Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Michael L. Williams, Cassandra L. Noack, Rodney J. Saverin and Peter C. Healy*

School of Science, Griffith University, Nathan, Brisbane 4111, Australia

Correspondence e-mail: p.healy@sct.gu.edu.au

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C-C}) = 0.007 \text{ Å}$ R factor = 0.043 wR factor = 0.150Data-to-parameter ratio = 19.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(2-Bromophenyl)diphenylphosphine

The crystal structure of (2-bromophenyl)diphenylphosphine, $C_{18}H_{14}BrP$, (I), has been determined at 295 (1) K. The structure of (I) is isomorphous with the analogous methyl compound (2-methylphenyl)diphenylphosphine.

Received 6 February 2002 Accepted 12 February 2002 Online 22 February 2002

Comment

(2-Bromophenyl)diphenylphosphine, (I), has been shown to coordinate to metal centres as both a monodentate ligand through the P-donor atom, and as a chelating hemilabile ligand through both the phosphine and the aryl bromide donor groups (Burk *et al.*, 1988). The solid-state structure of (I) is isomorphous with the structure reported for (2-methylphenyl)diphenylphosphine, (II) (Bowmaker *et al.*, 1987).

The structure consists of discrete molecular species which adopt a propeller-shaped conformation with the phenyl rings twisted away from the normal to the base of the PC₃ pyramid by 36, 27 and 53° [cf. (II): 36, 26 and 47°]. The bromide is located cis to the phosphorus lone pair. The P-C bond lengths [mean value 1.836 (6) Å] are similar to those recorded for triphenylphosphine [mean value 1.831 (2) Å; Dunne & Orpen, 1991], while the mean value of the C-P-C bond angles, 101.9 (8)°, is marginally smaller than the value of 102.8 (5)° observed for triphenylphosphine. Introduction of the bromo substituent on ring 1 in (I) results in a small increase in the P-C11-C12 angle to 119.8 (3)° compared to 117.1 (3) and 116.4 (3)° for P-C21-C22 and P-C31-C32. The corresponding angles in triphenylphosphine are 116.6 (1), 116.8 (1) and 117.5 (1)°. The molecules are linked in the crystal lattice through edge-to-face $C-H\cdots\pi$ interactions between the phenyl groups (Scudder & Dance, 1998). In accord with previous studies demonstrating the poor hydrogen-bond acceptor properties of C-X bonds (Aullón et al., 1998), there is no evidence of significant C-H···Br intermolecular interactions in (I), with the shortest H...Br distances being greater than 3.1 Å.

DOI: 10.1107/S1600536802002945

© 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

Experimental

The title compound was obtained as a white crystalline powder from the PdCl₂(CH₃CN)₄-catalysed reaction between *ortho*-bromoiodobenzene and diphenyl(trimethylsilyl)phosphine (Tunney *et al.*, 1987); m.p. 386–388 K. Crystals of the compound suitable for X-ray diffraction studies were obtained during an attempt to recrystallize the 1:2 copper(I) bromide complex by diffusion of ether into a solution of the complex in dichloromethane.

Crystal data

$C_{18}H_{14}BrP$	$D_x = 1.472 \text{ Mg m}^{-3}$
$M_r = 341.16$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 25
a = 10.371 (5) Å	reflections
b = 8.9735 (19) Å	$\theta = 13.2 16.0^{\circ}$
c = 16.556 (6) Å	$\mu = 2.76 \text{ mm}^{-1}$
$\beta = 92.33 (4)^{\circ}$	T = 295 (1) K
$V = 1539.5 (10) \text{ Å}^3$	Plate, colourless
Z=4	$0.40 \times 0.30 \times 0.20 \text{ mm}$

Data collection

Rigaku AFC-7R diffractometer	$R_{\rm int} = 0.033$
ω –2 θ scans	$\theta_{\rm max} = 27.5^{\circ}$
Absorption correction: ψ scan	$h = -13 \rightarrow 13$
(North et al., 1968)	$k = -11 \rightarrow 0$
$T_{\min} = 0.383, T_{\max} = 0.576$	$l = -12 \rightarrow 21$
4223 measured reflections	3 standard reflections
3540 independent reflections	every 150 reflections
1823 reflections with $I > 2\sigma(I)$	intensity decay: 0.8%

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0553P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.043$	+ 1.0428P]
$wR(F^2) = 0.150$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.01	$(\Delta/\sigma)_{\rm max} < 0.001$
3540 reflections	$\Delta \rho_{\text{max}} = 0.79 \text{ e Å}^{-3}$
182 parameters	$\Delta \rho_{\min} = -0.70 \text{ e Å}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL97
	Extinction coefficient: 0.0033 (9)

Table 1 Selected geometric parameters $(\mathring{A}, \, ^{\circ})$.

Br-C12	1.905 (5)	P-C21	1.833 (4)
P-C11	1.844 (4)	P-C31	1.832 (4)
C11-P-C21	101.51 (18)	Br-C12-C13	117.7 (3)
C11-P-C31	101.32 (18)	P-C21-C22	117.2 (3)
C21-P-C31	102.83 (16)	P-C21-C26	124.7 (3)
P-C11-C12	119.8 (3)	P-C31-C32	116.4 (3)
P-C11-C16	123.1 (3)	P-C31-C36	125.1 (3)
Br-C12-C11	120.8 (3)		

H atoms were located at calculated positions, with C-H distances set to 0.95 Å, and were constrained in refinement.

Data collection: MSC/AFC-7 Diffractometer Control Software (Molecular Structure Corporation, 1999); cell refinement: MSC/AFC-7 Diffractometer Control Software; data reduction:

ORTEP-3 (Farrugia, 1997) plot of the title compound, showing the atomnumbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

TEXSAN for Windows (Molecular Structure Corporation, 2001); program(s) used to solve structure: TEXSAN for Windows; program(s) used to refine structure: TEXSAN for Windows and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: TEXSAN and PLATON (Spek, 2001).

References

Aullón, G., Bellamy, D., Brammer, L., Bruton, E. A. & Orpen, A. G. (1998). Chem. Commun. pp. 653–654.

Bowmaker, G. A., Engelhardt, L. M., Healy, P. C., Kildea, J. D., Papsergio, R. I & White, A. H. (1987). *Inorg. Chem.* **26**, 3533–3538.

Burk, M. J., Crabtree, R. H. & Holt, E. M. (1988). J. Organomet. Chem. 341, 495–509.

Dunne, B. J. & Orpen, A. G. (1991). Acta Cryst. C47, 345-347.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Molecular Structure Corporation (1999). MSC/AFC-7 Diffractometer Control Software for Windows. Version 1.02. MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.

Molecular Structure Corporation (2001). *TEXSAN* for Windows. Version 1.06. MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

Scudder, M. & Dance, I. (1998). J. Chem. Soc. Dalton Trans. pp. 3155–3165.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2001). PLATON for Windows. Version 121201. University of Utrecht, The Netherlands.

Tunney, S. E. & Stille, J. K. (1987). J. Org. Chem. 52, 748-753.