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Abstract

In this paper we study the complexity of strategic argumenta-
tion for dialogue games. A dialogue game is a 2-player game
where the parties play arguments. We show how to model di-
alogue games in a skeptical, non-monotonic formalism, and
we show that the problem of deciding what move (set of rules)
to play at each turn is an NP-complete problem.

1 Introduction and Motivation
Over the years many dialogue games for argumentation have
been proposed to study questions such as which conclusions
are justified, or how procedures for debate and conflict res-
olution should be structured to arrive at a fair and just out-
come. We observed that the outcome of a debate does not
solely depend on the premises of a case, but also on the
strategies that parties in a dispute actually adopt. Accord-
ing to our knowledge, this aspect has not received the proper
attention in the literature of the field.

Almost all the AI literature on the strategic aspects of ar-
gumentation (see Section 3 for a brief overview) assumes to
work with argument games with complete information, i.e.,
dialogues where the structure of the game is common knowl-
edge among the players. Consider, however, the following
example due to (?) (which in turn modifies an example taken
from (?)):

p0 : “You killed the victim.”
c1 : “I did not commit murder! There is no evidence!”
p1 : “There is evidence. We found your ID card near the

scene.”
c2 : “It’s not evidence! I had my ID card stolen!”
p2 : “It is you who killed the victim. Only you were near

the scene at the time of the murder.”
c3 : “I didn’t go there. I was at facility A at that time.”
p3 : “At facility A? Then, it’s impossible to have had

your ID card stolen since facility A does not allow a
person to enter without an ID card.”

This dialogue exemplifies an argument game occurring in
witness examinations in legal courts. The peculiarity of this
game is the fact that the exchange of arguments reflects an
asymmetry of information between the players: each player
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does not know the other player’s knowledge, thus she cannot
predict which arguments are attacked and which counterar-
guments are employed for attacking the arguments. Indeed,
(?) points out, for instance, that p3 attacks c2, but only when
c3 is given: hence, the attack p3 of the proponent is made
possible only when the opponent discloses some private in-
formation with the move c3.

Despite the encouraging results offered by (?), we argue
that relaxing the complete-information assumption leads in
general to non-tractable frameworks. In this paper, in partic-
ular, we explore the computational cost of argument games
of incomplete information where the (internal) logical struc-
ture of arguments is considered.

In this case relaxing complete information, such as when
players do not share the same beliefs and set of arguments,
simply amounts to the fact they have different logical theo-
ries, i.e., different sets of rules from which arguments sup-
porting logical conclusions can be built. Hence, if the propo-
nent, having a theory T , has the objective to prove that some
l is true, there is no obvious way for preferring an argument
for l obtained from the minimal subset of T (which could at
first sight minimise the chances of successful attacks from
the opponent) over the maximal set of arguments obtained
from the whole T (which could at a first sight maximise the
chances to defeat any counterarguments of the opponent).

The layout of the paper is as follows. Section 2 offers
a gentle introduction and motivation for our research prob-
lem. Section 3 reviews relevant related work, thus present-
ing further motivations behind our contribution. Section 4
presents the logic used for building arguments in dialogues
(Argumentation Logic): it is a variant of Defeasible Logic
(?) having linear complexity; another logic (Agent Logic
has linear complexity as well) is subsequently recalled from
(Governatori and Rotolo 2008). In this second logic, it is
possible to formulate the NP-complete “Restoring Sociality
Problem”; the objective is to prove that this problem can
be mapped into the problem of interest here, the so-called
“Strategic Argumentation Problem”, which rather consists
in successfully deciding for each player what move to play
at each argument turn (thus showing that the Strategic Ar-
gumentation Problem is NP-complete as well). Section 5
defines dialogue protocols for games of incomplete infor-
mation based on Argumentation Logic and formulates the
Strategic Argumentation Problem. Section 6 shows how to



transform a theory in Agent Logic into an equivalent one
in Argumentation Logic, and presents the main theorem of
computational complexity for argument games.

2 A Gentle Introduction to the Problem

In the most typical forms of strategic argumentation, two
players exchange arguments in a dialogue game: in the sim-
plest case, a proponent (hereafter Pr) has the objective to
prove a conclusion l (a literal of the language) and an oppo-
nent (hereafter Op) presents counterarguments to the moves
of Pr. If we frame this intuition in proof-theoretic settings,
such as in those developed in (?; ?; Toni 2013) where ar-
guments are defined as inference trees formed by applying
rules, exchanging arguments means exchanging logical the-
ories (consisting of rules) proving conclusions. Assume, for
instance, that the argument game is based on a finite set F
of indisputable facts and a finite set R of rules: facts initially
fire rules and this leads to building proofs for literals.

If R and F are common knowledge of Pr and Op, suc-
cessful strategies in argument games are trivially identified:
each player can compute if the entire theory (consisting of F
and R) logically entails l. In this situation the game consists
of a single move.

Suppose now that F is known by both players, but R is
partitioned into three subsets: a set RCom known by both
players and two subsets RPr and ROp corresponding, respec-
tively, to Pr’s and Op’s private knowledge (what Pr and Op
privately know to be true). This scenario exemplifies an ar-
gument game of incomplete information. In this context,
each player can use all rules belonging to her private knowl-
edge (RPr or ROp) as well as all the public rules. These rules
are not just the rules in RCom but also rules that, though ini-
tially belonging to the private information of other player,
have been used in previous turns.

Let us suppose to work with a skeptical non-monotonic
framework, i.e., a logical machinery where, whenever two
conflicting conclusions are obtainable from different rules,
the system refrains to take a decision. Assuming a game
where players has private and public knowledge, the prob-
lem of deciding what move (set of rules) to play at each turn
amounts to establish whether there is any subset of her rules
that can be successful. Is there any safe criterion to select
successful strategies?

Consider the following three examples.
Pr and Op are debating about the truthfulness of a state-

ment, we say l; Pr is arguing that l is the case, whilst Op
answers back the truthfulness of the opposite claim (hence-
forth ¬l). Each player has her own (private) arguments,
not known by the opponent, but they both share the factual
knowledge as well as some inference rules. Suppose Pr has
the following private arguments:

P1 : a ⇒ b ⇒ c ⇒ l
P2 : ¬b ⇒ ¬e ⇒ f
P3 : ¬b ⇒ ¬e ⇒ g
P4 : d ⇒ c,

while Op has

O1 : a ⇒ e ⇒ ¬l
O2 : d ⇒ ¬b
O3 : f ⇒ ¬l,

where F = {a,d} and RCom = {g⇒¬l}. The notation used
is to exemplify arguments as chains of rules. For instance,
argument P1 implies that RPr contains three rules r1 : a⇒ b,
r2 : b⇒ c, and r3 : c⇒ l.

The point of the example being that if Pr decides to an-
nounce all his private arguments, then she is not able to
prove her thesis l. Indeed, she would not have counterar-
guments defeating O3 and RCom. If instead she argues with
P1 and the subpart ¬b⇒ ¬e of P2, keeping hidden from
Op the way to prove the premises d of O2, then she proves l

Consider now this new setting:

F = {a,d, f}
RCom = /0

RPr = {a⇒ b, d⇒ c, c⇒ b}
ROp = {c⇒ e, e, f ⇒¬b}

If Pr’s intent is to prove b and she plays {a⇒ b}, then Pr
wins the game. However, if Pr plays {d ⇒ c, c⇒ b} (or
even RPr), this allows Op to succeed. Here, a minimal sub-
set of RPr is successful. However, the situation (for similar
reasons) can be reversed for Pr:

F = {a,d, f}
RCom = /0

RPr = {a⇒ b, d⇒¬c}
ROp = {d,c⇒¬b, f ⇒ c}

In this second case, the move {a⇒ b} is not successful for
Pr, while playing with the whole RPr ensures victory.

