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Abstract

3D reconstruction from hyperspectral images has seldom
been addressed in the literature. This is a challenging prob-
lem because 3D models reconstructed from different spec-
tral bands demonstrate different properties. If we use a sin-
gle band or covert the hyperspectral image to grayscale im-
age for the reconstruction, fine structural information may
be lost. In this paper, we present a novel method to re-
construct a 3D model from hyperspectral images. Our pro-
posed method first generates 3D point sets from images at
each wavelength using the typical structure from motion ap-
proach. A structural descriptor is developed to character-
ize the spatial relationship between the points, which allows
robust point matching between two 3D models at different
wavelength. Then a 3D registration method is introduced to
combine all band-level models into a single and complete
hyperspectral 3D model. As far as we know, this is the first
attempt in reconstructing a complete 3D model from hyper-
spectral images. This work allows fine structural-spectral
information of an object be captured and integrated into the
3D model, which can be used to support further research
and applications.

1. Introduction

Hyperspectral images have been widely used in remote
sensing, mining, and surveillance. It contains tens or hun-
dreds continuous light wavelength indexed spectral bands,
which provides abundant information on the spatial spectral
distribution of object materials that is related to their physi-
cal, chemical, and geometrical property. Compared to RGB
images, hyperspectral data has also shown great potential
in 3D computer vision, particularly for the applications that
require fine analysis of the spectral responses of object. In
plant phenomics [6], spectral data of the plant surface can
be used to analyze the biomass, or determine the location

of sick leaves on the 3D model. In computer graphics, cap-
turing spectral data on 3D objects have enabled producing
images of high visual quality or mimicking the vision sys-
tem of animals [12]. Examples can be further extended to
culture heritage [11] and biomedical imaging [19].

Despite its full potential in computer vision, research on
3D reconstruction from hyperspectral imaging is still very
limited. In most work that have incorporated hyperspectral
data into 3D models, the 3D shapes were generated by range
camera rather than from hyperspectral images directly. The
spectral information were then mapped to the 3D shape. In
the historical building reconstruction, multispectral data is
combined with depth information captured by a range cam-
era [3]. Kim et al. introduced a system for capturing spec-
tral data on 3D objects [12]. A hyperspectral imager was
used to acquire high spatial resolution band images from
near-ultraviolet to near-infrared range. This imager was
then integrated into a 3D scanning system to capture the
spectral reflectance and fluorescence of objects. Similarly,
Nieto et al. developed a hyperspectral 3D modelling sys-
tem for the mining industry [18]. 3D model was generated
based on depth data captured by a laser scanner, with hy-
perspectral image mapped to this 3D Model. Manabe et al
presented an interesting approach to represent spectral in-
formation as 3D model. They first constructed 3D model
using two different hardware and then mapped the spectral
information to the 3D model [16]. This method does not
explore relationship between spectra and structure. Differ-
ent from all these methods, Liang et al proposed a method
to build multiple 3D models of plant, each from a different
band of a set of hyperspectral images captured at different
viewing angles [13]. The results show that the 3D models
reconstructed from different bands have demonstrated dif-
ferent properties which are complement to each other.

The differences between band-wise 3D models are
caused by various reasons. The first reason is the that object
surface has different reflectance property due to the varia-
tion of composition materials. Some information that is vis-
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Figure 1. Examples of RGB and hyperspectral images. (a) RGB image. Band images captured at (b) 600nm, (c) 700nm, (d) 800nm from
the same camera position, respectively; the second row shows band images captured at different camera positions, respectively.
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Figure 2. Examples of hyperspectral images with different focus and spectral features. (a) RGB image. Band images captured at (b) 580nm,
(c) 700nm, (d) 860nm from the same camera position, respectively.

ible in one band may become invisible in another band. An
example on different band images of a coffee jar is shown
in Fig. 1. The letter ‘O’ in the brand name is clearly vis-
ible in some bands whereas absent in others. The second
reason is that point of focus changes due to change in wave-
length [9]. This happens due to the fact that focal length
of a lens is related to its refractive index which decreases
with the increase of wavelength. Therefore, most available
hyperspectral cameras can only be well focused on several
bands and become out of focus in other bands. This can
be observed in Fig. 2. Due to these factors, different fea-
ture points can be extracted from each band image, which
produces different band-wise 3D models with inconsistent
scales and point sets. These models cannot be merged di-
rectly to form a complete 3D model. One way to produce a
single 3D model from hyperspectral images is merging all
key points captured from different bands for 3D reconstruc-
tion. However, the fine structural and spectral information
embedded in the band images are lost.

