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Abstract. Combining outputs from different classifiers to achieve high accuracy in classification task 
is one of the most active research areas in ensemble method. Although many state-of-art approaches 
have been introduced, no method is outstanding compared with the others on numerous data sources. 
With the aim of introducing an effective classification model, we propose a Gaussian Mixture Model 
(GMM) based method that combines outputs of base classifiers (called meta-data or Level1 data) re-
sulted from Stacking Algorithm. We further apply Genetic Algorithm (GA) to that data as feature se-
lection strategy to explore an optimal subset of Level1 in which our GMM-based approach can 
achieve high accuracy. Two methods are combined in a single framework called GAGMM. Experi-
ments implemented on 21 UCI Machine Learning Repository data files and CLEF2009 medical im-
age database demonstrate the advantage of our framework compared with other well-known combin-
ing algorithms such as Decision Template, Multiple Response Linear Regression (MLR), SCANN 
and fixed combining rules as well as GMM-based approaches on original data. 

Keywords: Stacking Algorithm, feature selection, Gaussian Mixture Model, Genetic Algorithm, mul-
tiple classifier system, classifier fusion, combining classifiers, ensemble method. 

1 INTRODUCTION 

In recent years, ensemble methods which have been studied extensively are one of the most active re-
search areas in supervised learning. There are several taxonomies of ensemble methods introduced that 
focuses on the different factors and views on the ensemble [1]. Here we introduce a simple classification 
by Ho [2] where she simply divided ensemble methods into two types: 

• Mixture of experts: Using a fixed set of classifiers and after that making decision from outputs of 
these classifiers. 

• Coverage: Generating genetic classifiers, which are classifiers from same family but have differ-
ent few factors; for instance, classifiers with different parameters. Next, classifiers are combined 
to have final decision. 

In this paper, we focus on the first type of ensemble methods where decision is formed by combining 
outputs of different classifiers. There are several combining classifiers strategies proposed and among of 
them, Stacking-based approaches are one of the most popular ensemble methods. The Stacking was first 
proposed by Wolpert [3] and was further developed by Ting [7]. In this model, the training set is divided 
into nearly equal disjoint parts. One part plays as test set and the others play as training set so all observa-
tions will be tested once. The outputs of Stacking are posterior probabilities that observations belong to a 
class according to each classifier. Posterior probabilities of all observations are gathered in a group called 
meta-data or Level1 data to distinguish it from Level0 data which is the original data. 

To apply Stacking to ensemble of classifiers, Ting [7] proposed Multiple Response Linear Regres-
sion algorithm (MLR) to combine posterior probabilities of each observation based on sum of weights 
calculated from linear regression functions. The idea of MLR is that each classifier sets a different weight 
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on each class and combining algorithm is then conducted based on posterior probability and its associated 
weight. Kuncheva [4] defined Decision Template for each class computed on posterior probability of 
observations in training set and their true class label and then detailed eleven measurements between pos-
terior probability of unlabeled observation and each Decision Template [4] to output the prediction 
Meanwhile, Metz [9] combined Stacking, Correspondence Analysis (CA) and K Nearest Neighbor 
(KNN) in a single algorithm called SCANN. His idea was to form representation on new space for out-
puts of base classifiers generated by applying Stacking plus true label of each observation. Finally, KNN 
is used as classifier on new space to obtain prediction for unlabeled observation. Recently, Szepannek 
[12] developed idea from pairwise combining by finding which classifier is best for a pair including class 
i and j ( i j≠ ) and used a pairwise coupling algorithm to combine outputs of all pairs to make posterior 

for each class. Zhang [13] used linear programming to find weight that each classifier puts on a particular 
class. Sen [14] introduced a method that was inspired by MLR used hinge loss function to the combiner 
instead of using conventional least square loss. By using new function with regularization, he proposed 
three different combination, namely weighted sum, dependent weighted sum and linear stacked generali-
zation based on different regularizations with group sparsity. 

Another popular and simple approach to combine outputs from base classifiers is using fixed rules. 
Kittler [8] presented six fixed rules namely Sum, Product, Vote, Min, Max and Average. The advantage 
of applying fixed rules for ensemble system is that it only needs Level1 data of unlabeled observation as 
input instead of Level1 data of training set. Consequently, computational cost is reduced. 