In the remainder of this paper, we will study this re-
search question in the context of Defeasible Logic. We
will show that the problem of deciding what set of rules to
play (Strategic Argumentation Problem) at a given move is
NP-complete even when the problem of deciding whether a
given theory (defeasibly) entails a literal can be computed
in polynomial time. We will map the NP-complete Restor-
ing Sociality Problem proposed in (Governatori and Rotolo
2008) into the Strategic Argumentation Problem. To this
end, we first propose a standard Defeasible Logic to for-
malise the argumentation framework (Subsection 4.1) and
then we present the BIO agent defeasible logic (Subsec-
tion 4.2). Finally, in Section 6 we show how to transform an
agent defeasible logic into an equivalent argumentation one
and we present the main theorem of computational complex-
ity.

3 Related Work
Despite the game-like character of arguments and debates,
game-theoretic investigations of argumentation are still rare
in the AI argumentation literature and in the game theory
one as well (an exception in this second perspective is (?)).

Most existing game-theoretic investigations of argumen-
tation in AI, such as (?; ?; ?; ?; ?) proceed within Dung’s



abstract argumentation paradigm, while (?), though working
on argumentation semantics related with Dung’s approach,
develop a framework where also the logical internal struc-
ture of arguments is made explicit.

(?) presents a notion of argument strength within the class
of games of strategy. The measure of the strength of an ar-
gument emerges from confronting proponent and opponent
via a repeated game of argumentation strategy such that the
payoffs reflect the long term interaction between proponent
and opponent strategies.

Other types of game analyses have been used for argu-
mentation. In particular, argumentation games have been re-
constructed as two-player extensive-form games of perfect
information (?; ?; ?). (For a discussion on using extensive-
form games, see also (?).) While (?) works on zero-sum
games, (?) does not adopt this view because preferences
over outcomes are specified in terms of expected utility com-
bining the probability of success of arguments (with respect
to a third party, an adjudicator such as a judge) with the costs
and benefits associated to arguments, thus making possible
that argument withdrawn be the most preferred option. Be-
sides this difference, in both approaches uncertainty is in-
troduced due to different probabilities of success depending
on a third party, such as external audience or a judge, whose
attitude towards the arguments exchanged by proponent and
opponent is uncertain.

All these works assume that argument games have com-
plete information, which, we noticed, is an oversimpli-
fication is many real-life contexts (such as in legal dis-
putes). How to go beyond complete information? In game-
theoretic terms, one of the simplest ways of analyzing ar-
gument games of incomplete information is to frame them
as Bayesian extensive games with observable actions (?,
chap. 12): this is possible because every player observes
the argumentative move of the other player and uncertainty
only derives from an initial move of chance that distributes
(payoff-relevant) private information among the players cor-
responding to logical theories: hence, chance selects types
for the players by assigning to them possibly different the-
ories from the set of all possible theories constructible from
a given language. If this hypothesis is correct, notice that
(i) Bayesian extensive games with observable actions allow
to simply extend the argumentation models proposed, e.g.,
in (?; ?), and (ii) the probability distributions over players’
types can lead to directly measuring the probability of justifi-
cation for arguments and conclusions, even when arguments
are internally analyzed (?). Despite this fact, however, com-
plexity results for Bayesian games are far from encouraging
(see (?) for games of strategy). If we move to Bayesian
extensive games with observable actions things not encour-
aging, too. Indeed, we guess that considerations similar to
those presented by (?) can be applied to argument games:
the calculation of the perfect Bayesian equilibrium solution
can be tremendously complex due to both the size of the
strategy space (as a function of the size of the game tree, and
it can be computationally hard to compute it (Dimopoulos,
Nebel, and Toni 2002)), and the dependence between vari-
ables representing strategies and players’ beliefs. A study
of these game-theoretical issues cannot be developed here

and is left to future work: this paper, instead, considers a
more basic question: the computational problem of explor-
ing solutions in the logical space of strategies when argu-
ments have an internal structure.

In this sense, this contribution does not directly develop
any game-theoretic analysis of argumentation games of in-
complete information, but it offers results about the com-
putation cost for logically characterizing the problems that
any argumentation game with incomplete information po-
tentially rises. Relevant recent papers that studied argumen-
tation of incomplete information without any direct game-
theoretic analysis are (?) and (?), which worked within
the paradigm of abstract argumentation. The general idea
in these works is to devise a system for dynamic argumen-
tation games where agents’ knowledge bases can change
and where such changes are precisely caused by exchang-
ing arguments. (?) presents a first version of the framework
and an algorithm, for which the authors prove a termination
result. (?) generalizes this framework (by relaxing some
constraints) and devises a computational method to decide
which arguments are accepted by translating argumentation
framework into logic programming; this further result, how-
ever, is possible only when players are eager to give all the
arguments, i.e., when proponent and opponent eventually
give all possible arguments in the game.

4 Logic
In this section we shall introduce the two logics used in this
paper. The first is the logic used in a dialogue game. This
is the logic to represent the knowledge of the players, the
structure of the arguments, and perform reasoning. We call
this logic “Argumentation logic” and we use the Defeasible
Logic of (?). (?) provides the relationships between this
logic (and some of its variants) and abstract argumentation,
and (Thakur et al. 2007) shows how to use this logic for di-
alogue games. The second logic, called Agent Logic, is the
logic in which the “restoring sociality problem” (a known
NP-completed problem) (Governatori and Rotolo 2008) was
formulated. It is included in this paper to show how to re-
duce the restoring sociality problem into the strategic argu-
mentation problem, proving thus that the later is also an NP-
complete problem. The Agent Logic is an extension of De-
feasible Logic with modal operators for Beliefs, Intentions
and Obligations (Governatori and Rotolo 2008).

Admittedly, this section takes a large part of this paper,
but is required to let the reader comprehend the mechanisms
behind our demonstration of NP-completeness.

4.1 Argumentation Logic
A defeasible argumentation theory is a standard defeasible
theory consisting of a set of facts or indisputable statements,
a set of rules, and a superiority relation > among rules say-
ing when a single rule may override the conclusion of an-
other rule. We have that φ1, . . . ,φn→ ψ is a strict rule such
that whenever the premises φ1, . . . ,φn are indisputable so
is the conclusion ψ . A defeasible rule φ1, . . . ,φn ⇒ ψ is
a rule that can be defeated by contrary evidence. Finally,
φ1, . . . ,φn ; ψ is a defeater that is used to prevent some
conclusion but cannot be used to draw any conclusion.



Definition 1 (Language). Let PROP be a set of propositional
atoms and Lblarg be a set of labels. Define:
Literals

Lit = PROP∪{¬p|p ∈ PROP}
If q is a literal, ∼q denotes the complementary literal (if
q is a positive literal p then∼q is ¬p; and if q is ¬p, then
∼q is p);

Rules
r : φ1, . . . ,φn ↪→ ψ,

where r ∈ Lblarg is a unique label, A(r) = {φ1, . . . ,φn} ⊆
Litarg is the antecedent of r, C(r) = ψ ∈ Litarg is the con-
sequent of r, and ↪→∈ {→,⇒,;} is the type of r.

We use R[q] to indicate all rules with consequent q. We de-
note the sets of strict, rules, strict and defeasible rules, and
defeaters with Rs, Rd, Rsd, and Rdft, respectively.
Definition 2 (Defeasible Argumentation Theory). A defea-
sible argumentation theory is a structure

Darg = (F,R,>)

where
• F ⊆ Lit is a finite set of facts;
• R is the finite set of rules;
• The superiority relation > is acyclic, irreflexive, and

asymmetric.
Definition 3 (Proofs). Given an agent theory D, a proof P
of length n in D is a finite sequence P(1), . . . ,P(n) of la-
belled formulas of the type +∆q,−∆q, +∂q and−∂q, where
the proof conditions defined in the rest of this section hold.
P(1..n) denotes the initial part of the derivation of length n.