This paper aims to solve this problem and combine all
band-level 3D models into a complete hyperspectral 3D
model. Our method first generates wavelength indexed 3D
point sets from a sequence of hyperspectral images. Then a

structural descriptor is developed to characterize the spatial
relationship of points within the same set, which can then
be used to match points between two 3D models generated
at different bands. This allows 3D models be registered and
form the complete hyperspectral 3D model.

As far as we know, our work is the very first attempt
in generating a complete 3D model from hyperspectral im-
ages. It not only generates band-wise 3D models, but also
allows fine structural spectral information of an object to
be captured and integrated into the fully reconstructed 3D
model. This is beyond the capability of the traditional 3D
reconstruction from RGB images. This paper also proposes
a 3D registration algorithm which is accurate and efficient
in merging band-wise models, which facilitates the analysis
on how structural information are contributed by different
band models.

The rest of the paper is organized as follows. Section 2
introduces how hyperspectral data was collected. Section 3
describe the 3D reconstruction method from hyperspectral
images. Experimental results on both simulated data and
real hyperspectral data are given and analyzed in Section 4,
followed by conclusions in Section 5.



2. Hyperspectral data

We have generated image sequences using a hyperspec-
tral imaging system that consists of an acousto-optical tun-
able filter (AOTF) and a high sensitive visible to infrared
camera. The filter supports imaging from 400nm to 1000nm
at 20nm in spectral resolution with a control unit tuning
the wavelength of light that is allowed to reach the cam-
era. By scanning through the visible to infrared wavelength,
grayscale images can be generated to form different bands
of the hyperspectral image. The output of the imaging pro-
cess is a data cube with the first two dimensions showing
the spatial positions of pixels, and the third dimension in-
dexing the bands. Therefore, each pixel on the image is a
vector of responses across the visible to infrared spectrum.

To capture the hyperspectral image sequence of objects,
we have positioned the hyperspectral camera at same height
from different view points relative to the object. These po-
sitions are around the object and the distance between the
camera and the object varies slightly. At each position, we
also took an RGB image. In total, we collected 30 hyper-
spectral images and 30 RGB images, which were used for
image based 3D reconstruction. We have captured image
sequences of 5 objects, including coffee can, ceramic dolls
, toy monkey, plant, and toy fish. Due to the space limit, we
only show the sample images of the coffee can and ceramic
dolls in Fig. 1 and Fig. 2 respectively.

3. 3D Reconstruction from Hyperspectral Im-
ages

Our 3D reconstruction method starts from building sep-
arate 3D models from each hyperspectral band. This can
be implemented by the standard image-based 3D modelling
approach [7]. Let the band-wise 3D model be X(λ), λ =
1, . . . ,M be the wavelength indexed bands, then the goal is
to build a complete hyperspectral 3D model

Z =
∑
λ

X (λ) (1)

where X (λ) is the consistently registered band-wise 3D
model. Because hyperspectral band images captured at dif-
ferent wavelength ranges may differ significantly, it is very
likely that not enough common points can be generated
for the correspondence detection. A natural solution is to
adopt a progressive strategy so that each 3D model is only
matched to a model with the highest number of common
points. Nonetheless, grouping and matching of bands shall
be performed in an optimized order. Detailed discussion on
the merging strategy will be given in Section 3.3.

In the following, we give detailed description on the pro-
posed 3D registration and model fusion method.