Generally speaking, most of strategies have focused on discovering “secrets” of Level1 data so as to 
exploit strategies to form hypothesis about relationship between feature vector and its corresponding la-
bel. We adopt that strategy by proposing new framework operated on Level1 data that could be competi-
tive with these other state-of-art combining algorithms. In this paper, a novel combining classifiers that 
operates on outputs of base classifiers is introduced with different perspective; we put attention on distri-
bution model of Level1 data. The proposed classifier fusion is formed by combining Gaussian Mixture 
Model (GMM) as classifier and Genetic Algorithm (GA) as feature selection method in a single effective 
framework. The purpose is that we want to construct a model which is competitive with respect to other 
state-of-art ensemble methods such as fixed combining rules as well as trainable methods like Decision 
Template, SCANN and MLR. In the next section, we introduce the proposed framework in detail and then 
perform empirical evaluations on two popular datasets namely UCI Machine Learning Repository [23] 
and CLEF2009 medical image database. Finally, we summarize and propose several future improve-
ments. 

2 METHODOLOGY 

2.1 Classifier fusion based on GMM 

Let us denote class label set by { }jW , N  as the number of observations, K  as the number of base 

classifiers and M as the number of classes. For an observation iX , (W | )k j iP X
 
is the probability that iX

 
belongs to class Wj  given by thk  classifier. Level1 data of all observations, a N MK× - posterior proba-

bility matrix { }(W | )k j iP X 1,j M= 1,k K=  1,i N=  is in the form: 
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In our proposed algorithm we employ Stacking Algorithm to generate Level1 data of original train-
ing set. Pseudo code of Stacking is given below:  

Algorithm 1: Generate Level1 data (Stacking algorithm) 
Input: Level0 data, K base classifiers. 
Output: Level1 data(eqn. 1) 
Divide Level0 to nearly equal disjoint B parts. 
For i = 1 to B 

• Denote Level0(i) as ith part, use Level0-Level0(i) as training 

set and Level0(i) as test set. 

• Classify observations in Level0(i) with model formed by K base 

classifiers on Level0-Level0(i). 

• Store Level1 data of observations belonged to Level0(i) 
End 

 
The most important distinction between our work and the previous work is we use GMM-based ap-

proach on Level1 to construct combining classifiers model. In our knowledge, all previous GMM-based 
approaches were conducted on Level0 in which they suffer from significant limitations in modeling real 
data sets. Attributes in Level0 are frequently different in nature, measurement unit, and type; as a result, 
GMM cannot perform well when it is selected to approximate distribution of Level0. Level1, on the other 
hand, can be viewed as scaled result from feature domain to posterior domain where data is reshaped to 
be all real values in [0, 1]. Observations belonged to the same class will have nearly equal posterior prob-
abilities by prediction from a base classifier; as a result they may be located nearby in the new domain. It 
is likely that Level1 will be more discriminative than the original data and therefore GMM on Level1 will 
have been more effective than on Level0. Besides, it is well known in literature that the higher the dimen-
sion of the data, the lower the effectiveness of GMM approximation. Therefore applying GMM to Level1 
not only results in a reduction in storage cost but also improves its effectiveness in scenarios that Level1 
has lower dimension than Level0. 

Our proposed model is illustrated in Fig 1. Here training set is classified by K base classifiers based 
on Stacking Algorithm to generate the Level1 data. Because the label of all observations in training set is 
known so we can group Level1 into M classes such that observations belonging to the same class are 
grouped together. Next, GMM is employed as a statistical representation model for each class and then 
the class label of an observation is predicted by posterior probability using Bayes model.  

In testing produce, unlabeled observation is classified by K base classifiers with the model generated 
on training set to output Level1 data of that observation (eqn. 2). That meta-data is then gone through M-
GMMs as input data and the final prediction is released through maximization among posterior probabili-
ties corresponding with all classes.  

 

 

Fig. 1. GMM-based approach on Level1 data 
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For thi  class, we propose the prediction framework based on Bayes model 

( | ) ~ ( | ) ( )i i i
posteriror likelihood prior

P GMM P GMM P GMM×x x  (3) 

Here the likelihood function is modeled by GMM: 

( )
1

( | ) ( , )
iP

i ip ip ip ip ip ip
p

P GMM P ω ω
=

= = x x | μ ,Σ x | μ ,ΣΝ   (4) 
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exp
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T -1x |μ ,Σ x -μ Σ x -μ
Σ

Ν  (5) 

iP  is the number of Gaussian components in iGMM   and ipμ , ipΣ  are the mean and covariance of  thp  

component in the model of thi  class, respectively. The prior probability in (eqn. 3) of thi  class is defined 
by: 

( ) i
i

n
P GMM

N
=  (6) 

where in  is the number of observations in thi  class and N is the total number of observations in the 

training set.  To find parameters of GMM, we apply Expectation Maximization (EM) algorithm by max-
imize the likelihood function with respect to the means, covariances of components, and mixing coeffi-
cients [21].  

