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Abstract

Accurate numerical integration of line integrals is of fundamental importance for the
reliable implementation of the boundary element method. Usually, the regular integrals
arising from a boundary element method implementation are evaluated using standard
Gaussian quadrature. However, the singular integrals which arise are often evaluated in
another way, sometimes using a different integration method with different nodes and
weights.

This paper presents a straightforward transformation to improve the accuracy of eval-
uating singular integrals. The transformation is, in a sense, a generalisation of the popular
method of Telles with the underlying idea being to utilise the same Gaussian quadrature
points as used for evaluating non—singular integrals in a typical boundary element method
implementation. The new transformation is also shown to be equivalent to other existing
transformations in certain situations.

Comparison of the new method with existing coordinate transformation techniques
shows that a more accurate evaluation of weakly singular integrals can be obtained. The
technique can also be extended to evaluate certain Hadamard finite—part integrals. Based
on the observation of several integrals considered, guidelines are suggested for the best
transformation order to use (ie the degree to which nodes should be clustered near the

singular point).

Key words: nonlinear coordinate transformation, boundary element method, weakly singular

integrals, numerical integration, Hadamard finite—part integrals.



1 Introduction

Weakly singular line integrals arise in the boundary element method when the source point lies
on the element over which the integration is to be performed. When considering, for example,
the two dimensional Laplace equation, the boundary element kernel is of the form ln% where
r is the distance from the source point to the integration point. Hence, multiplication of this
kernel by some basis function, ¢, and subsequent integration over the current element, I, gives

rise to a weakly singular integral of the form

1
g:/rln ~ . (1.1)

There are several methods available to evaluate the above integral, most of which fall into
the categories of either coordinate transformation (to increase the smoothness of the integrand
at the singular point) [1, 2, 3, 4] or interval splitting [5, 6, 7, 8]. The idea behind both
categories of techniques is to use the same Gaussian quadrature points and weights as those
used for the non-singular integrals. For example, if 10 Gaussian points and weights are used
to evaluate the non-singular integrals, it is desirable to use the same 10 points and weights
to evaluate the singular integrals. The first category of techniques, coordinate transformation,
would simply relocate these 10 points on the interval of integration to improve the accuracy of
the evaluation of the singular integral. On the other hand, the second category of techniques,
interval splitting, splits the interval at the singularity and uses the 10 points on each subinterval,
requiring a total of 20 evaluations of the integrand, instead of 10. An ideal interval splitting
method should more accurately evaluate a singular integral using the same 10 Gaussian points
twice, than a coordinate transformation technique using 20 Gaussian points over the entire
interval. As a result, this will reduce storage requirements and operation counts in the computer
code implementing the numerical methods, as only the nodes and weights for the 10 point

Gaussian quadrature rule need to be determined and stored. Other possible techniques for



evaluating these integrals include using a completely different set of integration points and
weights dependent on the kernel [9] and integral simplification [1, 10]. We shall say no more of
these methods.

It has recently been shown [11] that a nonlinear transformation, introduced by Monegato
and Sloan [12] and subsequently used by Scuderi [13] to study flow around an airfoil with flap,
can be used to evaluate integrals of the form (1.1). This is a polynomial transformation of
arbitrary odd degree, with zero Jacobian at the singularity which does not require the interval
of integration to be split at the singularity. Hence it falls into the first of the two categories,
i.e. coordinate transformation, for numerical evaluation of singular integrals described above.

The transformation of Monegato and Sloan works well when the singularity is at the end
points of the interval. On the other hand, as it may be seen from Tables 4, 5 and 6, relative
errors can be reasonably large at other points of the interval for lower order transformations.
Of course, the method can be improved by first splitting the interval of integration at the
singularity and applying the Monegato—Sloan transformation on each subinterval. In this case,
the transformation no longer has to be of odd degree and the transformation due to Sato et
al. [5] is recovered. The popular transform due to Telles [2] arises as a special case of the
Monegato—Sloan transformation when the polynomial is of degree three.

The method outlined below is an interval splitting technique which arose from a recent study
of semi-sigmoidal transformations [7] and their subsequent numerical analysis [8]. It turns out
that this technique is related to the techniques of Telles and Monegato and Sloan when the
singularity is at one of the end points of the interval.

The next section of the paper describes the integrals of primary interest in this paper and
the following section introduces the coordinate transformation to be studied. In section four
several integrals, which compare the relative accuracy of this method with existing techniques,

are evaluated and in section five the technique is generalised to consider certain Hadamard



finite—part integrals.

