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Detection of a single photon escaping an optical cavity QED system prepares a non-classical
state of the electromagnetic field. The evolution of the state can be modified by changing the drive
of the cavity. For the appropriate feedback, the conditional state can be captured (stabilized) and
then released. This is observed by a conditional intensity measurement that shows suppression of
vacuum Rabi oscillations for the length of the feedback pulse and their subsequent return.

Feedback control of quantum systems was first stud-
ied about fifteen years ago [1–3], in the field of quantum
optics. In these approaches, the feedback could be un-
derstood in an essentially classical way, with quantum
field theory entering only to dictate the magnitude of
the fluctuations. This is possible if fluctuations are small
compared to the mean fields being detected. More re-
cently, a different approach to quantum optical feedback
has been developed [4,5], based on quantum trajectories
[6–8], which specify the stochastic evolution of a quan-
tum state conditioned on continuous monitoring (such
as by photodetection). This theory allows the treatment
of feedback in the deep quantum regime, where quan-
tum fluctuations are not small compared to the mean. It
is also arguably the best way to approach feedback, as
the conditioned state by definition comprises all of the
knowledge of the experimenter on which feedback could
be based [9,10].

So far, experiments in quantum feedback, such as
Refs. [1,11–15], have all been in the regime of small fluc-
tuations [16]. Cavity QED is able to explore the opposite
regime, where fluctuations in the conditional state are
large. Furthermore, using the theory of quantum tra-
jectories, Carmichael and coworkers [17,18] showed that
such conditional quantum fluctuations are intrinsically
related to the production of squeezing and antibunch-
ing. In this letter we present experimental results for the
application of feedback in this regime. Following a pho-
todetection, the conditioned quantum state of the sys-
tem is |ψc(τ)〉. Given our knowledge of this evolution,
we can, for certain times τ , change the parameters of the
system dynamics so as to capture the system in that con-
ditioned state. When the parameters are later restored to
their usual values, the released system state resumes its
interrupted evolution. This directly demonstrates both
the reality of the conditioned state and its usefulness for
quantum feedback.

A Cavity quantum electrodynamical (QED) system
consists of a single mode of the electromagnetic field of a

cavity interacting with one or a collection of N two-level
atoms [19]. Microwave Cavity QED systems have been
used recently to prepare multiparticle entanglement [20],
and to produce photon number states of the electromag-
netic field [21]. Operated at optical frequencies, cavity
QED systems can now trap single atoms in the electric
field of the cavity when its average occupation is about
one photon [22,23]. The system size and dynamics are
characterized by two dimensionless numbers: The satu-
ration photon number n0 and the single atom coopera-
tivity C1. They scale the influence of a photon and the
influence of an atom in cavity QED. These two numbers
relate the reversible dipole coupling of a single atom with
the cavity mode (g) with the irreversible coupling to the
reservoirs through cavity (κ) and atomic radiative (γ)
decays: C1 = g2/κγ and n0 = γ2/3g2. The strong cou-
pling regime of cavity QED requires n0 ≤ 1, and C1 ≥ 1.
Strictly speaking, the coupling constant (g) is spatially
dependent and together with the N moving atoms may
be described by effective constants.

With weak driving, the system can be accurately mod-
elled as having either zero, one, or two excitations of the
coupled normal modes of the field and the atoms. In this
regime, photodetections are very infrequent and the state
before a detection can be taken to be the steady state,
which is almost pure:

|ψss〉 = |0, G〉 + λ

(
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√
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γ
|0, E〉

)

+λ2
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√
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)
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Here |n,G〉 represents n photons with all (N) atoms
in their ground state, |n,E〉 represents n photons with
one atom in the excited state with the rest (N − 1) in
their ground state. The small parameter is λ = 〈â〉 =
ǫ/κ(1 + C1N), which depends on the input driving field
ǫ, while ζ0 and θ0 are coefficients of order unity for
the two-excitation component of the state that can give
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rise to a photon detection, and depend on g, κ, and γ
[24,25]. After the photodetection occurs |ψss〉 collapses to
â|ψss〉/

√

〈â†â〉ss. This evolves as the conditioned state:

|ψc(τ)〉 = |0, G〉 + λ

(

ζ(τ)|1, G〉 − θ(τ)
2g

√
N

γ
|0, E〉

)

+O(λ2) (2)

This is different from the initial state because ζ (the
“field” evolution) and θ (the “atomic polarization” evo-
lution) oscillate coherently at the vacuum Rabi frequency
(g
√
N) over time as the system re-equilibrates exchang-

ing energy between the atomic polarization and the cav-
ity field [24,25].