We start with some terminology.
Definition 4. Given # ∈ {∆,∂} and a proof P in D, a literal
q is #-provable in D if there is a line P(m) of P such that
P(m) = +#q. A literal q is #-rejected in D if there is a line
P(m) of P such that P(m) =−#q.

The definition of ∆ describes just forward chaining of
strict rules:

+∆: If P(n+1) = +∆q then
(1) q ∈ F or
(2) ∃r ∈ Rs[q] s.t. ∀a ∈ A(r). a is ∆-provable.

−∆: If P(n+1) =−∆q then
(1) q /∈ F and
(2) ∀r ∈ Rs[q]. ∃a ∈ A(r) s.t. a is ∆-rejected.

For a literal q to be definitely provable either is a fact, or
there is a strict rule with head q, whose antecedents have
all been definitely proved previously. And to establish that
q cannot be definitely proven we must establish that every
strict rule with head q has at least one antecedent is definitely
rejected.

The following definition is needed to introduce the defea-
sible provability.
Definition 5. A rule r ∈ Rsd is applicable in the proof con-
dition for ±∂ iff ∀a ∈ A(r), +∂a ∈ P(1..n). A rule r is
discarded in the condition for ±∂ iff ∃a ∈ A(r) such that
−∂a ∈ P(1..n).

+∂ : If P(n+1) = +∂q then
(1)+∆q ∈ P(1..n) or
(2) (2.1) −∆∼q ∈ P(1..n) and

(2.2) ∃r ∈ Rsd[q] s.t. r is applicable, and
(2.3) ∀s ∈ R[∼q]. either s is discarded, or

(2.3.1) ∃t ∈ R[q] s.t. t is applicable and t > s.
−∂ : If P(n+1) =−∂q then

(1) −∆X q ∈ P(1..n) and either
(2.1) +∆∼q ∈ P(1..n) or
(2.2) ∀r ∈ Rsd[q]. either r is discarded, or
(2.3) ∃s ∈ R[∼q] s.t. s is applicable, and

(2.3.1) ∀t ∈ R[q]. either t is discarded, or t 6> s.

To show that q is defeasibly provable we have two choices:
(1) We show that q is already definitely provable; or (2)
we need to argue using the defeasible part of a theory D.
For this second case, ∼q is not definitely provable (2.1),
and there exists an applicable strict or defeasible rule for
q (2.2). Every attack s is either discarded (2.3), or defeated
by a stronger rule t (2.3.1). −∂X q is defined in an analogous
manner and follows the principle of strong negation which
is closely related to the function that simplifies a formula by
moving all negations to an inner most position in the result-
ing formula, and replaces the positive tags with the respec-
tive negative tags, and the other way around (Antoniou et al.
2000).

4.2 Agent Logic

A defeasible agent theory is a standard defeasible theory en-
riched with 1) modes for rules, 2) modalities (belief, inten-
tion, obligation) for literals, and 3) relations for conversions
and conflict resolution. We report below only the distinc-
tive features. For a detailed exposition see (Governatori and
Rotolo 2008).

Definition 6 (Language). Let PROP and Lit be a set of
propositional atoms and literals as in Definition 1, MOD =
{BEL, INT,OBL} be the set of modal operators, and Lblsoc
be a set of labels. Define:

Modal literals

ModLit = {Xl|l ∈ Lit,X ∈ {OBL, INT}};

Rules
r : φ1, . . . ,φn ↪→X ψ,

where r ∈ Lblsoc is a unique label, A(r) = {φ1, . . . ,φn} ⊆
Lit∪ModLit is the antecedent of r, C(r) = ψ ∈ Lit is the
consequent of r, ↪→∈ {→,⇒,;} is the type of r, and
X ∈MOD is the mode of r.

RX (RX [q]) denotes all rules of mode X (with consequent q),
and R[q] =

⋃
X∈{BEL,OBL,INT}RX [q].

Observation 1. Rules for intention and obligation are
meant to introduce modalities: for example, if we have the
intention rule r : a⇒INT b and we derive a, then we obtain
INTb. On the contrary, belief rules produce literals and not
modal literals.



Rule conversion It is sometimes meaningful to use rules
for a modality Y as they were for another modality X , i.e.,
to convert one mode of conclusions into a different one.
Formally, we define the asymmetric binary convert relation
Cv ⊆ MOD×MOD such that Cv(Y,X) means ‘a rule of
mode Y can be used also to produce conclusions of mode
X’. This corresponds to the following rewriting rule:

Xa1, . . . ,Xan A(r) = a1, . . . ,an⇒Y b
Xb

Cv(Y,X)

where A(r) 6= /0 and A(r)⊆ Lit.

Conflict-detection/resolution We define an asymmetric
binary conflict relation Cf ⊆ MOD × MOD such that
Cf(Y,X) means ‘modes Y and X are in conflict and mode
Y prevails over X’.

Definition 7 (Defeasible Agent Theory). A defeasible agent
theory is a structure

Dsoc = (Fsoc,RBEL,RINT,ROBL,>soc,V ,F )

where

• Fsoc ⊆ Lit∪ModLit is a finite set of facts;

• RBEL, ROBL, RINT are three finite sets of rules for beliefs,
obligations, and intentions;

• The superiority (acyclic) relation >soc=>sm
soc ∪>Cf

soc such
that: i. >sm

soc⊆ RX×RX such that if r >soc s then r ∈ RX [p]
and s∈ RX [∼p]; and ii. >Cf

soc is such that ∀r ∈ RY [p],∀s∈
RX [∼p] if Cf(Y,X) then r >Cf

soc s.

• V = {Cv(BEL,OBL),Cv(BEL, INT)} is a set of convert
relations;

• F = {Cf(BEL,OBL),Cf(BEL, INT),Cf(OBL, INT)} is a
set of conflict relations.

A proof is now a finite sequence of labelled formulas of
the type +∆X q, −∆X q, +∂X q and −∂X q.

The following definition states the special status of belief
rules, and that the introduction of a modal operator corre-
sponds to being able to derive the associated literal using the
rules for the modal operator.

Definition 8. Given # ∈ {∆,∂} and a proof P in D, q is #-
provable in D if there is a line P(m) of P such that either

1. q is a literal and P(m) = +#BELq, or

2. q is a modal literal X p and P(m) = +#X p, or

3. q is a modal literal ¬X p and P(m) =−#X p.

Instead, q is #-rejected in D if

4. q is a literal and P(m) =−#BELq or

5. q is a modal literal X p and P(m) =−#X p, or

6. q is a modal literal ¬X p and P(m) = +#X p.

We are now ready to report the definition of ∆X .

+∆X : If P(n+1) = +∆X q then
(1) q ∈ F if X = BEL or Xq ∈ F or
(2) ∃r ∈ RX

s [q] s.t. ∀a ∈ A(r). a is ∆-provable or
(3) ∃r ∈ RY

s [q] s.t. Cv(Y,X) ∈ C and
∀a ∈ A(r). Xa is ∆-provable.

−∆X : If P(n+1) =−∆X q then
(1) q /∈ F if X = BEL and Xq /∈ F and
(2) ∀r ∈ RX

s [q]. ∃a ∈ A(r) s.t. a is ∆-rejected and
(3) ∀r ∈ RY

s [q]. if Cv(Y,X) ∈ C then
∃a ∈ A(r) s.t. Xa is ∆-rejected.

The sole difference with respect to +∆ is that now we may
use rule of a different mode, namely Y , to derive conclu-
sions of mode X through the conversion mechanism. In this
framework, only belief rules may convert to other modes.
That is the case, every antecedent of the belief rule r ∈ RY in
clause (3) must be (definitely) proven with modality X .

