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Abstract. Combining multiple classifiers to achieve better performances than 
any single classifier is one of the most important research areas in machine 
learning. In this paper, we focus on combining different classifiers to form an 
effective ensemble system. By introducing a novel framework operated on out-
puts of different classifiers, our aim is building a powerful model which is 
competitive with other well-known combining algorithms such as Decision 
Template, Multiple Response Linear Regression (MLR), SCANN and fixed 
combining rules. It is difference from the traditional approaches, here we use 
Gaussian Mixture Model (GMM) to model distribution of Level1 data and pre-
dict label of an interesting observation based on maximize of posterior probabil-
ity through Bayes model. We also expand GMM-based approach in which be-
fore modeling distribution, Principle Component Analysis (PCA) method is ap-
plied to output of base classifiers to reduce its dimension; as a result, improve 
performance and availability of model based GMM. Experiments were evaluat-
ed on 21 UCI Machine Learning Repository demonstrate benefits of our 
framework compared with benchmarks. 

Keywords: Gaussian Mixture Model (GMM), ensemble method, multiple clas-
sifier system, combining classifiers, classifier fusion, Stacking Algorithm, Prin-
ciple Component Analysis (PCA). 

1 INTRODUCTION  

Traditionally, single learning algorithm is usually employed to solve classifica-
tion problems by forming a classifier on a particular training set which contains hy-
pothesis about the relationship between feature vectors and its class labels. A nature 
question is arisen that can we combine multiple algorithms in a system to achieve 
more effectiveness and higher performance than any single one? That is the idea to 
form a class of methods called ensemble method. Ensemble in literature review is a 
method that combines models to obtain lower error rate than using single model. Con-



cept “model” in definition of ensemble methods is understood in a broad sense, in-
cluding not only the implementation of many different learning algorithms, or the 
creation of more training set scheme for same learning algorithm, but also generating 
generic classifiers in combination to improve efficiency of classification task [23]. 

In this paper, we base on the strategy to build an ensemble system [1] where 
prediction framework is formed by combining outputs of different classifiers (called 
meta-data or Level1 data to distinguish with original data). It is expected that base 
classifiers should be significantly different to each other. Moreover, training set is 
shared among all base classifiers as it is trained by all base classifiers to give posterior 
probability corresponding to each class and classifier. Actually, several well-known 
algorithms were introduced and have been applied successfully to various data 
sources. They all have the same target by discovering knowledge from meta-data to 
construct the decision system. Here we continue exploiting data based on different 
perspective by studying related to statistical representation for meta-data. Specifically, 
we choose Gaussian-based mixture models to approximate distribution of Level1 data 
corresponding with each class. GMM as a linear combination of multiple Gaussian 
components can result a better representation for an arbitrary density function [14]. By 
using GMM to approximate likelihood function on meta-data, prediction framework 
based on posterior probability is introduced though Bayes model. 

The rest of this paper is organized as followed. Section 2 gives the literature 
review on both some state-of-art combining classifiers methods based Staking algo-
rithm and popular combining methods by using fixed rules. After that, several ap-
proaches in which GMM plays as a classifier are mentioned. In Section 3, the novel 
combining classifiers model is proposed by using GMM directly as well as applying 
PCA to Level1 data before. Experimental results conducted on 21 common UCI Ma-
chine Learning Repository datasets [21] are illustrated and discussed in Section 4. 
Finally, conclusion and future work are given in the last section.  

2 RECENT WORK 

2.1 Combining classifiers algorithms 

There are several combining classifiers strategies proposed and Stacking-
based approaches are one of the most popular ensemble methods. The Stacking algo-
rithm was first introduced by Wolpert [2] and was further developed by Ting [4]. In 
this algorithm, training set is divided to several disjoint parts and then each plays as 
test set and the others are gathered in a new single training set; as a result, all observa-
tions will be tested one time. Output of Stacking family is Fuzzy Label [3] or in other 
words is posterior probability that each observation belongs to a class according to 
each classifier. Posterior probability set of all observations is called meta-data or Lev-
el1 data with the aim of distinguishing with original Level0 data. 