3.1. A Descriptor for Point-wise Correspondence

Given two sets of 3D points extracted from different
bands, the first step to match the 3D models is finding
the point-wise correspondences. One of the widely used
method is Iterative Closest Point (ICP) [2], which regis-
ters two point sets by minimizing the distances between the
points in the first set to the corresponding points or the sur-
face of the second set. The problem of ICP is that it is
often suffered from scale differences between models. To
solve this problem, various scale estimation methods have
been proposed [21, 14], these methods require a rough pre-
alignment of the point sets, which is traditionally based on
point-wise Euclidean distance.

In this paper, we present a point descriptor that charac-
terizes the statistical information on the structure of the 3D
model, i.e., distribution of spatial relationship between a
point and all the rest points in the set. A frequency his-
togram is generated as the descriptor, which allows fast
point matching for point-wise correspondences. Mathemat-
ically, this idea is close to the structural criterion as pro-
posed in [1], however, not constrained by the 2D shapes. It
should be noted that histogram representations for 3D point
have been reported in the literature but are all based on sur-
face norm [15, 20]. Our method, however, directly operate
on the Euclidean distance between points.

Given a set of 3D data points X = {x1,x2, . . . ,xm}.
Let the Euclidean distance between xi and xj be di,j . A
point histogram Hxi

of xi is a histogram over the distribu-
tion of di,j for all j 6= i. Let this set of distances be D.
A straightforward way of constructing the point histogram
is to find the maximum value of all distances d∗i,j , and then
divide d∗i,j into n bins with equal distance intervals. Each
entry in D can then be assigned to the histogram bin corre-
sponding to the distance interval it belongs to. Therefore,

Hxi(k) = #{j 6= i : di,j ∈ bin(k)} (2)

where #{.} counts the number of elements. This generates
point histograms each of which is comprised by the same
number of bins. Note that Hxi is invariant to the scale of
the 3D model because each entry of the histogram describes
the statistics on the number of points with certain relative
distances to xi.

A problem of this representation is when the number of
points in two point sets are different, the height of the his-
togram will be different. To solve this problem, we nor-
malized the histogram by the sum of all entries. Then the
normalized point histogram becomes H̃xi

, whose kth entry
is

H̃xi
(k) =

Hxi
(k)∑

kHxi
(k)

(3)

where Hxi(k) is the kth entry of Hxi . In this way, we can
use the point histogram to represent the structural informa-
tion about xi, and the whole 3D point set.



Based on the above point descriptor, given a point xi in
the first point set X, and a point yj in the second point set
Y. LetC(xi,yj) be the similarity between two points, then
correlation coefficient can be used for the calculation

C(xi,yj) =
cov(H̃xi , H̃yi)

σH̃xi
σH̃yj

(4)

=
E(H̃xi

− µH̃xi
)(H̃yi

− µH̃yj
)

σH̃xi
σH̃yj

where cov(., .) is the covariance, µH̃xi
and µH̃yj

are the

means of H̃xi
and H̃yj

, σH̃xi
and σH̃yj

are the standard

deviations of H̃xi
and H̃yj

, respectively. E(.) is the expec-
tation of the expression. In this way, the correspondence of
xi in Y can be found by solving the following optimization
problem

y∗ = argmax
j
‖C(xi,yj)‖ (5)

3.2. Registration of two 3D Models

Once the point-wise correspondence is produced, they
can be used for transformation model estimation. Note
that due to the multi-modal nature of the spectral bands,
influence of noise, and the view changes, keypoints ex-
tracted from images may not allow exact point-wise match-
ing. Therefore, the scale of reconstructed 3D models may
be different, which makes 3D registration inaccurate. As a
consequence, we need a model that can estimate not only
rotation and translation, but also the scale differences be-
tween two models.

To solve this problem in an efficient way, we adopted the
classic closed form solution based on unit quaternions [8].
This method aims at solving a rigid transformation problem
by estimating the rotation, and then recover the scale and
translation. The objective of this method is to find a solution
to the following minimization problem:

min

n∑
1

‖R(yi) + T − xi‖ (6)

where xi and yi are 3D points in two point sets X and Y
with the same cardinality. R and T are rotation and transla-
tion operations, respectively.

