Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Michael L. Williams,

Cassandra L. Noack, Rodney J. Saverin and Peter C. Healy*

School of Science, Griffith University, Nathan, Brisbane 4111, Australia

Correspondence e-mail: p.healy@sct.gu.edu.au

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.043$
$w R$ factor $=0.150$
Data-to-parameter ratio $=19.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

(2-Bromophenyl)diphenylphosphine

The crystal structure of (2-bromophenyl)diphenylphosphine, $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{BrP}$, (I), has been determined at 295 (1) K. The structure of (I) is isomorphous with the analogous methyl compound (2-methylphenyl)diphenylphosphine.

Comment

(2-Bromophenyl)diphenylphosphine, (I), has been shown to coordinate to metal centres as both a monodentate ligand through the P -donor atom, and as a chelating hemilabile ligand through both the phosphine and the aryl bromide donor groups (Burk et al., 1988). The solid-state structure of (I) is isomorphous with the structure reported for (2-methylphenyl)diphenylphosphine, (II) (Bowmaker et al., 1987).

(I)

The structure consists of discrete molecular species which adopt a propeller-shaped conformation with the phenyl rings twisted away from the normal to the base of the PC_{3} pyramid by 36,27 and 53° [cf. (II): 36,26 and 47°. The bromide is located cis to the phosphorus lone pair. The $\mathrm{P}-\mathrm{C}$ bond lengths [mean value 1.836 (6) Å] are similar to those recorded for triphenylphosphine [mean value 1.831 (2) \AA; Dunne \& Orpen, 1991], while the mean value of the $\mathrm{C}-\mathrm{P}-\mathrm{C}$ bond angles, $101.9(8)^{\circ}$, is marginally smaller than the value of $102.8(5)^{\circ}$ observed for triphenylphosphine. Introduction of the bromo substituent on ring 1 in (I) results in a small increase in the $\mathrm{P}-\mathrm{C} 11-\mathrm{C} 12$ angle to $119.8(3)^{\circ}$ compared to 117.1 (3) and $116.4(3)^{\circ}$ for $\mathrm{P}-\mathrm{C} 21-\mathrm{C} 22$ and $\mathrm{P}-\mathrm{C} 31-\mathrm{C} 32$. The corresponding angles in triphenylphosphine are 116.6 (1), 116.8 (1) and $117.5(1)^{\circ}$. The molecules are linked in the crystal lattice through edge-to-face $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions between the phenyl groups (Scudder \& Dance, 1998). In accord with previous studies demonstrating the poor hydrogen-bond acceptor properties of $\mathrm{C}-X$ bonds (Aullón et al., 1998), there is no evidence of significant $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ intermolecular interactions in (I), with the shortest $\mathrm{H} \cdots \mathrm{Br}$ distances being greater than $3.1 \AA$.

Received 6 February 2002 Accepted 12 February 2002 Online 22 February 2002

Experimental

The title compound was obtained as a white crystalline powder from the $\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}$-catalysed reaction between ortho-bromoiodobenzene and diphenyl(trimethylsilyl)phosphine (Tunney et al., 1987); m.p. 386-388 K. Crystals of the compound suitable for X-ray diffraction studies were obtained during an attempt to recrystallize the $1: 2$ copper(I) bromide complex by diffusion of ether into a solution of the complex in dichloromethane.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{18} \mathrm{H}_{14} \mathrm{BrP} \\
& M_{r}=341.16 \\
& \text { Monoclinic, } P 2_{\mathrm{d}} / c \\
& a=10.371(5) \AA \\
& b=8.9735(19) \AA \\
& c=16.556(6) \AA \\
& \beta=92.33(4)^{\circ} \\
& V=1539.5(10) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
\begin{aligned}
& D_{x}=1.472 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=13.2-16.0^{\circ} \\
& \mu=2.76 \mathrm{~mm}^{-1} \\
& T=295(1) \mathrm{K} \\
& \text { Plate, colourless } \\
& 0.40 \times 0.30 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