Let’s denote N  as number of observations, K  as number of base classifiers 
and M  as number of classes. For an observation iX , (W | )k j iP X

 
is probability that 

iX
 

belongs to class Wj  given by thk  classifier. Level1 of all observations, a 
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N MK× -posterior probability matrix { }(W | )k j iP X 1,j M= 1,k K=  1,i N=  is 
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Based on Stacking algorithm, various combining algorithms have been intro-
duced with the purpose of reducing error rate of classification task. Stacking-based 
algorithms are called trainable algorithms since Level1 of training set is again exploit-
ed to discover latent knowledge as the second training process. Specifically, Ting [4] 
proposed Multiple Response Linear Regression algorithm (MLR) to combine posteri-
or probabilities of each observation based on sum of weights calculated from K Linear 
Regression functions. Kuncheva [3] applied Fuzzy Relation to find a relationship be-
tween posterior probability matrix (eqn. 2) and Decision Template for each class 
computed on posterior probability of observations and its true class label. She also 
detailed 11 measurements between two fuzzy relations [3] so as to predict about label 
of interested observations. Metz [6] combined Stacking, Correspondence Analysis 
(CA) and K Nearest Neighbor in a single algorithm called SCANN in which CA 
method is used to analyze relationship between rows (include all observations) and 
columns (include outputs of Stacking in Crisp Label type [3] and true label of each 
observation) to form the new representation of outputs from base classifiers. After 
that, KNN is applied to that representation to have prediction for unlabeled observa-
tions. Recently, Zhang [10] used linear programming to find weight that each classifi-
er puts on a particular class. Sen [11] introduced a model inspired by MLR by apply-
ing hinge loss function to the combiner instead of using conventional least square loss. 
By using new function with regularization, he proposed three different combination, 
namely weighted sum, dependent weighted sum and linear stacked generalization 
based on different regularizations with group sparsity. 

On the other hand, fixed rule is simple and effective combining classifiers 
method in practice. Kittler [5] presented six rules named Sum, Product, Vote, Min, 
Max and Average. These rules are simple in calculation and in several applications 
they give lower classifying error rate compared with those of base classifiers. Another 
benefit of fixed rules is that they only work on Level1 data of unlabeled observation; 
as a result; computational cost is saved significantly. Frequently, Sum and Vote rule 
are selected in combining strategy although issue related to fixed rules is that we can-
not know what rule is appropriate for a specific data source. 



2.2 GMM Classifier 

Although Gaussian distribution is the widely approximation for density model, 
it has some remarkable limitations. One of the most significant problems with this 
distribution is intrinsically uni-model so it cannot be flexible to capture a wide range 
of distribution. Meanwhile, GMM as a linear combination of multiple Gaussian com-
ponents is better approximation to a distribution than single Gaussian. GMM has been 
widely used in a variety of practical applications such as skin color extraction, speed 
recognition and image retrieval [16, 17]. Here we focus on GMM as a classifier. Li 
[18] proposed GMM-Markov Random Field classification: a GMM classifier based on 
low dimensional feature space for hyper-spectral image classification. Liu [13] 
showed that when dimension of data is high, the effectiveness of GMM approximation 
is reduced so as to deteriorate classification accuracy. Based on this address, he intro-
duced a discriminative model selection for GMM for classification by applying result 
from Moghaddam [12] where a technique was proposed to reduce dimension of data 
for GMM given by: 

*

 
( ) ( ) ( ) ( ) ( )F F F

likelihood function
P P P P PΘ = Θ × Θ = Θ × Θx | x | x | y | x |  (3) 

where Θ  is model for input data and *Θ  is another model for projected data y  

which detailed below. Moghaddam [12] introduced a method to obtain basic function 

of Karhunen–Loève transformation (KLT) by solving eigenvalue problem Tφ φ=Σ Λ  

in which Σ  is covariance matrix computed from input data; φ  are eigenvectors asso-

ciated with eigenvalues { }iλ and ( )idiag λ=Λ  is diagonal matrix with of eigenvalues. 

In Principle Component Analysis (PCA), a partial KLT is performed by using several 
eigenvectors corresponding with largest eigenvalues. Hence, vector y in eqn. 3 is 

projection of x  on principle subspace that ( )T
Pφ=y x - x in which x  is mean value of 

x and Pφ is submatrix of φ  including P retained eigenvectors. F  and F  in turn are 

principal subspace 
1,

{ }i i P
F φ ==  containing principal component and its orthogonal 

complement 
1,...

{ }i i P
F φ = +=  respectively. 

In our research, we propose applying GMM to model distribution of outputs of 
base classifiers. We note that several significant changes from original GMM classifi-
er are needed to adapt with characteristics of Level1 data. Our aim is introducing a 
novel framework which is competitive with GMM on its counterpart Level0, best 
result from base classifiers, best result from fixed rules and other well-known combin-
ing algorithms like Decision Template, SCANN and MLR. 