The unit quaternion model gives the estimation of one set
of matched points. To cope with the uncertainty from the
point correspondence step, we adopted the RANSAC algo-
rithm [5] to give a robust estimation of the 3D registration
model. The input to the RANSAC are all point-wise cor-
respondences. Minimal sample sets (MSSs) are randomly
selected from the input and the model parameters are com-
puted using only the elements of the MSS. Then scaling

factor, rotation matrix, and translation vector are calculated
based on the MSSs using the unit quaternion model. In the
second step, RANSAC checks which elements of the en-
tire dataset are consistent with the model instantiated with
the parameters estimated. This iteration continues until
the number of matched points are higher than a predefined
threshold, or the maximum number of iterations is reached.

3.3. Registering 3D Hyperspectral Models

As mentioned previously, the goal of our work is to regis-
ter band-wise 3D models to produce the complete 3D hyper-
spectral model following Equation (1). A natural solution is
to adopt a progressive strategy so that each 3D model is only
matched to the model from the neighboring band. Let the
transformation between two neighboring 3D models X(i)
and X(i + 1) be Ti,i+1, suppose the anchor band is K, the
accumulated transformation for X(λ) is

T Kλ =

K∏
i=λ

Ti,i+1 (7)

The risk of such an accumulative strategy is that error in
3D registration may be propagated towards the model built
from bands that are far from the anchor band, which will
generate noisy final registration results. This solution can
not be guaranteed to be optimal because the models from
neighboring bands may not be the most compatible. There-
fore, it is necessary to find the optimal merge sequence
given a set of band-wise 3D models.

To this end, we treat each 3D model as a node in a graph
so that each pair of nodes are connected by an edge. The
costs associated with the edges are the mean distance errors
between the models. The mean distance error among two
registered models is calculated as

EXi,Xj
=

∑
i,j

√
(xj − xi)2 + (yj − yi)2 + (zj − zi)2

n
(8)

where points (xi, yi, zi) and (xj , yj , zj) are 3D points in
model Xi and Xj respectively. n is the total number of
correspondences between points in two models.

Then we try to find the path with the minimum cost
among the graph nodes so that all nodes are visited simi-
lar to traveling salesman problem. We adopted a divide and
conquer strategy by finding pairs of nodes with the mini-
mum distance and merging each pair to get a new model.
The the graph is then updated and this process is repeated
until a single registered model is generated.

From implementation point of view, for nmodels, an n×
n mean error matrix M can be constructed. Note that this
matrix may not be symmetric because the error EXi,Xj

is
not necessarily equal to EXj ,Xi

as the transformation matrix
may be different. Ignoring main diagonal entries, the lowest



Algorithm 1 Hyperspectral 3D Reconstruction
Require: hyperspectral image sequence

for Images from the same band i do
Build band-wise 3D model Xi following [7]

end for
while There is more than one 3D band-wise model do

for Each pair of 3D models Xi,Xj do
1. Build point histograms using equation (3)
2. Find correspondences between points in Xi,Xj

using equation (5)
4. Use RANSAC algorithm to recover the transfor-
mation matrix T between Xi and Xj

5. Apply T to transform Xi

6. Save the result and calculate mean distance error
between Xi and Xj using equation (8)
7. Save entry in mean distance error matrix.

end for
8. For each model find the best match from matrix.
9. Merge models and get new set of models.

end while
return Hyperspectral 3D model

cost associated with merging each model with the other can
be calculated by

Ni = min
j

(Mi,j) (9)

A summary of the hyperspectral 3D reconstruction
method is given in the algorithm 1.

4. Experiments
In this section, we first demonstrate the band-wise and

the complete 3D models built from hyperspectral data.
Then we compare the proposed 3D registration method with
several state-of-the-arts methods.