Now with dataset { }  1, ii N= =iX x corresponding with thi  class, the question is how to find the 

number of component for GMM. Frequently, it is fixed by a specific number. Here, we propose applying 
Bayes Criterion Information (BIC) to find the optimal model [21] with an assumption that we have a set 

of model { }jF  with parameters jθ  where jθ  are denoted for all parameters of model. To find model by 

BIC, for thi  class ( 1,i M= ), we compute: 

1
ln ( | ) ln ( | , ) ln

2j j MAP j iP F P F n≈ −Χ Χ θ θ  (7) 

where MAPθ  is corresponding with the maximum of posterior distribution and jθ  denotes the number 

of parameters in jθ . In scenario of GMM, { }jF
 
are group in which each element is a GMM and { }jθ in-

clude three parameters namely means, covariances of Gaussian components, and mixing coefficients in 
mixture model and in  is the number of observations in thi  class. 

It is noted that as Level1 data is obtained from K base classifier, it conveys the posterior infor-
mation from each classifier about how much support a classifier has for an observation to belong to a 
class. In some cases, there are columns in Level1 data in which ,k m∃ , ( | )k m iP W X  is nearly constant for 

all i. Hence, the covariance matrix may be singular and EM is unable to solve for GMM. To overcome 
this problem, we propose to regularize Level1 before applying GMM to Level1, by checking for condi-
tion in eqn. 8 on all columns. If the condition is satisfied, we choose several random elements in this col-
umn and increase its value by a small quantity. This procedure only adds small value to some random 
elements in a column so it does not affect the nature of the posterior probability as well as the covariance 
matrix.  

x x ε− <  ∀  column vector x  on Level1 data and small value ε  (8) 

where x  is mean value of vector  x. 

Algorithm 2: Regularize Level1 

Input: Level1, extravalue, r 

Output: Regularized Level1 

For thi  column of Level1 

If Condition(eqn. 8) = true 

Generate r random number in (1,size(column)) 
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Element(r) = Element(r)+ extravalue  

End if 

End 

Return Level1 

 

 

Algorithm 3: GMM for combining classifiers  

 

Training progress: 

Input: Training set (Level0), K base classifiers, PiMax: maximum number of 

Gaussian component for thi  class.  

Output: GMM suitable with each class. 

Step1: Applied Algorithm 1 to generate Level1 of Level0. 
Step2: Gather same labeled observations in M classes; compute ( )iP GMM  (eqn. 

6), mean and covariance for each class. 

Step3:For thi  class 

     Call Algorithm 2 to regularize Level1 of class 

For p=1 to PiMax 

     Apply EM algorithm to find GMM model corresponding with p 

components. 

     Compute BIC. 

End 

Select Pi corresponding with max(BIC) and GMM with Pi components. 

End 

Save GMMs 
 

Testing progress: 

Input: Unlabeled observation XTest 

Output: predicted label of XTest 

Step1: P Compute Level1 of XTest with model formed by base classifiers and 

Level0. 

Step2: For each class 
       Compute ( | )iP XTest GMM  (eqn. 4) and posterior related to class (eqn. 

3) as ( | )iP GMM XTest ~ ( | ) ( )i iP XTest GMM P GMM×  

End 

Step3: Predict label of XTest due to tXTest W∈  if 
1,

arg max ( | )i
i M

t P GMM XTest
=

=  

End 

2.2 GAGMM Framework 

Recently, several GA-based approaches have been proposed to improve the accuracy of classifi-
er fusion by solving both the classifier and feature selection problems [6, 15 and 16]. For GMM, GA is 
only applied to improve EM algorithm [17]. Here, our novel idea is to employ GA as a feature selection 

technique on Level1 data. It means that if columns (W | )( 1, )k m iP X i n= for each m  and k , which is pos-

terior probability that iX  belong to class Wm  given by thk  classifier, is not discriminative enough, its 

elimination from Level1 data could increase the classification accuracy of the combining algorithm. 



To build the GAGMM framework on Level1, first, we propose the structure of chromosome in 
population. Each chromosome includes M K×  genes due to dimension of Level1 (Fig 2). We use two 
values {0,1}  to encode for each gene in a chromosome in which: 

1      if   feature is selected 
( )

0     otherwise

thi
Gene i


= 


 (9) 

 

Fig. 2. Proposed chromosome structure 

At crossover stage, we employ single splitter since a same single random point is selected on two 
parents. Each parent exchanges its head to the other while keeps its tail. After this stage, two new off-
spring chromosomes are created. Next, based on mutation probability, we select random genes from the 
offspring chromosomes in population and change their values by 0 1→  or 1 0→ . Mutation helps GA 
reaches not only local extreme value but also global one. Here we use accuracy of combination by GMM-
based approach on Level1 as fitness value of GA such that extreme value is maximized.  