2 Weakly Singular Integrals

This paper is primarily concerned with evaluation of boundary element method line integrals
of the form given in equation (1.1) where, as mentioned previously, I" is an arbitrary boundary
element in two dimensional space, r is the distance from the source point (z, yo) to the element
[' and ¢ is a basis function. The usual practice is to transform the integral into one along the

path from —1 to 1 in a local coordinate system, resulting in the integral

oo
g:/_lln@ (s)J(s)ds, (2.1)

where J(s) is the Jacobian of the transformation. Assuming that the singularity occurs at some
point sg, —1 < s9 < 1, in the local coordinate system, then r(s) = |s — sq.

Although the integrals of concern to boundary element method practitioners usually contain
a weak singularity of the logarithmic type, the methods to be described here apply equally well

to weakly singular integrals having an algebraic singularity at sg,

Jo = /_1 |s — so|“@(s)J(s)ds (2.2)

where a > —1.

We aim to evaluate the integral in equation (2.1) using Gauss-Legendre quadrature with the
same integration weights and node points as for the non-singular integrals arising in a boundary
element method formulation. The next section describes what is effectively a transformation of

these points and weights which results in an accurate evaluation of weakly singular integrals.



3 A Monomial Transformation

The motivation for this approach began with recent work on sigmoidal and semi-sigmoidal
transformations (see [14] and [7], respectively). In general a sigmoidal transformation, ~,, of

the interval [0,1] onto itself is a function of the form (see [14])

Q)

o+ fa—n CStED (3.1
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where f,.(t) = O(t") near ¢ = 0 and r is the order of the transformation. A semi-sigmoidal

transformation, o,, (see [7]) is defined in terms of a sigmoidal transformation by

1

7r(t) = 29 (5) = M)/ ulz), 0<E<1, (3.2)

as 7,(3) = 3, by (3.1). It can be shown that o, is actually a sigmoidal transformation of the
interval [0,2] onto itself [7]. It has been shown computationally [7] and via error analysis [8]
that semi-sigmoidal transformations more accurately evaluate integrals of the forms (2.1) and
(2.2) than do sigmoidal transformations.

Let us generalise the semi-sigmoidal transformation idea to the (1/m)"™ sigmoidal transfor-

mation, %, ,, mapping [0,1] onto itself and defined by
'Vr,m(t> = TN 0<t<1, (33>

where m € N. The sigmoidal transformation is obtained when m = 1 and the semi-sigmoidal
transformation is obtained when m = 2. Since a transformation with m = 2 yields more
accurate evaluation of weakly singular integrals than when m =1, it is reasonable therefore to

ask, what is lim, o ¥,m(t)? Using equations (3.1) and (3.3) it follows that

lim ’}/Tm(t): lim fr(t/m> fr(l/m>+fr<1_1/m>‘

it AL TG + L=t L m) 34



Fix t € [0,1]. Since f,(§) = ¢,&" near £ =0, for m > 1 we have from (3.4) that

. . o (t/m)" ¢ (1/m)" + f.(1—1/m)
dim Yem(t) = lim cr(t/(TrL/)T;— fT(l(—t/m/) ) o (1/m)" (3:5)
B Timcrlmr—l—le—lm
= Wy + L= t/m) (3.6)
- (3.7)

since, from (3.1), f.(1) # 0. Thus the transformation ", which maps [0,1] onto itself, although
not a sigmoidal transformation, is a limit of the (1/m)"® sigmoidal transformation as m — oco.

Based upon the above argument, we define the monomial transformation, x,, as

pe(t) =1, 0<t<1, (3.8)

where the order of the transformation, r, does not need to be integral.

The monomial transformation also arises from several other existing transformations. Firstly,

consider the transformation of Sato et al. [5] (with singularity at t = —1)
S 1 r

which is a transformation of [-1,1] onto itself. Now transform the interval [-1,1] (with singularity

at -1) onto the interval [0,1] (with singularity at zero) using

1+t
_ 1t 3.10
u=t (3.10)
then
S(t)+1
WO ), 0<u<l. (3.11)

2

Hence, we see that the monomial transformation on [0,1] is equivalent to the transformation of
Sato et al. over [-1,1] with singularity at ¢ = —1. Using the transformation « = %, it can be
shown that the monomial transformation is also equivalent to the transformation of Sato et al.

with singularity at ¢t = 1.