4.1. 3D Hyperspectral Model

The goal of this experiment is to show the differences be-
tween the 3D models generated from different hyperspectral

(a) (b) (c)

Figure 3. 3D models generated from (a) 600nm, (b) 700nm and (c)
800nm respectively.

bands and the difference between the 3D models built from
hyperspectral images and RGB images.

We start from showing the results generated on coffee
can using method in equation (7). In the experiments, band
images from 400nm to 560nm range and at 1000nm were
removed because of very low signal to noise ratio. Dur-
ing the 3D reconstruction process, images captured from
880nm to 980nm have failed to generate complete band-
wise 3D models because insufficient number of keypoints
can be extracted from some angles. Therefore, in the final
reconstruction experiments, we have removed these bands
from consideration. This leaves us with 15 bands for band-
wise 3D reconstruction and final complete hyperspectral 3D
modelling. Fig. 3 shows examples of 3D dense model of
the coffee can which are recovered from the point cloud.
These 3D models were generated from different hyperspec-
tral bands across the visible to the near-infrared range. It
can be seen that each band has captured different structure
information of the object. There are substantial overlap on
the point sets, but many regions demonstrate complemen-
tary information. The complete hyperspectral 3D model
combining band-wise 3D models are displayed in Fig. 4(a)-
(c) from different viewing angles.

To compare the 3D model reconstructed from hyperspec-
tral and RGB images, we also show the 3D model recon-
structed from RGB images in Fig. 4(d)-(f) in the same view-
ing angle. The results show that the hyperspectral models
contain much denser point cloud than the RGB models al-
though the RGB images have higher spatial resolution than
the hyperspectral images. The hyperspectral 3D model con-
tains many regions that the RGB models have missed to find
any points. These results show the advantage of building 3D

(a) (b) (c)

(d) (e) (f)

Figure 4. Comparison of 3D models generated from hyperspectral
and RGB images. (a)-(c) 3D models generated from hyperspectral
images captured from different viewing angles. (d)-(f) 3D models
generated from RGB images at same poses as (a)-(c).
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Figure 5. 3D models generated from hyperspectral images of dolls. (a) Dolls image at 700nm; (b)-(i) 3D models generated from hyper-
spectral images; (j) Complete hyperspectral 3D model

(a) (b)

Figure 6. Band registration of (a) Dolls using 640nm,
660nm,700nm and 720nm spectral models ; and (b) dinosaur using
red, green, blue, and grayscale models.

models from hyperspectral images, which allows finer and
more complete structure information of objects being iden-
tified and presented.

Fig. 5 shows eight models of dolls generated from
600nm to 740nm with 20nm in spectral resolution. Images
obtained in this range have less noise and the 3D models
reconstructed are in better quality. Each of the eight mod-
els have fine differences in structure from others. Com-
plete model obtained after registering these eight models
is shown in Fig. 5(j). Denser point cloud is generated with
more structural details than band-wise models.

We also applied our method on fewer spectral bands of
dolls image and RGB models obtained from dinosaur im-
ages1 so as to present the fine structural details contributed
by each models. Fig. 6(a) shows the registration result from
four band-wise models with each model represented by dif-
ferent colors. We can see from the figure that each band

1The dataset is available at http://www.robots.ox.ac.uk/
˜vgg/data/data-mview.html

(a) (b)

Figure 7. Sample point correspondences on (a) face models; and
(b) dinosaur models.

has contributed to different but complementary structural
details. Fig. 6(b) shows the result of registering four dif-
ferent models of dinosaur that are reconstructed from red,
green, blue channels and from grayscale images converted
from color images. Note that each model has different num-
ber of points, scales and rotations.

4.2. Comparison of 3D Registration Methods

It is difficult to generate the ground truth of the 3D mod-
els built from hyperspectral or RGB images. To give a quan-
titative comparison of the proposed method and alternative
in 3D model registration, we performed experiments on two
synthetic dataset. The first dataset is the face point set used
in [10]. This dataset contains a sparse 3D face model with
392 points. We then transformed this 3D model using a
randomly generated transformation matrix, with scale, rota-
tion, and translation changed. This dataset gives an example
of exact point-to-point match. The original and transformed
models are shown in Fig. 8(a).