This framework can be viewed as mechanism to learn an optimal subset feature from Level1 da-
ta of training set by using GMM based classifiers and therefore it can be classified to wrapper type among 
feature selection methods [24].  Since only single training set is available to evaluate, cross validation 
method is used to divide Level1 data of training set to several disjoint parts in which each is selected as 
Level1 validation set while the others grouped in a single Level1 training set to build classification model 
with GMM classifiers. Attributes are selected corresponding with encoding of each chromosome, and 
therefore, GMM classifiers will work on reduced dimensional data. Fitness value which is accuracy of 
classifier is computed by averaging of all accuracy obtained from Level1 validation test. It is the single 
objective to select optimal subset based on GMM classifiers. It is worth to note that due to low dimension 
of Level1 data in several cases, GA-based approach can converge after a small number of interactions; as 
a result, training process plus GA is less time-consuming than that applied on original data. 

GAGMM framework is detailed below: 
 

Algorithm 4: GAGMM 
 
Training process: 
Input: Training set (Level0), K base classifiers, mutation probability 

(PMul), population size (L). 
Output: optimal chromosome encoding as an optimal subset of Level1 feature 

and GMMs for classes associated with that chromosome. 
Step1: Use Algorithm 1 to generate Level1 of training set.  
Step2: Use v-Cross Validation (v-CV) strategy in Level1 of training set 
Step3: Initialize a population with L random chromosomes 
Step4: Compute fitness of each chromosome as averaged accuracy of classifi-

cation tasks by calling Algorithm 3 with v-CV 
Step5: Loop to select L best chromosomes. 
While(not converge) 

• Withdraw with replacement L/2 pairs from population, conduct crossover 
and mutation (based on PMul) to generate new L chromosomes. 

• Compute fitness of each offspring chromosome as similarity to Step4. 
• Add new L chromosomes to population. 
• Select new population with L best fitness value chromosomes. 

End 
Step6: Select and save the best chromosome from final population and GMMs 

for classes associated with that chromosome. 
 
Testing process: 
Input: unlabeled observation XTest 
Output: predicted label of XTest. 
Call test process in Algorithm 3.
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3 EXPERIMENTAL RESULTS 

We empirically evaluated our framework on two data sources namely UCI dataset and 
CLEF2009 medical image database. In our assessment, we compared error rates of our model with each 
among 6 benchmarks: selecting best results from fixed rules based on outcomes on test set, Decision 

Template (measure of similarity 1S  [4] is defined as 1

1( )
( ( ), )

1( )
i

i
i

Level X DT
S DP X DT

Level X DT

∩
=

∪
where iDT  is 

Decision Template of thi  class and  α   is the relative cardinality of the fuzzy set α ), MLR, SCANN, 

GMM on Level0 and GMM on Level1. The appearance of GMM Level0 and GMM Level1 was that we 
wanted to demonstrate the high performance ability of our model on Level 1 data compared with that on 
original data as well as the effectiveness of feature selection method. It is interesting to note that MLR, 
Decision Template and SCANN do not require any initialized parameters in their implementation. Three 
base classifiers namely Linear Discriminant Analysis, Naïve Bayes and K Nearest Neighbor (with K set 
to 5) were chosen. The motivation of choosing these base classifiers is that all they have different ap-
proaches to classification task; as a result, diversity of ensemble system is ensured. Parameters for GA 
were initialized by setting population size to 20 and mutation probability to 0.015. 

To ensure objectiveness, we performed 10-fold validation and implemented the test 10 times so 
we had 100 error rates result for a file according to each combining algorithm. For comparison purpose, 
we used paired statistical t-test to compare the classification results of our approach and each benchmark 
(level of significance set to 0.05) 

3.1 Experiment on UCI files 

We chose 21 common UCI data files with number of classes ranging from 2 (Bupa, Artificial, 
etc…) to 26 (Letter). The number of attributes also changes in a wide range from only 3 attributes (Ha-
berman) to 60 attributes (Sonar). The number of observations in each file also varies considerably, from 
small files like Iris, Fertility to big file such as Skin&NonSkin (up to 245057 observations) (Table 1). 
Experimental results of all 21 files are shown in Table 2 and 3. 

From the paired statistical t-test in Table 4, it can be concluded that our framework is superior to 
compared methods. First, there are 6 cases in which GAGMM outperforms the best result from fixed 
rules while on the other 13 files, both methods are competitive. Besides, GAGMM is better than Decision 
Template in 14 cases and is not worse in any cases. Remarkable results are obtained on Skin&NonSkin 
(4.13e-04 vs. 0.033), Ring (0.1108 vs. 0.1894), Letter (0.0802 vs. 0.1133) and Phoneme (0.115 vs. 
0.1462).  