We reformulate definition of being applicable/discarded,
taking now into account also Cv and Cf relations.
Definition 9. Given a proof P and X ,Y,Z ∈MOD
• A rule r is applicable in the proof condition for ±∂X iff

1. r ∈ RX and ∀a ∈ A(r), a is ∂ -provable, or
2. r ∈RY , Cv(Y,X)∈C , and ∀a∈A(r), Xa is ∂ -provable.
• A rule r is discarded in the condition for ±∂X iff

3. r ∈ RX and ∃a ∈ A(r) such that a is ∂ -rejected; or
4. r ∈ RY and, if Cv(Y,X), then ∃a ∈ A(r) such that Xa is

∂ -rejected, or
5. r ∈ RZ and either ¬Cv(Z,X) or ¬Cf(Z,X).

We are now ready to provide proof conditions for ±∂X :

+∂X : If P(n+1) = +∂X q then
(1)+∆X q ∈ P(1..n) or
(2) (2.1) −∆X∼q ∈ P(1..n) and

(2.2) ∃r ∈ Rsd [q] s.t. r is applicable, and
(2.3) ∀s ∈ R[∼q] either s is discarded, or

(2.3.1) ∃t ∈ R[q] s.t. t is applicable and t > s, and
either t,s ∈ RZ , or Cv(Y,X) and t ∈ RY

−∂X : If P(n+1) =−∂X q then
(1) −∆X q ∈ P(1..n) and either

(2.1) +∆X∼q ∈ P(1..n) or
(2.2) ∀r ∈ Rsd [q], either r is discarded, or
(2.3) ∃s ∈ R[∼q], s.t. s is applicable, and

(2.3.1) ∀t ∈ R[q] either t is discarded, or t 6> s, or
t ∈ RZ ,s ∈ RZ′ , Z 6= Z′ and,
if t ∈ RY then ¬Cv(Y,X).

Again, the only difference with respect to +∂ is that we
have rules for different modes, and thus we have to ensure
the appropriate relationships among the rules. Hence, clause
(2.3.1) prescribes that either attack rule s and counterattack
rule t have the same mode (i.e., s, t ∈ RZ), or that t can be
used to produce a conclusion of the mode X (i.e., t ∈ RY and
Cv(Y,X)). Notice that this last case is reported for the sake
of completeness but it is useless in our framework since it
plays a role only within theories with more than three modes.

Being the strong negation of the positive counterpart,
−∂X q is defined in an analogous manner.



We define the extension of a defeasible theory as the set
of all positive and negative conclusions. In (Maher 2001;
Governatori and Rotolo 2008), authors proved that the ex-
tension calculus of a theory in both argumentation and agent
logic is linear in the size of the theory.

Let us introduce some preliminary notions, which are
needed for formulating the “restoring sociality problem”
(Governatori and Rotolo 2008) (and recalled below).

• Given an agent defeasible theory D, a literal l is supported
in D iff there exists a rule r ∈ R[l] such that r is applicable,
otherwise l is not supported. For X ∈MOD we use +ΣX l
and −ΣX l to indicate that l is supported / not supported
by rules for X .

• Primitive intentions of an agent are those intentions given
as facts in a theory.

• Primary intentions and obligations are those derived us-
ing only rules for intentions and obligations (without any
rule conversion).

• A social agent is an agent for which obligation rules are
stronger than any conflicting intention rules but weaker
than any conflicting belief rules.

4.3 Restoring Sociality Problem

INSTANCE:
Let I be a finite set of primitive intentions, OBLp a pri-
mary obligation, and D a theory such that I ⊆ F , D `
−∂OBLp, D ` −ΣOBL∼p, D ` +∂INT∼p, D ` +ΣOBLp
and D ` −ΣBEL∼p.
QUESTION:
Is there a theory D′ equal to D apart from containing
only a proper subset I′ of I instead of I, such that ∀q if
D `+∂OBLq then D′ ` ∂OBLq and D′ `+∂OBLp?

Let us the consider the theory consisting of

F = {INTp, INTs}
R = {r1 : p,s⇒BEL q r2 : ⇒OBL ∼q r3 : ⇒BEL s}
>= {r1 > r2}

r1 is a belief rule and so the rule is stronger than the obli-
gation rule r2. In addition we have that the belief rule is
not applicable (i.e., −ΣBELq) since there is no way to prove
+∂BELp. There are no obligation rules for q, so −∂OBLq.
However, rule r1 behaves as an intention rule since all its
antecedent can be proved as intentions, i.e., +∂INTp and
+∂INTs. Hence, since r1 is stronger than r2, the derivation
of +∂OBL∼q is prevented against the sociality of the agent.

The related decision problem is whether it is possible to
avoid the “deviant” behaviour by giving up some primitive
intentions, retaining all the (primary) obligations, and main-
taining a set of primitive intentions as close as possible to
the original set of intentions.

Theorem 10 ((Governatori and Rotolo 2008)). The Restor-
ing Sociality Problem is NP-complete.

5 Dialogue Games
The form of a dialogue game involves a sequence of interac-
tions between two players, the Proponent Pr and the Oppo-
nent Op. The content of the dispute being that Pr attempts
to assess the validity of a particular thesis (called critical lit-
eral within our framework), whereas Op attacks Pr’s claims
in order to refute such thesis. We shift such position in our
setting by stating that the Opponent has the burden of proof
on the opposite thesis, and not just the duty to refute the
Proponent’s thesis.

The challenge between the parties is formalised by means
of argument exchange. In the majority of concrete in-
stances of argumentation frameworks, arguments are defined
as chains of reasoning based on facts and rules captured in
some formal language (in our case, a defeasible derivation
P). Each party adheres to a particular set of game rules as
defined below.

The players partially shares knowledge of a defeasible
theory. Each participant has a private knowledge regarding
some rules of the theory. Other rules are known by both par-
ties, but this set may be empty. These rules along with all
the facts of the theory and the superiority relation represent
the common knowledge of both participants.

By putting forward a private argument during a step of
the game, the agent increases the common knowledge by
the rules used within the argument just played.

Define the argument theory to be Darg = (F,R,>) such
that i. R = RPr ∪ROp ∪RCom, ii. RPr (ROp) is the private
knowledge of the Proponent (Opponent), and iii. RCom is
the (possibly empty) set of rules known by both participants.
We use the superscript notation Di

arg, Ri
Pr, Ri

Op, and Ri
Com to

denote such sets at turn i.
We assume that Darg is coherent and consistent, i.e., there

is no literal p such that: i. Darg ` ±∂ p, and ii. Darg ` +∂ p
and Darg `+∂∼p.

We now formalise the game rules, that is how the common
theory Di

arg is modified based on the move played at turn i.
The parties start the game by choosing the critical literal l

to discuss about: the Proponent has the burden to prove +∂ l
by using the current common knowledge along with a subset
of RPr, whereas the Opponent’s final goal is to prove +∂∼l
using ROp instead of RPr.

The players may not present arguments in parallel: they
take turn in making their move.

The repertoire of moves at each turn just includes 1)
putting forward an argument, and 2) passing.

When putting forward an argument at turn i, the Propo-
nent (Opponent) may bring a demonstration P whose termi-
nal literal differs from l (∼l). When a player passes, she
declares her defeat and the game ends. This happens when
there is no combination of the remaining private rules which
proves her thesis.

Hence, the initial state of the game is T 0
arg = (F,R0

Com,>)

with R0
Com = RCom, and R0

Pr = RPr, R0
Op = ROp.

If T 0
arg ` +∂ l, the Opponent starts the game. Otherwise,

the Proponent does so.
At turn i, if Proponent plays Ri

arg, then

• T i−1
arg `+∂∼l (T i−1

arg ` −∂ l if i = 1);



• Ri
arg ⊆ Ri−1

Pr ;

• T i
arg = (F,Ri

Com,>);

• Ri
Pr = Ri−1

Pr \Ri
arg, Ri

Op = Ri−1
Op , and Ri

Com = Ri−1
Com∪Ri

arg;

• T i
arg `+∂ l.