Secondly, consider the Monegato—Sloan transformation (see [12]), which is also a mapping

of the interval [—1, 1] onto itself, defined by
s = (t) := 5o+ (sg,7)(t — to)" (3.12)

for an arbitrary singular point sy, —1 < sg < 1. We restrict r to being an odd integer and

d(so,7) and ty are defined by
5(s0,7) = 27" (14 s0)" + (1= 50)"7)", (3.13)

and

to= Lo = (L= o) (3.14)
0 (1 + s[))l/r + (1 _ SQ)]_/r’ .

respectively. Now if so = —1, say, it follows that ¢ty = —1 and §(—1,r) = 2'7" so that

s=0(t) = —1+2""(t+1)". (3.15)

In this case Monegato and Sloan’s restriction of r being an odd integer can be removed and one
of the transformations of Sato et al. [5] is recovered. Hence, from above, it can be seen that
B, is the generalisation of the monomial transformation on [0,1] to the interval [—1, 1]. Similar
comments apply to the case where s, = 1.

Finally, the monomial transformation is also recovered from the transformation of Monegato

and Scuderi [15]

Tpa(t) = (p(zi_il_)cl](;_mly /0 WL = u)? du (3.16)

with ¢ = 1.
In order to apply the monomial transformation for an arbitrary singularity, sq € (—1,1),

firstly, split the integral at sg to give

g:/_solni (s)J(s)ds+/ In——(s) ] (s)ds. (3.17)
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Next, the variable of integration is changed so that both integrals are evaluated over the range
[0,1], ensuring that the point sy maps to 0 in both cases. That is, for the first integral in
equation (3.17), apply the transformation s = s — (1 + s¢)t and in the second integral apply
the transformation s = so + (1 — s9)t, to give

g=(1+ sp) /0 In - (11 n 80)t>¢<80 — (L4 s0)t)J(s0 — (1 + s9)t)dt

1 1 (3.18)
+(1— so) /0 I o (L= s s+ (1= s}

The advantage of the monomial transformation (equation (3.8)) is that it can be directly
compared with the previously defined semi—sigmoidal transformations [7] through the error
analysis described in the paper by Johnston and Elliott [8]. Using the notation of that paper,

for the integral defined by

Ir(g;a) == / (1 —=m)*In(1 —n)g(n)dn, (3.19)

1

where ¢ is an arbitrary “well-behaved” function, an asymptotic estimate for the truncation error

when evaluating the transformed integral via n—point Gauss-Legendre quadrature is given by

Eon (g5 ) o (20 4 1) 72 (4023002105006 (1) (4T (27 (1 4 )
x {—mrcos(m(r(1+a) — 1)) +sin(x(r(1 + a) — 1)) (3.20)
X [2rin(2n+ 1)+ (2r — 1) In2— Inec, — 2ry(2r(1 + )]} .
The quantity in this equation which depends on the transformation itself is ¢,, the coefficient
of t" in the sigmoidal transformation of order r near ¢ = 0. For the monomial transformation,
¢ = 1 for all values of r, which, as can be seen from Table 1, is smaller, for a given r, than the
corresponding ¢, for any of the sigmoidal or semi—sigmoidal transformations given in [14] and

[16]. Hence, for the monomial transformation applied to the integral I5(g; ) the asymptotic



estimate for the error is given by

By (g5 o) ~ (2n + 1)727"(1”‘)23+0‘*2T(1+0‘)7“g(1)l“(27"(1 + «))

x {—mrcos(m(r(1+a) — 1)) +sin(x(r(l + a) — 1)) (3.21)

X [2rn(2n +1) + (2r — 1) In2— 2r¢(2r(1 + «))]}.
4 Numerical Examples

In order to assess the utility of the transformation described above and to establish its optimum
behaviour, several integrals of importance in the boundary element method are evaluated.

The results are compared in terms of the relative error, defined by

Iapproacimate - ]e:cact (4 1)

relative error =
[ewact

where Ioppropimate a0d Teyaer are the approximate and exact values of the integral being consid-

ered.

4.1 A Simple Example

Firstly, consider the integral

I(so) = /_ In|s — solds (4.2)

1

which, in terms of the boundary element method, contains the logarithmic kernel and a constant
basis function, ¢(s) = 1, (the Jacobian, J(s), of the transformation from an arbitrary integral

to the one above has been ignored). The integral I(sg) can be evaluated explicitly as
I(s9) = (In(1 — s9) — 1)(1 — s9) + (In(1 + s9) — 1)(1 + s0) (4.3)

for —1 < sp < 1 and I(£1) = 2(In2 — 1). This integral has been considered previously as a
test integral for other proposed integration schemes for several values of sy: sg =1, s = —0.3
(2, 6, 7]; so = 0.8 [3, 6, 7].