Next, GAGMM has 18 wins and 1 loss whereas GMM on Level1 has 16 wins and 1 loss with re-
spect to GMM on Level0. This demonstrates GMM on Level1’s ability to exceed the performance of 
GMM-based approaches on Level0.As mentioned in section 2, Level1 data is more uniformity than Lev-
el0 data in which all components of feature vector are real data type and being scaled in [0, 1]. As a re-
sult, GMM has better representation for distribution approximation on Level1 data than on original data 
and therefore, advantage of our model is demonstrated. On the other hand, regarding the one loss, we 
should point out that Ring is simulated data generated from multivariate Gaussian distribution [23], so 
GMM is expected to perform well on this dataset at Level0.  

Comparing SCANN to GAGMM reveals that SCANN outperforms on just 1 file (Letter 0.063 
vs. 0.0802) but has 8 losses. In our experiment, SCANN cannot be run on 3 files, namely Fertility, Bal-
ance and Skin&NonSkin, because the indicator matrix has columns with all 0 values posterior probability 
from the K base classifiers. As a result, its column mass will be singular and standardized residuals is not 
available. Here, we did not put these files in the comparison. 



Moreover, we compare GAGMM and MLR. In general, GAGMM performs better than MLR, 
posting 6 wins and 2 losses. Significant improvements are on Ring (0.1108 vs. 0.17), Balance (0.0755 vs. 
0.1225) and Tae (0.4313 vs. 0.4652). However on Letter, MLR performs well with error rate of only 
0.0427 while our framework has twice the error rate. 

Finally, GAGMM outperforms GMM on Level1, posting 5 wins and no loss. It is the conse-
quence of feature selection method on Level1 data that causes not only reducing dimension of data but 
also improve performance of combining classifiers system. Fives datasets address the high accuracy of 
GAGMM compared with GMM Level1 are Pima (22.79% vs. 24.32%), Balance (7.55% vs. 8.39%), Fer-
tility (12.7% vs. 18.5%), Wdbc (3.21% vs. 3.87%) and Iris (2.67% vs. 3.6%). 

We also assess the dimension of data in Level0, Level1, and the data resulted from GAGMM. 
Fig 3 shows that the dimensions of data from GAGMM are significantly lower than those of Level0 and 
Level1. Remarkable results are observed on Fertility, Pima, Phoneme (with just 1 dimension) and Magic, 
Twonorm and Haberman (with just 2 dimensions). It is noted that we can use Level1 as feature of dataset 
instead of using features from Level0. Hence, our GAGMM framework helps reduce the dimension of 
data. Thus our framework not only lessens storage space but also improves performance of the classifica-
tion system.  

File name 
Number of 

attributes 
Attribute type  

Number of ob-
servations 

Number of 
classes 

Number of attributes 
on Level1 
(3 classifiers) 

Bupa 6 C,I,R 345 2 6 
Pima 6 R,I 768 2 6 
Sonar 60 R 208 2 6 
Heart 13 C,I,R 270 2 6 
Phoneme 5 R 540 2 6 
Haberman 3 I 306 2 6 
Titanic 3 R,I 2201 2 6 
Balance 4 C 625 3 9 
Fertility 9 R 100 2 6 
Wdbc 30 R 569 2 6 
Australian 14 C,I,R 690 2 6 
Twonorm (*) 20 R 7400 2 6 
Magic 10 R 19020 2 6 
Ring (*) 20 R 7400 2 6 
Contraceptive 9 C,I 1473 3 9 
Vehicle 18 I 946 4 12 
Iris 4 R 150 3 9 
Tae 20 C,I 151 2 6 
Letter 16 I 20000 26 78 
Skin&NonSkin 3 R 245057 2 6 
Artificial 10 R 700 2 6 