Data collection

Rigaku AFC-7R diffractometer $\omega-2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.383, T_{\text {max }}=0.576$
4223 measured reflections
3540 independent reflections
1823 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.033 \\
& \theta_{\max }=27.5^{\circ} \\
& h=-13 \rightarrow 13 \\
& k=-11 \rightarrow 0 \\
& l=-12 \rightarrow 21 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 150 \text { reflections } \\
& \quad \text { intensity decay: } 0.8 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.150$
$S=1.01$
3540 reflections
182 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0553 P)^{2}\right. \\
& +1.0428 P \text {] } \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.79 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.70 \mathrm{e} \mathrm{~A}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0033 \text { (9) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Br}-\mathrm{C} 12$	$1.905(5)$	$\mathrm{P}-\mathrm{C} 21$	$1.833(4)$
$\mathrm{P}-\mathrm{C} 11$	$1.844(4)$	$\mathrm{P}-\mathrm{C} 31$	$1.832(4)$
$\mathrm{C} 11-\mathrm{P}-\mathrm{C} 21$	$101.51(18)$	$\mathrm{Br}-\mathrm{C} 12-\mathrm{C} 13$	$117.7(3)$
$\mathrm{C} 11-\mathrm{P}-\mathrm{C} 31$	$101.32(18)$	$\mathrm{P}-\mathrm{C} 21-\mathrm{C} 22$	$117.2(3)$
$\mathrm{C} 21-\mathrm{P}-\mathrm{C} 31$	$102.83(16)$	$\mathrm{P}-\mathrm{C} 21-\mathrm{C} 26$	$124.7(3)$
$\mathrm{P}-\mathrm{C} 11-\mathrm{C} 12$	$119.8(3)$	$\mathrm{P}-\mathrm{C} 31-\mathrm{C} 32$	$116.4(3)$
$\mathrm{P}-\mathrm{C} 11-\mathrm{C} 16$	$123.1(3)$	$\mathrm{P}-\mathrm{C} 31-\mathrm{C} 36$	$125.1(3)$
$\mathrm{Br}-\mathrm{C} 12-\mathrm{C} 11$	$120.8(3)$		

H atoms were located at calculated positions, with $\mathrm{C}-\mathrm{H}$ distances set to $0.95 \AA$, and were constrained in refinement.

Data collection: MSC/AFC-7 Diffractometer Control Software (Molecular Structure Corporation, 1999); cell refinement: MSC/AFC-7 Diffractometer Control Software; data reduction:

ORTEP-3 (Farrugia, 1997) plot of the title compound, showing the atomnumbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

TEXSAN for Windows (Molecular Structure Corporation, 2001); program(s) used to solve structure: TEXSAN for Windows; program(s) used to refine structure: TEXSAN for Windows and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: TEXSAN and PLATON (Spek, 2001).

References

Aullón, G., Bellamy, D., Brammer, L., Bruton, E. A. \& Orpen, A. G. (1998). Chem. Commun. pp. 653-654.
Bowmaker, G. A., Engelhardt, L. M., Healy, P. C., Kildea, J. D., Papsergio, R. I \& White, A. H. (1987). Inorg. Chem. 26, 3533-3538.
Burk, M. J., Crabtree, R. H. \& Holt, E. M. (1988). J. Organomet. Chem. 341, 495-509.
Dunne, B. J. \& Orpen, A. G. (1991). Acta Cryst. C47, 345-347.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Molecular Structure Corporation (1999).MSC/AFC-7 Diffractometer Control Software for Windows. Version 1.02. MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (2001). TEXSAN for Windows. Version 1.06. MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Scudder, M. \& Dance, I. (1998). J. Chem. Soc. Dalton Trans. pp. 3155-3165.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2001). PLATON for Windows. Version 121201. University of Utrecht, The Netherlands.
Tunney, S. E. \& Stille, J. K. (1987). J. Org. Chem. 52, 748-753.