At turn i, if Opponent plays Ri
arg, then

• T i−1
arg `+∂ l;

• Ri
arg ⊆ Ri−1

Op ;

• T i
arg = (F,Ri

Com,>);

• Ri
Pr = Ri−1

Pr , Ri
Op = Ri−1

Op \Ri
arg, and Ri

Com = Ri−1
Com∪Ri

arg;

• T i
arg `+∂∼l.

5.1 Strategic Argumentation Problem
PROPONENT’S INSTANCE FOR TURN i: Let l be the critical
literal, Ri−1

Pr be the set of the private rules of the Proponent,
and T i−1

arg be such that either T i−1
arg ` −∂ l if i = 1, or Di−1

arg `
+∂∼l otherwise.
QUESTION: Is there a subset Ri

arg of Ri−1
Pr such that Di

arg `
+∂ l?
OPPONENT’S INSTANCE FOR TURN i: Let l be the critical
literal, Ri−1

Op be the set of the private rules of the Opponent,
and Di−1

arg be such that Di−1
arg `+∂ l.

QUESTION: Is there a subset Ri
arg of Ri−1

Op such that Di
arg `

+∂∼l?

6 Reduction
We now show how to transform Agent Logic (Section 4.2)
into Argumentation Logic (Section 4.1). Basically, we need
to act by transforming both literals and rules: whereas the
agent theory deals with three different modes of rules and
modal literals, the argumentation theory has rules without
modes and literals.

The two main ideas of transformations proposed in Defi-
nitions 11 and 12 are
• Flatten all modal literals with respect to internal negations

modalities. For instance, ∼p is flattened into the literal
not p, while OBLq is obl q.

• Remove modes from rules for BEL, OBL and INT. Thus,
a rule with mode X and consequent p is transformed into
a standard, non-modal rule with conclusion X p. An ex-
ception is when we deal with belief rules, given that they
do not produce modal literals. Therefore, rule⇒OBL p is
translated in⇒ obl p, while rule⇒BEL q becomes⇒ q.
Function pflat flattens the propositional part of a literal

and syntactically represents negations; function flat flattens
modalities.
Definition 11. Let Dsoc be a defeasible agent theory. Define
two syntactic transformations pflat : Litsoc → PROParg and
flat : ModLitsoc∪Litsoc→ Litarg as

pflat(p) =
{

p ∈ PROParg if p ∈ PROPsoc

not q ∈ PROParg if p = ¬q, q ∈ PROPsoc

flat(p) =



pflat(q) if p = q,
obl pflat(q) if p = OBLq
¬obl pflat(q) if p = ¬OBLq
int pflat(q) if p = INTq
¬int pflat(q) if p = ¬INTq.

Given that in BIO a belief modal literal is not BELp
but simply p, we have that flat(p) = pflat(p) whenever
the considered mode is BEL, while flat(X p) = x pflat(p) if
X = {OBL, INT}.

We need to redefine the concept of complement to map
BIO modal literals into an argumentation logic with literals
obtained through flat. Thus, if q ∈ PROParg is a literal p
then ∼q is not p; and if q is not p, then ∼q is p. Moreover,
if q ∈ Litarg is x pflat(p) then ∼q = x pflat(∼p); and q is
¬x pflat(p) then ∼q = x pflat(p).

We now propose a detailed description of facts and rules
introduced by Definition 12.

In the “restoring sociality problem” we have to select a
subset of factual intentions, while in the “strategic argumen-
tation problem” we choose a subset of rules to play to defeat
the opponent’s argument. Therefore, factual intentions are
modelled as strict rules with empty antecedent (rp), while
factual beliefs and obligations are facts of Darg.

We recall that, while proving±#X q, a rule in BIO may fire
if either is of mode X , through Cv, or through Cf. Hence, a
rule r in Dsoc has many counterparts in Darg.

Specifically, r f l is built from r by: removing the mode,
and flattening each antecedent of r as well as the consequent
p which in turn embeds the mode introduced by r.

Moreover, if r ∈ RBEL[p] then it may be used through con-
version to derive X p. To capture this feature we introduce a
rule rCvx with conclusion x pflat(p) and where for each an-
tecedent a ∈ A(r) the corresponding in A(rCvx) is x pflat(a)
according either to clause (3) of +∆X or to condition 2. of
Definition 9.

In Dsoc, it is easy to determine which rule may fire against
one another, being that consequents of rules are non-modal
literals. Even when the rules have different modes and the
conflict mechanism is used, their conclusions are two com-
plementary literals. Given the definition of complementary
literals obtained through flat we have introduced after Def-
inition 11, this is not the case for the literals in Darg. The
situation is depicted in the following theory.

r : a⇒OBL p r f l : a⇒ obl p
s : b⇒INT ¬p s f l : b⇒ int not p
t : c⇒BEL p t f l : c⇒ p.

Here, r may fire against s through Cf(OBL, INT) while r f l
cannot, given that obl p is not the complement of int not p.
In the same fashion, if we derive +∂BELc then t may fire
against s because of Cf(BEL, INT), while if we have ei-
ther +∂OBLc or +∂INTc then the conflict between beliefs
and intentions is activated by the use of r through either
Cv(BEL,OBL) or Cv(BEL, INT), respectively. Nonethe-
less, in both cases there is no counterpart of t in Darg able to
fire against int not p.

To obviate this issue, we introduce a defeater rC f OI where
we flatten the antecedents of r and the conclusion is the in-



tention of the conclusion of r, namely int pflat(C(r)). This
means that when r fires, so does rC f OI attacking s f l . Notice
that being rC f OI a defeater, such a rule cannot derive directly
+∂ int pflat(p) but just prevents the opposite conclusion.
The same idea is adopted for rules rC f belx and rCvyC f x: de-
featers rC f belx are needed to model conflict between beliefs
and intentions (as rule t in the previous example), whereas
defeaters rCvyC f x take care of situations where r ∈ RZ may
be used to convert Z into Y and Z prevails over X by Cf.

Thus in the previous example, we would have: rC f OI :
a ; int p, tC f belint : c ; int p, tC f belint : c ; int p, tCvxC f int :
x c ; int p, with x ∈ {obl, int}.

Antecedents in BIO may be negation of modal literals; in
that framework, a theory proves ¬X p if such theory rejects
X p (as stated by condition 3. of Definition 8). In Darg we
have to prove ¬x pflat(p) This is mapped in Darg through
conditions 8–10 of Definition 12 and the last condition of
>.

Definition 12. Let Dsoc = (Fsoc,RBEL,ROBL,RINT,>soc,V ,F )
be a defeasible agent theory. Define Darg = (F,R,>) an
argumentation defeasible theory such that

F = {flat(p)|p ∈ Fsoc, p ∈ Lit or p = OBLq} (1)
R = {rp : → int pflat(p)|INTp ∈ Fsoc} (2)

∪{r f l :
⋃

a∈A(r)

flat(a) ↪→ flat(p)|r ∈ RX [q],

X = BEL and p = q, or p = Xq ∈ModLit} (3)

∪{rCvx :
⋃

a∈A(r)

x pflat(a) ↪→ x pflat(p)|r ∈ RBEL
sd [p],

A(r) 6= /0,A(r)⊆ Lit,x ∈ {obl, int}} (4)

∪{rCvyC f x :
⋃

y pflat(a)∈A(rCvy)

y pflat(a); x pflat(p)|

rCvy ∈ R[y pflat(p)],x,y ∈ {obl, int},x 6= y} (5)

∪{rC f belx :
⋃

a∈A(r)

flat(a); x pflat(p)|r ∈ RBEL[p],

x ∈ {obl, int}} (6)

∪{rC f OI :
⋃

a∈A(r)

flat(a); int pflat(p)|r ∈ ROBL[p]} (7)

∪{rdum−xp : x pflat(p)⇒ xp|r ∈ RY .¬X p ∈ A(r)} (8)
∪{rdum−negxp : ⇒∼xp|rdum−xp ∈ R} (9)
∪{rneg−xp :∼xp⇒¬x pflat(p)|rdum−negxp ∈ R} (10)

>= {(rα ,sβ )|(r,s) ∈>soc,α,β ∈ { f l,Cvx,CvxC f y,

C f belx,C f OI}}
∪{(r f l ,sneg−xp)|r f l ∈ R[x pflat(p)]}
∪{(rdum−xp,sdum−negxp)|rdum−xp,sdum−negxp ∈ R}. (11)

We name Darg the argumentation counterpart of Dsoc.