The second dataset is a dinosaur object that has been
widely used for 3D modeling 1. This dataset contains 36
frames of a toy dinosaur captured from different angles.



EM-GRBF [10] RPM [4] TPS-L2 [10] CPD [17] Proposed Method
Face 1.4721 1.5016 1.6218 1.6196 0.0014

Dinosaur 0.3064 0.2610 0.4318 0.2338 2.7×10−8

Table 1. Comparison of accuracy using mean distance error.

EM-GRBF [10] RPM [4] TPS-L2 [10] CPD [17] Proposed Method
Face 2.863 2.126 1.549 3.360 2.706
Dino 205.532 455.157 362.344 134.683 13.773

Coffee 210.007 310.531 313.419 90.256 12.675

Table 2. Comparison of efficiency (in seconds).

On the dinosaur model, we generated two 3D models us-
ing the red and blue channels, respectively, following the
structure from motion approach. This lead to two point sets
with 6310 and 7526 points, respectively. This is an example
in which some points can not find correspondences. These
two models are shown in Fig. 8(g).

We first demonstrate the effectiveness of our point-wise
correspondence method. Fig. 7 shows the matched points
in the two 3D models on face and dinosaur, respectively.
It can be seen that all point correspondences have been de-
tected on the face models, which is relatively simple due
to the exact ground truth point-to-point match. The per-
formance of our method on the dinosaur is also excellent,
with very few wrong matches been generated. Such results
have validated the effectiveness of the point histogram de-
scriptor, which provides statistical information on the struc-
ture of objects. Such statistical information is very robust to
noises, and more importantly, is invariant to scale changes.

To show the advantages of the 3D registration method
proposed in this paper, we compared our method with EM-
GRBF [10], RPM [4], TPS-L2 [10], and CPD [17] on both
the face and dinosaur datasets. We first compare the accu-
racy of the registration, whose results are given in Table 1. It
can be seen that our method has significantly outperformed
the alternatives with very small mean distance error gener-
ated. When efficiency is concerned, Table 2 lists the time
to perform the matching tasks by each method. Our method
also achieved excellent performance, especially on the di-
nosaur dataset which has high number of points in both
models. Our method does not require iterative point cor-
respondence detection. When combined with quaternion
based method which gives a closed-form registration solu-
tion, great boosting on the efficiency can be achieved. We
also show the registration results in Fig. 8, which give qual-
itative evaluation of our method and the alternatives.

5. Conclusions
We have presented a 3D reconstruction method using hy-

perspectral images. This method first builds band-wise 3D
models. Then a point histogram descriptor is used to find

the correspondences between 3D point sets. These point-
wise matches are used to register two 3D models and esti-
mate the transformation matrix to recover the scale, rotation
and translation parameters. Experimental results on build-
ing 3D models from hyperspectral images and RGB images
show the benefit of acquiring spectral information for the
3D reconstruction. Our method can capture more detailed
structure information of objects being reconstructed. We
also performed experiments on synthetic data, which verify
the effectiveness and efficiency of the proposed point de-
scriptor and model fusion method. In the future, we will
explore other techniques to develop better 3D model which
can capture spectral responses more effectively.

References
[1] S. Belongie, J. Malik, and J. Puzicha. Shape matching and

object recognition using shape contexts. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 24(24):509–
522, 2002.

[2] P. Besl and N. McKay. A method for registration of 3-D
shapes. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 14(2):239–256, 1992.

[3] N. Brusco, S. Capeleto, M. Fedel, A. Paviotti, L. Poletto,
G. Cortelazzo, and G. Tondello. A system for 3D modeling
frescoed historical buildings with multispectral texture infor-
mation. Machine Vision and Applications, 17(6):373–393,
2006.

[4] H. Chui and A. Rangarajan. A new algorithm for non-rigid
point matching. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 44–51,
2000.