R: Real, C: Category, I: Integer  (*) Simulated data 

Table 1. UCI DATA FILES USED IN OUR EXPERIMENT 

File name 
Sum rule Product rule Max rule 

Mean Variance Mean Variance Mean Variance 
Bupa 0.3028 4.26E-03 0.3021 4.12E-03 0.2986 4.15E-03 
Artificial 0.2230 2.06E-03 0.2193 2.05E-03 0.2450 2.57E-03 
Pima 0.2405 1.62E-03 0.2419 1.63E-03 0.2411 1.69E-03 
Sonar 0.2259 9.55E-03 0.2285 9.81E-03 0.2260 7.01E-03 
Heart 0.1637 4.59E-03 0.1648 5.20E-03 0.1730 4.14E-03 
Phoneme 0.1713 1.90E-04 0.1518 2.87E-04 0.1407 1.95E-04 
Haberman 0.2392 2.39E-03 0.2424 3.08E-03 0.2457 3.18E-03 
Titanic 0.2167 6.01E-04 0.2167 5.65E-04 0.2167 6.59E-04 
Balance 0.1113 5.55E-04 0.1131 4.95E-04 0.1112 4.82E-04 
Fertility 0.1290 2.46E-03 0.1290 2.26E-03 0.1270 1.97E-03 
Skin&NonSkin 0.0412 1.40E-06 0.0006 2.73E-08 0.0006 2.22E-08 
Wdbc 0.0401 7.07E-04 0.0517 8.19E-04 0.0485 8.03E-04 
Australian 0.1281 1.78E-03 0.1594 1.91E-03 0.1604 1.95E-03 
Twonorm 0.0221 3.00E-05 0.0225 2.69E-05 0.0231 2.39E-05 
Magic 0.1925 5.31E-05 0.1921 5.16E-05 0.1911 6.40E-05 
Ring 0.2122 1.62E-04 0.2275 1.09E-04 0.2436 1.53E-04 
Tae 0.4625 1.36E-02 0.4622 1.14E-02 0.5191 1.11E-02 
Contraceptive 0.4653 1.79E-03 0.4667 1.19E-03 0.4734 1.19E-03 
Vehicle 0.2671 1.38E-03 0.2645 1.37E-03 0.2937 1.54E-03 
Iris 0.0387 2.59E-03 0.0407 2.39E-03 0.0440 3.13E-03 
Letter 0.1388 6.50E-05 0.0856 3.10E-05 0.0760 3.94E-05 

 
File name 

Min rule Median rule Majority vote 
Mean Variance Mean Variance Mean Variance 

Bupa 0.2970 4.89E-03 0.3428 4.46E-03 0.3429 4.04E-03 
Artificial 0.2453 2.90E-03 0.3089 1.36E-03 0.3073 1.03E-03 
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Pima 0.2449 2.02E-03 0.2376 1.69E-03 0.2365 2.10E-03 
Sonar 0.2298 9.32E-03 0.2104 1.00E-02 0.2079 8.16E-03 
Heart 0.1700 4.01E-03 0.1570 4.64E-03 0.1604 3.87E-03 
Phoneme 0.1417 2.10E-04 0.2254 2.71E-04 0.2257 2.73E-04 
Haberman 0.2461 2.47E-03 0.2524 1.67E-03 0.2504 1.76E-03 
Titanic 0.2167 5.00E-04 0.2216 5.25E-04 0.2217 4.61E-04 
Balance 0.1232 4.99E-04 0.1155 4.93E-04 0.1261 4.63E-04 
Fertility 0.1280 2.02E-03 0.1330 2.81E-03 0.1310 2.34E-03 
Skin&NonSkin 0.0006 2.13E-08 0.0528 2.23E-06 0.0528 1.90E-06 
Wdbc 0.0522 7.71E-04 0.0395 5.03E-04 0.0406 6.47E-04 
Australian 0.1609 1.80E-03 0.1270 1.56E-03 0.1262 1.37E-03 
Twonorm 0.0233 3.92E-05 0.0217 2.74E-05 0.0216 2.82E-05 
Magic 0.1905 5.72E-05 0.2004 5.81E-05 0.2006 7.49E-05 
Ring 0.2437 1.33E-04 0.2368 1.93E-04 0.2365 2.00E-04 
Tae 0.4868 1.40E-02 0.4443 1.46E-02 0.4435 1.70E-02 
Contraceptive 0.4766 1.77E-03 0.4803 1.31E-03 0.4844 1.27E-03 
Vehicle 0.2737 1.57E-03 0.2858 1.57E-03 0.3194 2.01E-03 
Iris 0.0413 2.56E-03 0.0333 1.64E-03 0.0327 1.73E-03 
Letter 0.0941 4.42E-05 0.2451 8.22E-05 0.2390 7.68E-05 