The following result is meant to prove the correctness of
the transformation given in Definition 12. This is the case
when the transformation preserves the positive and negative
provability for any given literal.

Theorem 13. Let Dsoc = (Fsoc,RBEL,ROBL,RINT,>soc

,V ,F ) be a defeasible agent theory and Darg = (F,R,>)
the argumentation counterpart of Dsoc. Given p ∈ Lit ∪
ModLit and # = {∆,∂}:

1. Dsoc ` ±#BELp iff Darg ` ±#flat(p);
2. Dsoc ` ±#X p iff Darg ` ±#flat(X p), X ∈ {OBL, INT}.

Proof. The proof is by induction on the length of a deriva-
tion P. For the inductive base, we consider all possible
derivations of length 1 for a given literal q. Given the proof
tags’ specifications as in Definitions 11 and 12, the inductive
base only takes into consideration derivations for ±∆, since
to prove ±∂q requires at least 2 steps.

P(1) = +∆X q. This is possible either when clause (1), or
(2) of +∆X in Dsoc holds.

For (1), we have either i. q ∈ Fsoc and X = BEL or
OBLq ∈ Fsoc then flat(q) ∈ F or flat(OBLq) ∈ F by condi-
tion (1) of Definition 12; or ii. INTq ∈ Fsoc then there exists
rq ∈ Rs[int pflat(q)], A(rq) = /0, by condition (2) of Defini-
tion 12. Cases i. and ii. as seen together state that either if
X = BEL then Darg ` +∆flat(q), or Darg ` +∆flat(Xq) oth-
erwise, by clause (1), or (2) of +∆ in Darg.

Concerning (2) of +∆X , there exists r ∈ RX
s [q] such that

A(r) = /0. Hence, if X = BEL then we have r f l ∈ Rs[flat(q)],
otherwise we have r f l ∈ Rs[x pflat(q)] with x = {obl, int},
where both situations follow by condition (3) of Defini-
tion 12 and A(r f l) = /0. Thus, Darg ` +∆flat(q) or Darg `
+∆flat(Xq), respectively, by clause (2) of +∆ in Darg.

P(1) = +∆flat(q). This is possible either when clause (1),
or (2) of +∆ in Darg holds.

For (1), we have either pflat(q)∈ F with q= p and p∈Lit,
or obl pflat(p) ∈ F with q =OBLp; hence, by Definition 11
and condition (1) of Definition 12, we conclude that p∈ Fsoc

or OBLp ∈ Fsoc, respectively. Thus, either Dsoc ` +∆BELp
or Dsoc `+∆OBLp by clause (1) of +∆X in Dsoc.

Concerning (2) of +∆X , we consider if either i. q = p and
p ∈ Lit or q = OBLp, or ii. q = INTp.

Case i., there exists r f l ∈ Rs[flat(p)], A(r f l) = /0. There-
fore, there exists r ∈ RX

s [p], with A(r) = /0 and X =
{BEL,OBL}, by condition (3) of Definition 12. Thus, Dsoc `
+∆X p by clause (2) of +∆X in Dsoc.

Case ii., two possible situations arise: a) There exists r f l ∈
Rs[int pflat(p)], A(r f l) = /0, then there exists r ∈ RINT

s [p],
A(r) = /0, by condition (3) of Definition 12; or b) there exists
rp ∈ Rs[int pflat(p)], then INTp ∈ Fsoc by condition (2) of
Definition 12. For a) as well as for b), Dsoc ` +∆INTp by
clause (2) or (1), respectively, of +∆X in Dsoc.

P(1) =−∆X q, P(1) =−∆flat(q). Both demonstrations are
the same as and use the same ideas of cases P(1) = +∆X q
or P(1) = +∆flat(q), respectively.

(P(1) = −∆X q) Clause (1) and (2) of −∆X in Dsoc are
satisfied. Thus, q 6∈ Fsoc (q ∈ Lit) or Xq 6∈ Fsoc and, conse-
quently, neither flat(q) ∈ F nor obl pflat(q) ∈ F, and there is
no rule rq that proves INTq. Moreover, for all r ∈ RX

s [q] then



A(r) 6= /0 and, accordingly, the same situation holds for all
the corresponding rules of type r f l in Darg.

The same reasoning applies for the other direction.

P(n+1) = +∆X q. If q ∈ Fsoc and X = BEL, or Xq ∈ Fsoc

and X = {OBL, INT}, then the case is the same as the corre-
sponding inductive base.

If there exists r ∈ RX
s [q] such that a is ∆-provable at

P(n), for all a ∈ A(r), meaning that: a) There exists r f l :⋃
a∈A(r) flat(a)→ flat(q) with X = BEL, or there exists r f l :⋃
a∈A(r) flat(a) → x pflat(q) with x ∈ {obl, int} by condi-

tion (3) of Definition 12; and b) flat(a) is ∆-provable for
all flat(a) ∈ A(r f l), by inductive hypothesis. Hence, Darg `
+∆flat(q) or Darg ` +∆flat(Xq), respectively, by clause (2)
of +∆ in Darg.

Finally, if clause (3) of +∆X in Dsoc is the case, then
there exists r ∈ RY

s [q] such that Cv(Y,X) ∈ V and Xa is
∆-provable at P(n), for all a ∈ A(r). Thus, there exists
rCvx ∈ Rs[x pflat(q)] by condition (4) of Definition 12, and
x pflat(a) is ∆-provable for all x pflat(a) ∈ A(rCvx), by in-
ductive hypothesis. Again, Darg `+∆flat(Xq) by clause (2)
of +∆ in Darg.

P(n+1) = +∆flat(q). This is possible either when clause
(1), or (2) of +∆ in Darg holds.

If flat(q)∈ F, then the proof is the same as the correspond-
ing inductive base.

Otherwise, we consider if either i. q = p and p ∈ Lit, or
ii. q = X p with X = {OBL, INT}.

Case i., there exists r f l ∈ Rs[flat(p)], such that flat(a) is ∆-
provable at P(n), for all flat(a)∈A(r f l). Therefore: a) There
exists r ∈ RBEL

s [p] by condition (3) of Definition 12; and b) a
is ∆-provable for all a∈ A(r) by inductive hypothesis. Thus,
Dsoc `+∆BELp by clause (2) of +∆X in Dsoc.

Case ii. is divided in two sub-cases. First sub-case, there
exists r f l ∈ Rs[x pflat(p)] such that flat(a) is ∆-provable
at P(n), for all flat(a) ∈ A(r f l). This case is analogous
to the previous case. Second sub-case, there exists rCvx ∈
Rs[x pflat(p)], with x = {obl, int}, such that x pflat(a) is ∆-
provable for all x pflat(a) ∈ A(rCvx). Therefore, the follow-
ing two conditions are satisfied: a) There exists r ∈ RBEL

s [p]
by condition (4) of Definition 12, and b) Xa is ∆-provable
for all a∈ A(r) by inductive hypothesis. Thus, Dsoc `+∆X p
by clause (3) of +∆X in Dsoc.

P(n+1) =−∆X q. Clauses (1)–(3) of −∆X in Dsoc hold.
For (1), q 6∈ Fsoc (q ∈ Lit) or Xq 6∈ Fsoc. Consequently,

neither flat(q) ∈ F nor obl pflat(q) ∈ F, and there is no rule
rq to support int pflat(q).