[5] M. Fischler and R. Bolles. Random sample consensus: A
paradigm for model fitting with applications to image analy-
sis and automated cartography. Communications of the ACM,
24(6):381–395, 1981.

[6] R. Furbank and M. Tester. Phenomics technologies to re-
lieve the phenotyping bottleneck. Trends in Plant Science,
16(12):635 – 644, 2011.

[7] R. Hartley and A. Zisserman. Multiple View Geometry
in Computer Vision. Cambridge University Press, ISBN:
0521540518, second edition, 2004.



(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 8. Comparison of 3D registration results on face and dinosaur data. First row: (a) two 3D face models. Registration results from (b)
proposed method, (c) EM-GRBF [10], (d) RPM [4], (e) TPS-L2 [10], (f) CPD [17]. Second row: (g) two 3D dinosaur models. Registration
results from (h) proposed method, (i) EM-GRBF, (j) RPM, (k) TPS-L2, (l) CPD.

[8] B. Horn. Closed-form solution of absolute orientation using
unit quaternions. Journal of the Optical Society of America
A, 4:629–642, 1987.

[9] X. O. J. Garcia, J. Mara Snchez and X. Binefa. Chromatic
aberration and depth extraction. In Proceedings of Interna-
tional Conference on Pattern Recognition, pages 1762–1765,
2000.

[10] B. Jian and B. Vemuri. Robust point set registration using
Gaussian mixture models. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 33(8):1633–1645, 2011.

[11] R. Kawakami, Y. Matsushita, J. Wright, M. Ben-Ezra, Y.-W.
Tai, and K. Ikeuchi. High-resolution hyperspectral imaging
via matrix factorization. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
2329–2336, 2011.

[12] M. H. Kim, T. A. Harvey, D. S. Kittle, H. Rushmeier,
J. Dorsey, R. O. Prum, and D. J. Brady. 3D imaging spec-
troscopy for measuring hyperspectral patterns on solid ob-
jects. ACM Transactions on Graphics, 4(31):38, 2012.

[13] J. Liang, A. Zia, J. Zhou, and X. Sirult. 3D plant modelling
via hyperspectral imaging. In Proceedings of the Interna-
tional Workshop on Computer Vision for Accelerated at Bio-
science at the International Conference on Computer Vision,
2013.

[14] L. Ma and J. Zhu. Efficient scaling registration algorithm
for partially overlapping point set. IET Electronics Letters,
20(49):1267–1268, 2013.

[15] A. Makadia, A. P. IV, and K. Daniilidis. Fully automatic reg-
istration of 3D point clouds. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1297–1304, 2006.

[16] Y. Manabe, S. Kurosaka, and K. Chihara. Simultaneous
measurement of spectral distribution and shape. In Pattern
Recognition, 2000. Proceedings. 15th International Confer-
ence on, volume 3, pages 803–806, 2000.

[17] A. Myronenko and X. Song. Point-set registration: Coher-
ent point drift. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 32(12):2262–2275, 2010.

[18] J. Nieto, S. Monteiro, and D. Viejo. 3D geological mod-
elling using laser and hyperspectral data. In 2010 IEEE Inter-
national Geoscience and Remote Sensing Symposium, pages
4568–4571, 2010.

[19] A. Radosevich, M. Bouchard, S. Burgess, B. Chen, and
E. Hillman. Hyper-spectral in-vivo two-photon microscopy
of intrinsic fluorophores. Optics Letters, 33(18):2164–2166,
2008.

[20] R. Rusu, N. Blodow, and M. Beetz. Fast point feature his-
tograms (FPFH) for 3D registration. In Proceedings of the
IEEE International Conference on Robotics and Automation,
pages 3212 – 3217, 2009.

[21] H. N. T. Zinßer, J. Schmidt. Point set registration with in-
tegrated scale estimation. In Proceedings of the Interna-
tional Conference on Pattern Recognition and Information
Processing, pages 116–119, 2005.