3 THE PROPOSED MODEL 

3.1 Combining Classifiers based on GMM  

In our knowledge, all GMM-based approaches are conducted on Level0 in 
which they suffer from remarkable limitations in modeling various datasets. Attributes 
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in Level0 are frequently diverse, measurement unit and type; as a result, GMM cannot 
achieve effectiveness when it is selected to approximate distribution of Level0. Lev-
el1, otherwise, can be viewed as scaled result from feature domain to posterior domain 
where data is reshaped by posterior probability as all Level1 attributes have same real 
value domain [0, 1]. Observations belonged to same class may have nearly equal pos-
terior probability values resulted by base classifier; as a result, may be located nearly 
in new coordination system. It is hoped that Level1 will have more discriminative than 
original data and therefore GMM on Level1 will be more effective than on Level0. 
Besides, in some situations, Level1 has lower dimension than Level0. It is well known 
in literature that the higher dimension of data is, the lower effectiveness of GMM 
approximation is. Hence, applying GMM on Level1 improves itself effectiveness. 

As mentioned above, we pursue exploiting knowledge on meta-data to form 
hypothesis about the relationship between feature vector and its class label. This paper 
presents a technique for effectively addressing classifier fusion issue by applying 
GMM on meta-data. The novel combining classifiers model is illustrated in Figure 1. 
Firstly, training set is divided and classified by using Stacking Algorithm to generate 
its Level1 data (eqn. 1). Next, since label of each observation in training set is known 
so observations belonged to same class are grouped together. Here we put attention on 
building model for each class by the way that approximate distribution by GMM. 
Unlabeled observation, in turn, is classified by base classifiers with model generated 
on training set to output its Level1 data (eqn. 2). That Level1 is gone through M-
GMMs as input data to obtain final prediction. 

 

Fig. 1. GMM-based approach on Level1 data 

For thi  class, we propose prediction framework based on Bayes model 
( | ) ~ ( | ) ( )i i i

posteriror likelihood prior

P GMM P GMM P GMM×x x  (4) 

Here likelihood function is GMM: 

( )
1

( | ) ( , )
iP

i ip ip ip ip ip ip
p

P GMM P ω ω
=

= =x x |μ ,Σ x |μ ,ΣΝ  (5) 
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Training set  
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GMM 1 

GMM 2 

GMM M 

K base classifiers 
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iP  is number of Gaussian components in iGMM   model and ipμ , ipΣ  are mean and 

covariance of thp  component in model for thi  class respectively. Prior probability in 

(eqn. 4) of thi  class is defined by: 

( ) i
i

N
P GMM

N
=  (7) 

where iN  is number of observations in thi  class.  

Now with dataset { } 1, ii N= =iX x  in which ix  has identity and independ-

ence distribution, logarithm of likelihood function is given by: 

( )
1 11

ln ( | ) ln ( | , ) ln |
i i iN N P

i i ip ip ip ip i ip ip
i pi

P GMM P ω ω
= ==

 
= =  

  
 ∏Χ x μ ,Σ x μ ,ΣΝ

 

(8) 

It is worth noting that summation appears inside logarithm (eqn. 8) results in 
complicated expression for the maximum likelihood solution. Hence, to find parame-
ters of GMMs, we apply Expectation Maximization (EM) algorithm by maximize the 
likelihood function with respect to means, covariances of components and mixing 
coefficients [14].  

The other question related to GMM is how to find the number of compo-
nents. Frequently, it is fixed by a specific number. Here, we propose applying Bayes 
Criterion Information (BIC) to find optimal model [14]. By assuming that we have a 

set of model { }jF  (which are all available GMMs associated with number of compo-

nent) with parameters jθ  where jθ  are denoted for all parameters of model (which 

are means, covariances of components and mixing coefficients in scenario of GMM). 
To find model by BIC, we compute: 