If we choose a time τ = T for Eq. (2) such that
ζ(T ) = θ(T ) then, to order λ we obtain

|ψc(T )〉 ≃ |0, G〉 + λ′

(

|1, G〉 − 2g
√
N

γ
|0, E〉

)

, (3)

This is of the form of |ψss〉 in Eq. (1) but with a different
mean field λ′ = ζ(T )λ. This conditional state can be sta-
bilized if, at time T , we change the driving amplitude by
a factor ζ(T ). Given the almost 90◦ out of phase oscil-
lations between the field (ζ) and the atomic polarization
(θ) [25] the time T is close to the time when the field is
crossing zero.

Conditional quantum states such as Eq. 2 can be
measured using high order quantum optical correlations
[18,26]. When the light transmitted through the cavity
(with annihilation operator â) is split the photons enter
two detectors. The normalized correlation function of
the two photocurrents is the time-and normally ordered
average

g(2)(τ) =
〈â†(t)â†(t+ τ)â(t+ τ)â(t)〉ss

〈â†(t)â(t)〉2ss
=

〈n̂(t+ τ)〉c
〈n̂(t)〉ss

, (4)

where n̂ = â†â, and c means “conditioned on a detection
at time t in steady state”. If a detection at one detector
is used to trigger a feedback pulse on the system, the
correlation function will no longer be time symmetric.
However, for τ > 0 the expression (4) still measures the
conditional state in the presence of feedback:

g(2)(τ) ≃ |〈1, G|ψc(τ)〉|2
|〈1, G|ψss|2

= [ζ(τ)]2 (5)

Fig. 1 shows the conditional evolution of the state of
the cavity QED system, as given by Eq. 5. We start with
the quantum theory valid for N two level atoms identi-
cally coupled to the cavity in the weak field regime [24].
We find geff < g andNeff [28,29] using our experimentally
determined values for g(2)(0) such that g

√
N = geff

√
Neff .

All broadening effects are incorporated by the modifica-
tion of the atomic decay rate, γ → γ′. We numerically
solve the time evolution with the driving step incorpo-
rated. This simplified approach agrees with our previous
work for g(2)(τ) [27]. The dashed line is the free evolu-
tion of the system, and shows the time symmetry of the
correlation function. The application of a feedback pulse
at time T alters the evolution of the system. The contin-
uous lines shows the evolution when the step change in
the driving intensity ǫ satisfies the conditions necessary
to reach a new steady state described by Eq. 3. The pa-
rameters of the calculation are those of our experiment:
g
√
N/2π = 37.3 MHz, γ′/2π = 9.1 MHz and κ/2π = 3.7

MHz. The change in the intensity is small (0.2 %) and
here we assume that its rise and fall are instantaneous.
The new state reached by the system after the change
of driving intensity no longer shows the vacuum Rabi
oscillations and instead has a new value for the steady
state slightly lower than the original one. The duration
of the pulse that changes the steady state is finite and our
model shows the reappearance of the oscillation delayed
by the length of the pulse.
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FIG. 1. Conditional evolution of cavity QED system with
(continuous line) and without (dashed line) feedback. The
shaded rectangle region corresponds to an instantaneous step
down of 0.2 % of the driving intensity applied at time T .

Our cavity QED apparatus, described in detail in Ref.
[27], consists of the cavity, the atomic beam, an exci-
tation laser, and the detector system. Two high re-
flectivity curved mirrors (input transmission mirror 10
ppm, output transmission mirror 285 ppm, and separa-
tion l = 880µm) form the optical cavity (waist of the
TEM00 mode w0 = 34µm). A Pound-Drever-Hall sta-
bilization technique keeps the cavity locked to the ap-
propriate atomic resonance. An effusive oven produces
a thermal (440 K) beam of Rb atoms with an angular
spread of 2.8 mrads at the cavity mode. A laser beam
intersects the atomic beam before the atoms enter the
cavity in a region with 2.5 Gauss uniform magnetic field.
It optically pumps all the 85Rb atoms of the F = 3
ground state the magnetic sublevel F = 3,mF = 3. The
three rates that characterize our cavity QED system are
(g, κ, γ/2)/2π = (5.1, 3.7, 3.0) MHz.
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FIG. 2. Simplified diagram of the experimental setup. The
output of the cavity QED system passes through a beam split-
ter (entrance of an intensity correlator) such that the detec-
tion of a photon at the “start” avalanche photodiode (APD)
also triggers a change in the driving intensity trough a pulse
that drives an electro-optical modulator EOM in front of a
polarizer. A histogram of the delays between the “start” and
“stop” gives the conditional evolution of the intensity