Table 2. ERROR RATES OF COMBINING CLASSIFIERS BASED ON FIXED RULES 

File name 
MLR 

Best results from fixed 
Rules 

SCANN Decision Template 

Mean Variance Mean Variance Mean Variance Mean Variance 

Bupa 0.3033 4.70E-03 0.2970 4.89E-03 0.3304 4.29E-03 0.3348 7.10E-03 

Artificial 0.2426 2.20E-03 0.2193 2.05E-03 0.2374 2.12E-03 0.2433 1.60E-03 

Pima 0.2432 2.30E-03 0.2365 2.10E-03 0.2384 2.06E-03 0.2482 2.00E-03 

Sonar 0.1974 7.20E-03 0.2079 8.16E-03 0.2128 8.01E-03 0.2129 8.80E-03 

Heart 0.1607 4.70E-03 0.1570 4.64E-03 0.1637 4.14E-03 0.1541 4.00E-03 

Phoneme 0.1136 1.75E-04 0.1407 1.95E-04 0.1229 6.53E-04 0.1462 2.00E-04 

Haberman 0.2428 3.30E-03 0.2392 2.39E-03 0.2536 1.74E-03 0.2779 5.00E-03 

Titanic 0.2169 4.00E-04 0.2167 5.00E-04 0.2216 6.29E-04 0.2167 6.00E-04 

Balance 0.1225 8.00E-04 0.1112 4.82E-04 X X 0.0988 1.40E-03 

Fertility 0.1250 2.28E-03 0.1270 1.97E-03 X X 0.4520 3.41E-02 

Skin&NonSkin 4.79E-4 1.97E-08 0.0006 2.13E-08 X X 0.0332 1.64E-06 

Wdbc 0.0399 7.00E-04 0.0395 5.03E-04 0.0397 5.64E-04 0.0385 5.00E-04 

Australian 0.1268 1.80E-03 0.1262 1.37E-03 0.1259 1.77E-03 0.1346 1.50E-03 

Twonorm 0.0217 2.24E-05 0.0216 2.82E-05 0.0216 2.39E-05 0.0221 2.62E-05 

Magic 0.1875 7.76E-05 0.1905 5.72E-05 0.2002 6.14E-05 0.1927 7.82E-05 

Ring 0.1700 1.69E-04 0.2122 1.62E-04 0.2150 2.44E-04 0.1894 1.78E-04 

Tae 0.4652 1.24E-02 0.4435 1.70E-02 0.4428 1.34E-02 0.4643 1.21E-02 

Contraceptive 0.4675 1.10E-03 0.4653 1.79E-03 0.4869 1.80E-03 0.4781 1.40E-03 

Vehicle 0.2139 1.40E-03 0.2645 1.37E-03 0.2224 1.54E-03 0.2161 1.50E-03 

Iris 0.0220 1.87E-03 0.0327 1.73E-03 0.0320 2.00E-03 0.0400 2.50E-03 

Letter 0.0427 1.63E-05 0.0760 3.94E-05 0.063 2.42E-05 0.1133 4.91E-05 

 
File name 

GMM on Level0 GMM on Level1 GAGMM 

Mean Variance Mean Variance Mean Variance 

Bupa 0.4419 5.80E-03 0.3022 5.31E-03 0.2999 4.79E-03 

Artificial 0.4507 8.00E-03 0.2374 2.40E-03 0.2423 2.64E-03 

Pima 0.2466 2.40E-03 0.2432 2.60E-03 0.2279 1.95E-03 

Sonar 0.3193 1.26E-02 0.2009 6.20E-03 0.2050 8.09E-03 

Heart 0.1715 7.30E-03 0.1559 4.51E-03 0.1544 4.67E-03 

Phoneme 0.2400 4.00E-04 0.1165 2.01E-04 0.1150 1.39E-04 

Haberman 0.2696 2.00E-03 0.2458 3.36E-03 0.2461 3.96E-03 

Titanic 0.2904 2.01E-02 0.2167 5.91E-04 0.2217 1.16E-03 

Balance 0.1214 1.10E-03 0.0839 1.21E-03 0.0755 9.68E-04 

Fertility 0.3130 7.47E-02 0.1850 1.05E-02 0.1270 2.40E-03 

Skin&NonSkin 0.0761 2.21E-06 4.10E-4 1.53E-08 4.13E-4 1.98E-08 

Wdbc 0.0678 1.10E-03 0.0387 5.98E-04 0.0321 5.25E-04 

Australian 0.1980 1.80E-03 0.1222 1.30E-03 0.1210 1.60E-03 

Twonorm 0.0216 2.83E-05 0.0219 2.78E-05 0.0220 2.72E-05 

Magic 0.2733 5.06E-05 0.1921 8.34E-05 0.1918 6.03E-05 

Ring 0.0209 2.20E-05 0.1131 1.16E-04 0.1108 1.09E-04 

Tae 0.5595 1.39E-02 0.4365 1.36E-02 0.4313 1.58E-02 

Contraceptive 0.5306 1.80E-03 0.4667 1.30E-03 0.4624 1.30E-03 

Vehicle 0.5424 2.40E-03 0.2166 1.40E-03 0.2131 1.46E-03 

Iris 0.0453 2.50E-03 0.0360 2.10E-03 0.0267 1.10E-03 

Letter 0.3573 9.82E-05 0.0797 3.03E-05 0.0802 1.32E-05 



Table 3. COMPARING ERROR RATES OF DIFFERENT COMBINING ALGORITHMS 

Better Competitive Worse 
GAGMM vs. MLR 6 13 2 
GAGMM vs. SCANN 8 9 1 
GAGMM vs. Decision Template 14 7 0 
GAGMM vs. SelectBest 6 13 2 
GAGMM vs. GMM Level0 18 2 1 
GAGMM vs. GMM Level1 5 16 0 
GMM Level1 vs. GMM Level10 16 4 1 