1
ln ( | ) ln ( | , ) ln

2j j MAP j iP F P F N≈ −Χ Χ θ θ  (9) 

where MAPθ  is corresponding with maximum of posterior distribution and jθ  is 

number of parameters in jθ . It is interesting to note that Level1 conveys posterior 

information from each classifier that how much supports by a classifier for an obser-
vation belonged to a class. Sometimes, there are several columns in Level1 data in 
which ,k m∃  such ( | )k m iP W X  is nearly constant for all i. Hence, covariance matrix 

may be singular and EM is unable to solve GMM. We propose a produce with the 
purpose of regularizing Level1 by before applying GMM to Level1, we check condi-
tion (eqn. 10) on all columns. If the condition is satisfied, few random elements are 
chosen in this column and increate their values by a small quantity. It called a regular-
ization produce for Level1. The produce only adds small value on some random ele-
ments in a column so it does not affect the nature of interested posterior probability as 
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well as covariance matrix. Moreover, it reduces singular situation of covariance ma-
trix so helps overcome this situation. 

x x ε− <  ∀  column vector x  and small threshold value ε  (10) 

Where x  is mean value of x  
 
Algorithm 1: Regularize Level1 
Input: Level1, extravalue, r 
Output: Regularized Level1 

For 
thi  column of Level1 
If Condition(eqn. 10) = true 

Generate r random numbers in (1,size(column)) 
Element(r) = Element(r)+ extravalue  

End if 
End 
Return Level1 
 
 
 
 
Algorithm 2: GMM for combining classifiers  
 
Training progress: 
Input: Training set: L0, K base classifiers, PiMax: maximum 

number of Gaussian component for 
thi  class. 

Output: Suitable GMM for each class. 
Step1: Applied Stacking algorithm to generate Level1 of L0. 
Step2: Gather same labeled observations in M classes; compute 

( )iP GMM  (eqn. 7), mean and covariance for each class. 

Step3:For 
thi  class 

     Call Algorithm 1 to regularize Level1 of class 
For p=1 to PiMax 
     Apply EM algorithm to find GMM corresponding 

with p components. 
     Compute BIC. 
End 

Select Pi corresponding with max(BIC) and GMM with Pi 
components. 

End 
Test progress: 
Input: unlabeled observation XTest 
Output: predicted label of XTest 
Step1: Compute Level1 of XTest by model from K classifiers and 

training set. 

Step2: For each 
thi  class 

       Compute ( | )iP XTest GMM  (eqn. 5) and posterior related to 

class (eqn. 4)  

                   
( | )iP GMM XTest ~ ( | ) ( )i iP XTest GMM P GMM×  



       End 

Step3: Predict label of XTest based on tXTest W∈  if 

1,
argmax ( | )i

i M
t P GMM XTest

=
=  

3.2 GMM-PCA model 

Another problem related to GMM is small number of observations in a class. 
Through preliminary experiment conduced on Matlab2013a we have seen that when 
number of observations is smaller than dimension of data, GMM cannot be estimated 
by EM algorithm. Hence, dimension of data needs to be reduced to be availability for 
diversity of data sources. Putting attention on eqn.3 in which likelihood ( )P Θx |

 
is 

analyzed to *( ) ( )
F

P PΘ × Θy | x | , Moghaddam [12] proposed  ( )FP Θx | as an estima-

tion of ( )
F

P Θx | by using spherical Gaussian: 


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2

2
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( ) exp

22
F d k

P
ε

ρπρ
−

 −
Θ =  

 

x
x |

 

1

1 d

l
l kd k

ρ λ
= +

=
− 

 
2

2 2 2

1 1

( )
k d

l l
l l k

y yε
= = +

= − − = x x x  

(11) 

where d is dimension of Level0, k is number of selected elements and 2 ( )ε x  is square 

of all unselected principle component feature vector in eigenspace. 
It is noted that Level1 may include several nearly equal 0 elements due to the 

fact that an observation is predicted not belonged to a class. Hence, when PCA is per-
formed on Level1, few eigenvalues will be nearly equal 0, consequently, 0ρ →  and 

results in  ( )FP Θ → ∞x | . Here we leave this strategy and instead eigenvectors are 

ranked based on their associated eigenvalue and only the first largest C eigenvalues 
which satisfies condition (eqn. 12) are retained while the others are discarded: 

1

1

1

C

c
c
MK

c
c

λ
ε

λ

=

=

> −



 (12) 

When several components are reduced, (eqn. 3) simply becomes 
( ) ~ ( )P GMM P GMMi ix | y |  where y is the projection of x on principle subspace which 

contains C selected eigenvectors. Now with unlabeled observation XTest , we predict 
its class label by: 

tXTest W∈  if 
1,

argmax ( ) ( )
i M

t P YTest GMM P GMM
=

= ×i i|  (13) 
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4 EXPERIMENTAL RESULTS 