For (2), for all r ∈ RX
s [q] there exists a ∈ A(r) such that a

is ∆-rejected at P(n). Accordingly, for all the corresponding
rules of type r f l in Darg, there exists flat(a) ∈ A(r f l) which
is ∆-rejected by inductive hypothesis. Hence, we conclude
that Darg ` −∆flat(q) if X = BEL.

Finally, the same reasoning applies for all rules r ∈ RY
s [q],

with Cv(Y,X) ∈ V , where there exists a ∈ A(r) such that

Xa is ∆-rejected at P(n). Thus, we conclude that Darg `
−∆flat(Xq), with X = {OBL, INT}.

P(n+1)=−∆flat(q). The proof follows the inductive base
and the case P(n) =−∆X q.

P(n+ 1) = +∂X q. Clauses (1) and (2.1) of +∂X have al-
ready been proved for the inductive step of ±∆X .

If clause (2.2) of +∂X is the case, then there exists r ∈
Rsd[q] such that r is applicable at P(n + 1) (i.e., a is ∂ -
provable at P(n) in Dsoc, for all a ∈ A(r)) and either clause
(2.3) or (2.3.1) is satisfied.

We have two cases. If r ∈ RX then there exists either
r f l ∈Rsd[flat(q)] when X =BEL, or r f l ∈Rsd[x pflat(q)] oth-
erwise by condition (3) of Definition 12. Thus, flat(a) is
∂ -provable at P(n) in Darg, for all flat(a) ∈ A(r f l) by induc-
tive hypothesis. If r ∈ RY and X = {OBL, INT}, then there
exists either rCvx ∈ Rsd[x flat(q)] by condition (4) of Defini-
tion 12. Hence, x pflat(a) is ∂ -provable at P(n) in Darg, for
all flat(a) ∈ A(rCvx) by inductive hypothesis. We conclude
that clause (2.2) of +∂ holds in Darg by inductive hypothe-
sis.

For, clause (2.3) if s ∈ R[∼q] is discarded, then we have
the following cases.

a. s ∈ RX , then there exists a ∈ A(s) which is ∂ -rejected at
P(n). Thus, flat(a) is ∂ -rejected at P(n) in Darg by induc-
tive hypothesis, and therefore s f l is discarded in Darg.

b. s ∈ RBEL and X ∈ {OBL, INT}, then there exists a ∈ A(s)
such that Xa is ∂ -rejected at P(n). Hence, x pflat(a) is ∂ -
rejected at P(n) in Darg by inductive hypothesis and we
conclude that sCvx is discarded in Darg.

c. X = BEL and s ∈ RZ with Z ∈ {OBL, INT}, or X =OBL
and s ∈ RINT. We conclude that s f l is discarded be-
cause either X = BEL and s f l 6∈ R[∼flat(q)], or s f l 6∈
R[∼x pflat(q)] otherwise.

Finally, we consider clause (2.3.1) of +∂X . Following the
above reasoning, if t is applicable in Dsoc, then t f l or tCvx is
applicable in Darg as well.

If t,s ∈ RZ and t >sm
soc s, then tα > sα with α ∈ { f l,Cvz}

by condition (11) of Definition 12. If X = BEL, there is no
need for further analysis given that the transformation does
not produce additional rules for pflat(q), for any literal q.

Otherwise, we have either

i. t ∈ RBEL[q] and s ∈ RX [∼q]: thus tCvx > s f l ;

ii. t ∈ RBEL[q] and s ∈ RX [∼q]: thus tC f belx > s f l , with
tC f belx :

⋃
flat(a); x pflat(q);

iii. s, t ∈ RBEL: thus either a) tC f belx > sCvx, or b) tCvyC f x >
sCvx, with tCvyC f x :

⋃
y pflat(a); x pflat(q);

by condition (11) and Cf(BEL,X) for i. and ii., t >sm
soc s for

the last case. It only remains to prove that tC f belx and tCvyC f x
are applicable in Darg. If t is applicable in Dsoc at P(n+1),
then any a ∈ A(t) is ∂ -provable in Dsoc at P(n) and so is
flat(a) in Darg by inductive hypothesis. We conclude that



tC f belx is applicable in Darg at P(n+ 1). Instead, if t is ap-
plicable in Dsoc at P(n+1) through Cv(BEL,Y ), then Ya is
∂ -provable in Dsoc at P(n) for every a ∈ A(t). By induc-
tive hypothesis, any y pflat(a) ∈ A(tCvyC f x) is ∂ -provable as
well. Hence, tCvyC f x is applicable in Darg as well.

This completes the analysis when sα with α ∈ { f l,Cvx};
we now analyse other possible attacks in Darg and first pro-
ceed for X = OBL, then for X = INT.

Suppose there is a rule w ∈ RBEL[∼q]; w produces rules
wC f belx and wCvyC f x. In the first case w would fire against
Xq due to Cf(BEL,X). If w is discarded in Dsoc at P(n+1),
then there exists a ∈ A(w) such that a is ∂ -rejected in Dsoc

at P(n). By inductive hypothesis, we conclude that flat(a) ∈
A(wC f belx) is ∂ -rejected in Darg at P(n). Otherwise, w is
defeated by an applicable t in Dsoc. Assume there is no
t ∈ RBEL[q] stronger than w. Thus, Dsoc ` −∂X q, against
the hypothesis. Therefore, t >soc w and the corresponding
of t in D is stronger than wC f belx by construction of > in
Definition 12.

An analogous reasoning applies for wCvyC f x. Here, w
would be applicable through Cv(BEL,Y ) and then fire
against Xq by Cf(BEL,X). If w is discarded, then there
exists a ∈ A(w) such that Ya is ∂ -rejected in Dsoc at P(n).
By inductive hypothesis, y pflat(a) is ∂ -rejected in Darg and
wCvyC f x is discarded at P(n+1). Otherwise, w is defeated in
Dsoc by an applicable t ∈ RBEL[q] either directly, or through
conversion. In both cases, the corresponding rule of t in
Darg is stronger than wCvyC f x by construction of > in Defi-
nition 12. Notice that if w is applicable in Dsoc at P(n+ 1)
then Ya is ∂ -provable at P(n) for any a ∈ A(w) and, con-
sequently, so is y pflat(a) by inductive hypothesis, making
wCvyC f x applicable in Darg.

A final analysis is in order when X = INT and we consider
wC f OI :

⋃
flat(a) ; int pflat(∼q). The counterpart in Dsoc

is w ∈ ROBL[∼q], which is either discarded, or defeated by a
stronger rule t. Again, if w is discarded in Dsoc, then there
exists a ∈ A(w) such that a is ∂ -rejected in Dsoc at P(n). By
inductive hypothesis, flat(a) is ∂ -rejected in Darg and wC f OI
is discarded at P(n+ 1). Otherwise w is defeated either by
an applicable t ∈ ROBL[q], or t ∈ RBEL[q] (in this last case di-
rectly, or through Cf(BEL,OBL), or through Cf(BEL, INT)).
This relation is preserved in > between wC f OI and the cor-
responding rule of t in Darg by condition (11) of Defini-
tion 12. If the t is in ROBL, then tC f OI ∈ R[int pflat(q)]. Stat-
ing that t is applicable in Dsoc at P(n+1) means that every
antecedent a is ∂ -provable. By inductive hypothesis, so is
the corresponding flat(a) in Darg, making tC f OI applicable at
P(n+1).

P(n+ 1) = +∂flat(q). Clauses (1) and (2.1) of +∂ have
already been proved for the inductive base of ±∆.

If q = p and p ∈ Lit, then the only rules to consider as
support/attack flat(p) are obtained through condition (3) of
Definition 12. Therefore, by inductive hypothesis, for any
applicable rule r f l the corresponding rule r in Dsoc is appli-
cable as well, and the same reasoning holds for discarded
rules. Moreover, the superiority relation is isomorphic for
such rules. Hence, Dsoc `+∂BELp.