Table 4. COMPARE GAGMM WITH THE BENCHMARKS AMONG 21 UCI FILES 

 

Fig. 3. Compare dimension of data among Level0, Level1 and GAGM (UCI datasets)

3.2 Experiment on CLEF2009 database 

We also fulfilled on CLEF 2009 database, a large set of medical image collected by Archen Uni-
versity. It includes 15,363 images allocated in 193 hierarchical categories. In our experiment we chose 7 
classes where each has different number of images (Table 5). Firstly, we performed necessary pre-
processing techniques like histogram equation and then, Histogram of Local Binary Pattern (HLBP) [22] 
as feature vector is extracted. The results of the experiment on 7 classes are summarized in Table 6. 

Table 7 illustrates the comparison between GAGMM and 6 benchmarks included best result 
from fixed rules, MLR, Decision Template, SCANN, GMM on Level0 and GMM on Level1. GAGMM 
posts all 6 wins on experiment and again, it is addressed advantage of our proposed framework since 
GAGMM is outstanding performance compared with other state-of-art combining algorithms. GMM on 
Level1, in turn, significantly outperforms than GMM on Level10 (14.69% vs. 24.53) but underperforms 
GAGMM (14.69% vs. 11.64%). Again, the benefit of proposed model and feature selection method on 
Level1 is reported. 

Image 

       

Description Abdomen Cervical Chest Facial cranium Left Elbow Left Shoulder Left Breast 

# of observation 80 81 80 80 69 80 80 

Table 5. INFORMATION OF 7 CLASSES CLEF2009 IN OUR EXPERIMENT 

Methods HLBP 7 classes 

Mean Variance 

Sum 0.1636 1.67E-03 

Product 0.1831 2.18E-03 

6 10 6
60

13 5 3 3 4 9 3 30 14 20 10 20 20 9 18 4 166 6 6 6 6 6 6 6 9 6 6 6 6 6 6 6 6 9 12 9
78

4 3 1 3 5 1 2 1 4 1 5 3 4 2 2 5 5 6 8 6
55
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Level0 Dimension Level1 Dimension GAGMM Dimension
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Max 0.1835 2.54E-03 

Min 0.1978 2.35E-03 

Median 0.1725 2.09E-03 

Vote 0.1851 1.87E-03 

MLR 0.1280 1.80E-03 

Decision Template 0.1447 1.90E-03 

Best result from fixed rules 0.1636 1.67E-03 

SCANN 0.1455 2.62E-03 

GMM Level0 0.2453 3.49E-03 

GMM Level1 0.1469 2.00E-03 

GAGMM 0.1164 2.10E-03 

Table 6. ERROR RATES OF DIFFERENT COMBINING ALGORITHMS WITH CLEF2009 

 GAGMM vs. compared methods 

Better 6 

Competitive 0 

Worse 0 

GMMLevel1 vs. GMM Level0

Better 1 

Competitive 0 

Worse 0 

Table 7.   COMPARING GAGMM WITH 6 BENCHMARKS AND GMM LEVEL1 WITH GMM LEVEL0 
RELATED TO CLEF2009 

 

 

Table 8.    COMPARING DIMENSION OF FEATURE RELATED TO CLEF2009

4 CONCLUSION AND FUTURE WORK 

We have introduced a framework based on GA and GMM to combining classifiers in a multi clas-
sifier system. Our model is run on Level1 data which is the posterior probabilities obtained from applying 
Stacking Algorithm. Empirical evaluations have demonstrated the superiority of our framework compared 
with its rivals including best result from fixed rules, Decision Template, SCANN and MLR. Novel 
framework also remarkably outperforms that on original data due to uniformity characteristic of Level1 
data. We reported lower classification error rate on both the 21 UCI files and CLEF2009 medical image 
database. Besides, the GA-based approach also helps to select the optimal subset of features from the 
original feature set; resulting in a significant reduction in the dimension of data during classification pro-
cess. Although feature selection method is time-consuming task, we can conduct that process off-line so it 
is not a significant problem.  

Three problems in our model warrant further research effort. First, GMM is time-consuming due 
to the determination of optimal number of components by BIC. Second, implementation on small data set 
is a problem with GMM since when the number of observations in a class is too small; EM algorithm has 
difficulty estimating the model parameters properly. Finally, the prior probability of eqn. 6 is less appro-
priate for small and imbalance data. These problems will be the future improvements of our framework.  

Data # of dimension 

Level0 32 

Level1 21 

Dimension from GAGMM 14 
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