There are two circumstances related to training set and test set in experiments. 
Firstly, we only had a single dataset, and did not have individual test set. To solve this 
case, B-fold cross validation method was employed by the way that dataset is divided 
to nearly equal disjointed B parts. Each part plays as a test set one time while the oth-
ers play as a training set.  In our experiments, we set B=10 (10-fold cross validation). 
Secondly, we had both training set and test set separately. It is traditional scenarios 
because we can perform classification by classical approach. To ensure objectiveness, 
we tried to run the test 10 times so we had up to 100 error rates result for each file. 
Statistical Toolbox in Matlab2013a was chosen as environment to develop our model. 
Besides, three base classifiers namely Linear Discriminant Analysis (LDA), Naïve 
Bayes and K Nearest Neighbor (with K set to 5 denoted by 5-NN) were selected by 
the motivation that they all have different approach to solve classification problem so 
diversity of ensemble system is ensured. For comparison purpose, we used paired 
statistical t-test to compare two expectations (parameter α  is set by 0.05) 

In our assessment, we compared error rate of our model with each other among 
7 methods: best result based on test set from base classifiers, best result based on test 
set from fixed rules, SCANN, MLR, Decision Template (with measure of similarity 

1S  [3] is defined as 1

1( )
( ( ), )

1( )
i

i
i

Level X DT
S DP X DT

Level X DT

∩
=

∪
where iDT  is Decision 

Template of thi  class and  α   is the relative cardinality of the fuzzy set α ), GMM 

on Level0, GMM [12] on Level0. Here we used 6 fixed rules namely Sum, Product, 
Min, Max, Vote, Median to choose the best result based on their outcome on test set. 
It is noted that combining algorithms like fixed rules, SCANN and MLR do not re-
quire any initialized parameters. Actually, we chose the benchmarks for our model 
due to three reasons: 

• Since our model is an ensemble system so it is required to compare with all 
base classifiers. 

• Since our model combines outputs form base classifiers to form the prediction 
for unlabeled observations so it is necessary to compare with other well-
known trainable combining algorithms as well as simple fixed combining al-
gorithms. 

• Since our model is based on GMM classifier so it is important to compare 
with its counterpart on original data 

We chose 21 common UCI Machine Learning Repository [21] data files from 2 
classes (Bupa, Artificial, etc…) to 26 classes (Letter). Number of attributes also 
changes in a wide range from only 3 attributes (Haberman) to 60 attributes (Sonar). 
Number of observations in each file also varies considerably, from small files like Iris, 
Fertility to quite big file such as Skin&NonSkin (up to 245057 observations) (Table 
1). Our purpose is conducting an objective experiment so as to prove advantage of 
novel model and algorithms on diverse data sources. Experimental results of all 21 
files are showed in Table 2, 3 and 4. 



In Table 2, we reported error rate of all 3 base classifiers and chose best result 
based on their performance on test set. By using paired t-test to compare with out-
comes of GMM and GMMPCA on Leve1l, it is objective to assess that both GMM 
and GMMPCA-based approach on meta-data outperform any base classifiers. GMM 
posts 6 wins and only 3 losses while the pattern of GMMPCA is 7 wins and 3 losses. 
Consequently, the goal of building ensemble method which is better than any base 
classifiers has been achieved. 

It is interesting to note that GMM and GMMPCA on Level1 perform better 
than GMM on Level0, posting up to 16 and 17 wins, respectively. Our model only 
loses GMM Level0 on Ring files (2.09%). It is not surprised because Ring dataset is 
withdrawn from multivariate Gaussian distributions [21] so GMM is the best to ap-
proximate Level0 distribution in that case. Clearly, GMM on Level0 and GMM-based 
approach [12] report higher error rates than those on Level1 as well as Rules, Decision 
Template, MLR and SCANN. GMM-based approach [12] is only better than ours on 3 
files while up to 16 cases address outstanding performance of our approach (Figure 2).  

Besides, our approach is competitive with best result selected from fixed rules 
(Figure 2). There are few cases reporting the outstanding performance namely Ring 
(11.31% vs. 21.22%), Vehicle (21.66% vs. 26.45%) and Skin&NonSkin (0.04% vs. 
0.06%) while on 1 file, best result from fixed rules is better than proposed GMM Lev-
el1. Actually, we cannot know what the optimal rules are for specific data source so 
GMM on Level1 can be considered replacing fixed rules to combining algorithm since 
it is better than any popular fixed rules. 