10



Now consider evaluating the integral I(sy) using the monomial transformation, equation
(3.8). Recall that to evaluate this integral, the interval of integration must be split at the
singularity and each subinterval mapped onto [0, 1], with the singularity mapping to 0 in both
cases. Hence for a fair comparison, evaluation of the integral I(sp) using the monomial trans-
formation should use half the number of Gaussian points in each integration that the Telles and
Monegato—Sloan transformations can use (that is, there is the same total number of function
evaluations in both cases). Figure 1 shows a comparison of truncation errors (the numera-
tor of the relative error (4.1)) between the Telles transformation (r = 3 in equation (3.12)),
the Monegato—Sloan transformation of orders 5 and 7 (all with 20 Gaussian points) and the
monomial transformation of orders 3, 5 and 7 using 10 Gaussian points in each interval.

It can be seen from Figure 1 that even a monomial transformation of order 3 is approximately
two orders of magnitude more accurate than the original Telles approach. The figure also
shows that, for most values of sy, the monomial transformation is more accurate than the
transformation of Monegato and Sloan, for a given order. The exception to this is when
so = 1, where 10 points should be used for the Monegato—Sloan transformation which will yield
identical results to the monomial transformation. In fact, the truncation error is independent of
Sg, a result which can be demonstrated for the integral I(sg) using the error estimates given by
Johnston and Elliott [8]. It turns out that the asymptotic error for the numerical approximation

to I(sg), for integer r, is given by (equation (3.21) with & = 0 and g(1) = 1)

(=1)" 237221 (2r)m
(2n 4+ 1) ’

Emono(l; O) ~

2,n,r

(4.4)

independent of sy.
Increasing the order of the transformation reduces the asymptotic error up to a certain
point, then it increases again. An optimal value is predicted numerically at » = 15. On the

other hand, differentiating the error estimate (4.4) with respect to r, and equating to zero,

11



gives r ~ (2n + 1) as a minimum for n > 1. Hence for n = 10, the minimum error should
occur at r = 21. The main reason for this discrepancy could be due to lack of working precision
on the computer. At r = 15, the absolute error is of the order of 107! (near the working
limits of the machine); however, the formula for the error estimate predicts an absolute error
of approximately 10 1% when r = 21. Although these two results are quite close together, it is
probably safest to choose the order of the transformation to be equal to the number of Gaussian

points used. This may not be optimal, but it tends to err on the side of caution.

4.1.1 Non-Integer Transformation Orders

Interestingly, the error estimate can be improved by using non—integer values for r, the order
of the transformation. The asymptotic error for evaluating the integral I(sy) with a general r

is given by

EF0(150) ~ (20 4 1)727 2%~ (2r)

o (4.5)
X {—mrcos(m(r — 1)) +sin(w(r — 1)) [2rIn(2n+ 1) + (2r — 1) In2 — 2r4(27)]} .

Plots of the absolute values of E5"°(1;0) for n = 10 and n = 20 are shown in Figures 2
and 3, respectively. The important feature of these curves is the presence of several “inverted”
spikes. Each spike corresponds to a value of r at which Eg}gf}f’(l; 0) is zero (since the graphs are
plots of absolute values). These figures also show the actual error for the numerical calculations.
It can be seen that the asymptotic error generally agrees very closely with the calculated
values. However, for n = 10, the asymptotic error underestimates the actual error for orders
of transformation greater than about 7. Also, for n = 20, round off errors affect the numerical
calculation and so it is difficult to make comparisons with the asymptotic errors for orders of
transformation greater than about 7.

Based on observations from the above plots, it is theoretically possible to choose a value

of r» which gives a truncation error of zero, for a given value of n. These values of r can be

12



obtained as zeros of the transcendental equation

mrcot(m(r — 1)) =2rIn(2n+ 1) + (2r — 1) In2 — 2r¢p(2r) (4.6)

The first few zeros of this equation for n = 10 and n = 20 are given in Tables 2 and 3,
respectively. These tables also show the values of the calculated truncation and relative errors
at these zeros and at the adjacent integer orders of transformation. It can be seen that the zeros
of the transcendental equation generally give smaller truncation errors. The exception is when
n = 20 with transformation orders greater than 7 where round off errors have a considerable

effect on the calculated quantities.

4.1.2 Specific Values of sg

Tables 4, 5 and 6 compare approximate values of the integral I(sqg) obtained from various
integration schemes with the exact value, as well as showing the relative error, for the specific
values of sy at sg = 1, sg = —0.3 and sq = 0.8, respectively. Note that the principal factor in
making a fair comparison between methods is the number of function evaluations. Also, in the
cases of the the sigmoidal and semi—sigmoidal transformations, the transformation order shown
is optimal.

