele frequencies; MCC: Matthews correlation coefficient; MLP: Multilayer 

Perceptron; NB: Naïve Bayes; phyloP: phylogenetic p-value; PinPor: predicting pathogenic small insertions and 

deletions affecting post-transcriptional regulation; PSSM: position specific scoring matrix; PWM: position weight 

matrix; RBP: RNA binding proteins; RF: Random Forest; SNPs: Single Nucleotide Polymorphisms; SNVs: single 

nucleotide variations; UTR: un-translated regions. 
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