Next, we compare our model with Decision Template algorithm. Clearly, 
GMM on Level1 outperforms Decision Template among experimental files, posting 8 
wins and only 2 losses. The remarkable results are reported on Bupa (30.22% vs. 
33.48%), Haberman (24.58% vs. 27.79%), Fertility (18.5% vs. 45.2%), 
Skin&NonSkin (0.04% vs. 3.32%), Ring (11.31% vs. 18.94%) and Letter (7.97% vs. 
11.33%). 

GMM on Level1 is also better than SCANN (5 wins and 1 loss). The same pat-
tern is repeated when we compare GMMPCA with SCANN (5 wins and 2 losses). 
Unluckily, SCANN cannot be performed on 3 files Skin, Balance and Fertility be-
cause of existence equal column in indicator matrix so column masses will be singular 
[6].  Here we do not put these cases in comparison. Compared with MLR, both two 
our approaches are competitive since both GMM on Level1 and GMMPCA have 4 
wins and 4 losses. 

Finally, one interesting result is addressed when we compare two methods 
GMM and GMM-PCA. On few files, accuracy of GMM-PCA is better than GMM, for 
instant Fertility (1.25% vs. 18.5%) while in one Tae file, GMM is outstanding 
(43.65% vs. 51.32%). Besides, GMM-PCA is more availability with diverse data 
sources than GMM since when number of observations is smaller than dimension of 
data (eqn. 1), EM algorithm may not converge to a solution where one or more of the 
components have a singular covariance matrix. By applying PCA to GMM, dimension 
of data is reduced; as a result, that problem can be solved. 

 

File name 
Number of at-
tributes 

Attribute type 
(*) 

Number of ob-
servations 

Number of classes 
Number of 

attributes on 
Level1 

Bupa 6 C,I,R 345 2 6 

Pima 6 R,I 768 2 6 
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Sonar 60 R 208 2 6 

Heart 13 C,I,R 270 2 6 

Phoneme 5 R 540 2 6 

Haberman 3 I 306 2 6 

Titanic 3 R,I 2201 2 6 

Balance 4 C 625 3 9 

Fertility 9 R 100 2 6 

Wdbc 30 R 569 2 6 

Australian 14 C,I,R 690 2 6 

Twonorm 20 R 7400 2 6 

Magic 10 R 19020 2 6 

Ring 20 R 7400 2 6 
Contracep-

tive 
9 C,I 1473 3 6 

Vehicle 18 I 946 4 12 

Iris 4 R 150 3 9 

Tae 20 C,I 151 2 6 

Letter 16 I 20000 26 78 
Skin&NonSk

in 
3 R 245057 2 6 

Artificial 10 R 700 2 6 

Table 1. UCI data files used in our experiment (*) R: Real, C: Category, I: Integer 

 