Fig. 2 shows a schematic of our apparatus. Light from
a Ti:Sapph, locked to the 5S1/2, F = 3 → 5P3/2, F = 4
transition of 85Rb at 780 nm, drives the cavity QED sys-
tem. The signal escaping the cavity creates photodetec-
tions at the “Start”and “Stop” avalanche photodiodes
(APD). The output pulse of the “Start” detector is split
and one part sent to the start channel of the correlator
[time to digital converter (TDC) with 0.5 ns per bin, his-
tograming memory, and computer] while the other goes
to a variable time delay, and after pulse shaping and
lengthening, drives an Electro Optical Modulator (EOM)
in front of a polarizer to produce a pulse of 8 ns risetime
and 120 ns length in the driving intensity of the cavity.
The delay between the detection of a photon at APD1
and the arrival of the pulse at the cavity can be as short
as 45 ns. The other APD sends its pulses to the corre-
lator to stop the TDC that measures the time interval
between the two events.

We operate the cavity QED system in a non-classical
regime where the size of the vacuum Rabi oscillations is
large enough to permit their rapid identification during
data taking. We begin by measuring the antibunched sec-
ond order correlation function of the intensity escaping
our cavity QED system. We then apply the step change
in the driving intensity at time T to fulfill the conditions
of Eq. (3) and obtain a new steady state.

Fig. 3 shows measurements of the correlation function
in the absence (i) and presence (ii, iii) of feedback. Traces
i and ii have the same oscillating frequency while for trace
iii we have a smaller number of atoms. τ∗ marks the po-
sition where the oscillation we want to suppress reaches
a maximum. The steady state for τ large corresponds to
an intracavity intensity of n/n0 = 0.07. Fig. 3 ii shows
the correlation function with step down feedback (- 2.6
%) for 120 ns, beginning at τ = T = 57 ns, when the
oscillation crosses unity and is growing. The oscillation

that has a maximum in trace i at the point marked by τ∗

has disappeared, the steady state is lower that marked
by the dashed line, and the oscillation reappears after
the pulse is turned off with approximately the same size
of the amplitude as the suppressed one. Trace iii shows
step up feedback (+ 3.9 %) at T = 46 ns when the phase
is opposite from trace ii.
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FIG. 3. Measured intensity correlation function with the
feedback step applied during the shaded region: i) no feed-
back (g

√
N/2π = 37 MHz), ii) suppression with a step down

change of 2.6 % (g
√

N/2π = 37 MHz) iii) suppression with a
step up change of 3.9% (g

√
N/2π = 31 MHz). The oscillation

of the system continues with the same phase and amplitude
once the step is off. Note that the time T for the beginning
of the feedback in ii and iii is different as indicated by the
position of the shaded region. The data has been binned in
2.5 ns points joined with a line.

Reversing the sign of the step produces an enhance-
ment of the oscillations. If the time T for the application
of the pulse is not correct, it is not possible to achieve
good suppression. There is qualitative agreement be-
tween the traces i and ii with those of the theory in Fig.
1. They show the suppression and the delayed return
of the oscillation by the application of a feedback pulse
to the driving intensity. Although the theoretical model
does not include all the experimental details that give
rise to broadening the main features of the response are
clearly explained.
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FIG. 4. Amplitude of the normalized intensity response at

time τ∗ (first oscillation extreme of g(2)(τ ) after the appli-
cation of the feedback pulse) as a function of the size the
feedback step. The dashed line is a theoretical prediction.

We have followed the size of the amplitude of the os-
cillation immediately after we apply the feedback pulse,
at the time τ∗ defined in Fig. 3, to make a quantitative
comparison with theory. Fig. 4 shows the results for a
series of measurements that include steps up (positive)
and steps down (negative). The theory (dashed line) in-
corporates the measured shape of the pulse (at the point
-4.6%), all sources of dephasing present in the system
are modelled by the polarization decay rate γ′/2π = 9.1
MHz. The plot shows both enhancement and suppression
with quantitative agreement.

The quantum feedback in this system is triggered by a
fluctuation (detection of a photon) that is large enough
to significantly modify the system, because of the strong
coupling. This detection prepares the system in an evolv-
ing conditional state. We then change the drive of the
system and are able to freeze its evolution to a new time-
independent steady state. The suppressed oscillations
return once the pulse turns off, with the same phase and
amplitude information. This sort of quantum feedback is
a novel way to manipulate the fragile conditional states
that come from strongly coupled systems.
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