Proofs that if a rule is applicable/discarded in Darg at
P(n+1) then so is the corresponding rule in Dsoc at P(n+1),
are analogous to the various cases studied for the inductive
step of +∂X . Specifically, we use sα for rules captured by
the quantifier in clause (2.3) of +∂ and tβ for those in the
scope of the quantifier of clause (2.3.1).

It remains to argue that every applicable attack rule is de-
feated. By the construction of the superiority relation, this
statement is straightforward for the rules which have a natu-
ral counterpart in Darg, i.e., t f l > s f l , tCvx > sCvx, tCvy > sCvx
when Cf(Y,X) ∈F , tCvy > sCvx.

Suppose sα ∈ R[x pflat(∼p)], with α ∈
{CvyC f x,C f belx}. Such a rule is defeated by
tCvx ∈ R[x pflat(p)], tCvyC f x ∈ R[x pflat(p)], or
tC f belx ∈ R[x pflat(p)]. All these rule have the same
counterpart rule, namely t ∈ RBEL[p], what changes is
how t is made applicable to challenge s ∈ RBEL[∼p].
Again, due to construction of > in Definition 12 tβ > sα ,
β ∈ {Cvx,CvyC f x,C f belx}, are so because t >soc s.

The case when sC f OI ∈ R[x pflat(∼p)] differs from the
previous one in that it can be defeated also by tC f OI . Once
more we have that t >sm

soc s by construction of >.
At last, we analyse the case when Darg ` +∂¬x pflat(p).

The only rule that may fire to prove ¬x pflat(p) is rneg−xp,
which is applicable whenever any rule rdum−xp is discarded
at in Darg at P(n+1), due to conditions 8–10 and construc-
tion of > in Definition 12. That is the case if x pflat(p)
is ∂ -rejected in Darg at P(n). By inductive hypothesis,
Dsoc ` −∂X p at P(n), thus, by Definition 8 clause 3, ¬X p
is ∂ -provable in Dsoc at P(n+1).

P(n+1) =−∂X q, −∂flat(q). The main reasoning follows
straightforwardly from the case given that the proof condi-
tions for −∂X and −∂ are the strong negation of +∂X and
+∂ , respectively. Clauses (1) and (2.1) of −∂X (−∂ ) have
already been proved in the inductive step of ±∆X (±∆), as
well as clauses (2.2)-(2.3) in the inductive step of +∂X (+∂ ).

By construction of the superiority relation given in Defi-
nition 12, if t 6>soc s, then no superiority relation may exist
between any transformations of t and s in Darg.

Finally, concerning P(n + 1) = −∂X , we must consider
the case when ¬Xq is ∂ -provable in Dsoc at P(n+ 1). This
is the case when clause 3. of Definition 8 is satisfied,
i.e., when Dsoc ` −∂X q at P(n). By inductive hypothesis,
Darg `−∂x pflat(q) at P(n), making rules rdum−xp discarded
in Darg at P(n+1). Accordingly, Darg `+∂∼xp at P(n+2)
and we conclude that rules rneg−xp prove ¬x pflat(q) at
P(n+3).

In order to show the final result that the Strategic Argu-
mentation Problem is NP-Complete, we first prove that the
proposed transformation is polynomial.
Theorem 14. There is a linear transformation from any de-
feasible agent theory Tsoc to its argumentation counterpart
Targ.

Proof. The transformation rules of Definition 12 are applied
once to each rule and each tuple of the superiority relation.
Transformation rule (1) maps one fact in Tsoc into one fact



in Targ. Transformation rule (2) maps one primitive intention
Tsoc into one strict rule in Targ. Rule (3) and (7) again copy
one rule into one rule. Rules (4)–(6) generate two rules in
Targ for every belief rule in Tsoc. Rules (8)–(10) generate a
total of three rules in Targ for each negative modal literal in
Tsoc. Rule (11) generates thirty-two tuples in Targ for each
tuple in >soc and two tuples for each negative modal literal
in in Tsoc.

The above reasoning shows that the transformation per-
forms a number of steps that is, in the worst case, smaller
than thirty-two times the size of the defeasible agent theory,
and this proves the claim.

Theorem 15. The Strategic Argumentation Problem is NP-
Complete.

Proof. First, the Strategic Argumentation Problem is poly-
nomially solvable on non-deterministic machines since,
given a defeasible argumentation theory Darg, we guess a set
of rules Ri

arg and we can check the extension in polynomial
time (Maher 2001).

Second, the Strategic Argumentation Problem is NP-hard.
In fact, we map the Restoring Sociality Problem (Gover-
natori and Rotolo 2008) into the Strategic Argumentation
Problem. Given a (deviant) defeasible agent theory Dsoc,
Dsoc is mapped into its argumentation counterpart Darg (Def-
inition 12). The transformation is polynomial (Theorem 14)
and correct (Theorem 13).

6.1 Discussion
In this paper we concentrated in a game with a symmetry on
what the two parties have to prove: Pr has to prove l (i.e.,
+∂ l) while Op has to prove ∼l (i.e., +∂∼l); however, it is
possible to have games where the two parties have different
burden on proof, namely, the proponent Pr has to prove l
and the opponent Op has to disprove it. In Defeasible Logic
this can be achieve either by proving that the opposite holds,
namely +∂∼l or simply by showing that l is not provable,
i.e.,−∂ l. In this case we have two different types of strategic
argumentation problems: one for the proponent (which is
the same as the current one), and one for the opponent. For
the opponent, the related decision problem is if there exists
a subset of her private rules such that adding it to current
public rule make that the resulting theory proves −∂ l. The
proof conditions for +∂ and −∂ are the strong negation of
each other (Antoniou et al. 2000); hence this version of the
strategic argumentation problem is coNP-complete.

The NP-completeness result of the paper is proved for
the ambiguity blocking, team defeat variant of Defeasible
Logic. However, the proof of the result does not depend on
the specific features of this particular variant of the logic,
and the result extends to the other variants of the logic (see
(Billington et al. 2010) for the definition of the various vari-
ants). The version of the argumentation logic presented in
this paper does not correspond to the grounded semantics
for Dung’s style abstract argumentation framework (though
it is possible to give such a semantics for it, see (?)). How-
ever, the ambiguity blocking variant corresponds to Dung’s

grounded semantics (?). Accordingly, strategic argumen-
tation seems to be a computationally infeasible problem in
general.

Finally, in our game we chose that the superiority rela-
tion is known a priori by both players. If not so, the prob-
lem reduces to revising the corresponding Agent Logic by
changing a combination of rules and superiority relation.
The problem of revising a defeasible theory by only mod-
ifying the superiority relation has proven to be NP-complete
in (Governatori et al. 2012).

7 Summary
Almost all research in AI on argumentation assumes that
strategic dialogues are games of complete information, i.e.,
dialogues where the structure of the game is common knowl-
edge among the players. Following (?; ?) we argue that
argument games work under incomplete information: each
player does not know the other player’s knowledge, thus
she cannot predict which arguments are attacked and which
counterarguments are employed for attacking the arguments;
hence, argument moves can disclose such private informa-
tion, thus allowing the other player to attack.

While it is outside the scope of this paper how to analyse
strategic dialogues in game-theoretic terms, our research ef-
fort is preliminary to this analysis, since it studies the com-
putation cost for logically characterising the problem that
any argumentation game with incomplete information po-
tentially rises. We have shown that the problem of deciding
what set of rules to play (“Strategic Argumentation Prob-
lem”) at a given move is NP-complete even when the prob-
lem of deciding whether a given theory (defeasibly) entails
a literal can be computed in polynomial time. To this end,
we mapped the NP-complete “Restoring Sociality Problem”
proposed in (Governatori and Rotolo 2008) into the strategic
argumentation problem.
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