File name 
LDA Naïve Bayes 5-NN 

Best result from base 
classifiers 

Mean 
Vari-

ance 
Mea

n 
Vari-

ance 
Mea

n 
Var-

iance 
Mean 

Vari-
ance 

Bupa 0.3693 8.30E-03 0.4264 7.60E-03 0.3331 6.10E-03 0.3331 6.10E-03 

Artificial 0.4511 1.40E-03 0.4521 1.40E-03 0.2496 2.40E-03 0.2496 2.40E-03 

Pima 0.2396 2.40E-03 0.2668 2.00E-03 0.2864 2.30E-03 0.2396 2.40E-03 

Sonar 0.2629 9.70E-03 0.3042 7.40E-03 0.1875 7.60E-03 0.1875 7.60E-03 

Heart 0.1593 5.30E-03 0.1611 5.90E-03 0.3348 5.10E-03 0.1593 5.30E-03 

Phoneme 0.2408 3.00E-04 0.2607 3.00E-04 0.1133 2.00E-04 0.1133 2.00E-04 

Haberman 0.2669 4.50E-03 0.2596 4.40E-03 0.2829 3.80E-03 0.2596 4.40E-03 

Titanic 0.2201 5.00E-04 0.2515 8.00E-04 0.2341 3.70E-03 0.2201 5.00E-04 

Balance 0.2917 2.90E-03 0.2600 3.30E-03 0.1442 1.20E-03 0.1442 1.20E-03 

Fertility 0.3460 2.01E-02 0.3770 2.08E-02 0.1550 4.50E-03 0.1550 4.50E-03 

Skin&NonSkin 0.0659 2.74E-06 0.1785 6.61E-06 0.0005 1.68E-08 0.0005 1.68E-08 

Wdbc 0.0397 7.00E-04 0.0587 1.20E-03 0.0666 8.00E-04 0.0397 7.00E-04 

Australian 0.1416 1.55E-03 0.1297 1.71E-03 0.3457 2.11E-03 0.1297 1.71E-03 
Twonorm 0.0217 3.12E-05 0.0217 3.13E-05 0.0312 3.96E-05 0.0217 3.12E-05 
Magic 0.2053 6.85E-05 0.2255 7.33E-05 0.1915 4.81E-05 0.1915 4.81E-05 
Ring 0.2381 2.27E-04 0.2374 2.23E-04 0.3088 1.30E-04 0.2374 2.23E-04 
Tae 0.4612 1.21E-02 0.4505 1.22E-02 0.5908 1.37E-02 0.4505 1.22E-02 
Contraceptive 0.4992 1.40E-03 0.5324 1.42E-03 0.4936 1.70E-03 0.4936 1.70E-03 
Vehicle 0.2186 1.39E-03 0.5550 2.94E-03 0.3502 2.35E-03 0.2186 1.39E-03 
Iris 0.0200 1.40E-03 0.0400 2.30E-03 0.0353 1.50E-03 0.0200 1.40E-03 

Letter 0.2977 8.31E-05 0.4001 1.04E-04 0.0448 1.68E-05 0.0448 1.68E-05 

Table 2. Classifying error of base classifiers 

 

File name 
MLR 

Best result from 
6 fixed rules 

SCANN 
Decision Tem-

plate 
Mean Variance Mean Variance Mean Variance Mean Variance 

Bupa 0.3033 4.70E-03 0.2970 4.89E-03 0.3304 4.29E-03 0.3348 7.10E-03 
Artificial 0.2426 2.20E-03 0.2193 2.05E-03 0.2374 2.12E-03 0.2433 1.60E-03 
Pima 0.2432 2.30E-03 0.2365 2.10E-03 0.2384 2.06E-03 0.2482 2.00E-03 
Sonar 0.1974 7.20E-03 0.2079 8.16E-03 0.2128 8.01E-03 0.2129 8.80E-03 



Heart 0.1607 4.70E-03 0.1570 4.64E-03 0.1637 4.14E-03 0.1541 4.00E-03 
Phoneme 0.1136 1.75E-04 0.1407 1.95E-04 0.1229 6.53E-04 0.1462 2.00E-04 
Haberman 0.2428 3.30E-03 0.2392 2.39E-03 0.2536 1.74E-03 0.2779 5.00E-03 
Titanic 0.2169 4.00E-04 0.2167 5.00E-04 0.2216 6.29E-04 0.2167 6.00E-04 
Balance 0.1225 8.00E-04 0.1112 4.82E-04 x x 0.0988 1.40E-03 
Fertility 0.1250 2.28E-03 0.1270 1.97E-03 x x 0.4520 3.41E-02 
Skin&NonSkin 4.79E-04 1.97E-08 0.0006 2.13E-08 x x 0.0332 1.64E-06 
Wdbc 0.0399 7.00E-04 0.0395 5.03E-04 0.0397 5.64E-04 0.0385 5.00E-04 
Australian 0.1268 1.80E-03 0.1262 1.37E-03 0.1259 1.77E-03 0.1346 1.50E-03 
Twonorm 0.0217 2.24E-05 0.0216 2.82E-05 0.0216 2.39E-05 0.0221 2.62E-05 
Magic 0.1875 7.76E-05 0.1905 5.72E-05 0.2002 6.14E-05 0.1927 7.82E-05 
Ring 0.1700 1.69E-04 0.2122 1.62E-04 0.2150 2.44E-04 0.1894 1.78E-04 
Tae 0.4652 1.24E-02 0.4435 1.70E-02 0.4428 1.34E-02 0.4643 1.21E-02 
Contraceptive 0.4675 1.10E-03 0.4653 1.79E-03 0.4869 1.80E-03 0.4781 1.40E-03 
Vehicle 0.2139 1.40E-03 0.2645 1.37E-03 0.2224 1.54E-03 0.2161 1.50E-03 
Iris 0.0220 1.87E-03 0.0327 1.73E-03 0.0320 2.00E-03 0.0400 2.50E-03 
Letter 0.0427 1.63E-05 0.0760 3.94E-05 0.0063 2.42E-05 0.1133 4.91E-05 

Table 3. Classifying error of trainable combining algorithms 

 

File name 
GMM on Level0 GMM [12] on Level0 GMM on Level1 GMM PCA on Level1 

Mean Variance Mean Variance Mean Variance Mean Variance 

Bupa 0.4419 5.80E-03 0.4064 8.00E-03 0.3022 5.31E-03 0.3176 5.49E-03 

Artificial 0.4507 8.00E-03 0.4209 7.60E-03 0.2374 2.40E-03 0.2329 1.66E-03 

Pima 0.2466 2.40E-03 0.3022 1.80E-03 0.2432 2.60E-03 0.2158 8.70E-03 

Sonar 0.3193 1.26E-02 0.2000 7.90E-03 0.2009 6.20E-03 0.1974 6.90E-03 

Heart 0.1715 7.30E-03 0.3367 6.50E-03 0.1559 4.51E-03 0.1600 5.43E-03 

Phoneme 0.2400 4.00E-04 0.2136 3.00E-04 0.1165 2.01E-04 0.1161 1.72E-04 

Haberman 0.2696 2.00E-03 0.2640 2.90E-03 0.2458 3.36E-03 0.2491 2.40E-03 

Titanic 0.2904 2.01E-02 0.2353 2.70E-03 0.2167 5.91E-04 0.2183 7.83E-04 

Balance 0.1214 1.10E-03 0.0899 1.40E-03 0.0839 1.21E-03 0.0783 1.10E-03 

Fertility 0.3130 7.47E-02 0.1410 6.60E-03 0.1850 1.05E-02 0.1250 2.50E-03 

Skin&NonSkin 0.0761 2.21E-06 0.0144 1.70E-05 4.10E-04 1.53E-08 0.0004 1.60E-08 

Wdbc 0.0678 1.10E-03 0.0866 1.70E-03 0.0387 5.98E-04 0.0397 6.97E-04 

Australian 0.1980 1.80E-03 0.3803 4.00E-03 0.1222 1.30E-03 0.1233 1.20E-03 

Twonorm 0.0216 2.83E-05 0.0225 3.19E-05 0.0219 2.78E-05 0.0219 2.72E-05 

Magic 0.2733 5.06E-05 0.2468 5.08E-05 0.1921 8.34E-05 0.1923 7.93E-05 

Ring 0.0209 2.20E-05 0.0207 2.29E-05 0.1131 1.16E-04 0.1131 9.98E-05 

Tae 0.5595 1.39E-02 0.4460 1.33E-02 0.4365 1.36E-02 0.5132 1.67E-02 

Contraceptive 0.5306 1.80E-03 0.5099 2.10E-03 0.4667 1.30E-03 0.4671 1.70E-03 

Vehicle 0.5424 2.40E-03 0.5124 2.20E-03 0.2166 1.40E-03 0.2132 1.80E-03 

Iris 0.0453 2.50E-03 0.0287 1.60E-03 0.0360 2.10E-03 0.0400 3.02E-03 

Letter 0.3573 9.82E-05 0.1302 5.53E-05 0.0797 3.03E-05 0.0834 2.98E-05 

Table 4. Classifying error of GMM-based approaches 
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Fig. 2. Statistical test compare GMM, GMMPCA with the benchmarks 

5 CONCLUSION AND FUTURE WORK 

We have introduced a novel model which used GMM on Level1 data to com-
bine results from base classifiers in multi classifier system. The experiments and as-
sessments on 21 UCI files have illustrated the advantage of our method compared 
with popular state-of-art combining algorithms. Specifically, GMM-based approach 
on Level1 is better than on Level0 and Moghaddam approach [12] as well as Decision 
Template and SCANN, is competitive with best result from fixed rules and MLR. 
However, several potential limitations have also been addressed related to perfor-
mance and effectiveness of our model. First, Level1 of training set is needed as input 
data for our framework (as well as Decision Template, MLR, SCANN) while fixed 
rules only employees Level1 of unlabeled observation; as a result, computational cost 
is gone up. Moreover, performance of GMM is time-consuming because of produce to 
find optimal number of components by BIC (eqn. 9). Due to this analysis, we are 
planning to improve performance of our model by studying new methods instead of 
using BIC. Besides, we intend applying classifier and feature selection methods to 
increase classifying accuracy of our model. 
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