Table 4 shows the results for s, = 1. Recall that in this situation, since the singularity is
at an end point, the Monegato—Sloan and monomial transformations are identical and, further,
when these transformations are of order 3, both are identical to the Telles transformation. The
table indicates that even at modest transformation orders (r = 5,7) the new transformations
provide a more accurate evaluation of the integral I(1) than most of the other methods. The
exception is the sixth order (optimal) Sidi transformation which yields more accurate values
than the fifth order monomial transformation, but not the sixth order monomial transforma-

tion. The values for I(1) determined with the monomial transformation with 10 Gaussian
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points are more accurate than the values obtained with the Telles, Sanz—Serna and bicubic
transformations, each using 20 Gaussian quadrature points.

The same comments apply to the evaluation of the integral I(—0.3), (Table 5). Generally,
the monomial transformations of order five or higher result in the most accurate evaluations,
with the sixth order Sidi transformation being the exception. However, a sixth order monomial
transformation is more accurate than this Sidi transformation. Note that the monomial trans-
formation of order 3 is equivalent to splitting the interval at the singularity and applying the
Telles approach on each subinterval, after mapping these onto [—1, 1].

Finally, the above comments also apply to the results shown in Table 6, for the evaluation
of the integral 7(0.8).

In each of the above tables non—integer transformation orders for the monomial transfor-
mation are also included. These orders are again the zeros of equation 4.6 and are identical for
each example as the truncation error is independent of s;. It can again be seen that having
a non-integer transformation order reduces the error in the approximation to the value of the

integral and these orders give superior results to the adjacent integer transformation orders.

4.2 Quadratic Basis Functions

Now consider quadratic boundary elements where there are three basis functions: ¢;(z) =
z(x —1)/2; ¢a(x) =1 — 22 and ¢3(z) = z(z + 1)/2. Singular integrals are obtained for each
of the node points on the element acting as source points and for each basis function. The five

integrals to be evaluated are:

1. basis function x(z — 1)/2, source point (-1,0) and basis function z(x + 1) /2, source point

(1,0)

' —1 L 1 In64 — 1
J1 = / In(x + I)de = / In(1 — x)mdx = In64 =17
—1 2 1 2 18

14



2. basis function z(z — 1)/2, source point (0,0) and basis function z(z + 1)/2, source point
(0,0)

! —1 ! 1 1
JQZ/ 1n|x|7x(x )dx:/ ln|x|7x(x+ )dx:——
. 2 9 2 9

3. basis function xz(z — 1)/2, source point (1,0) and basis function z(z + 1)/2, source point

<'17O>

! -1 ! 1 In64 +1
Jg = / ln(l — I)de = / 111(1 + I)de — HG;
-1 2 1 2 18

4. basis function 1 — z?, source point (-1,0) and basis function 1 — z?, source point (1,0)

' ' 2ln64 — 1
Jy = / In(z + 1)(1 — 2*)dr = / In(1 —2)(1 — 2?)dr = y
-1 -1

5. basis function 1 — 2, source point (0,0)

1
1

Js = / In|z|(1 — 2®)dr = 16
o 9

As a final example, consider evaluating the J integrals with the monomial transformation
(Table 7). Here, the integrals Jo and Js; must be split to apply the transformation and so
it should be remembered that twice as many function evaluations are required. Generally,
the monomial transformation produces the lowest relative error of all the methods considered.
However, there is again the problem of an optimal order. It appears, as in the case of the
Monegato—Sloan transformation [11], that the order of the transformation should be numerically
equal to half the number of Gaussian points used which is different from the case with the
evaluation of the integral I(sq) using the monomial transformation where the order should be
equal to the number of Gaussian points used.

It is also possible to use non-integer transformation orders for the monomial method when
evaluating the above integrals. However, an exhaustive study for these integrals would occupy
too much space as each integral requires the solution of a slightly different transcendental

15



to obtain the appropriate transformation orders. However, to illustrate this idea, consider
evaluating the integral J; with 10 Gaussian points. Using a transformation order of 5.2777 gives
a relative error of 3.88x 10 !® which is much smaller than many other error values obtained. As
another example, using a transformation order of 5.1962 when evaluating J3 with 10 Gaussian

points gives a relative error of 1.94x10 !¢, again much better than most other techniques.

5 Hadamard Finite—Part Integrals

Hadamard finite—part integrals also play a role in the boundary element method. Here it will
be shown that the above monomial transformation can also be applied to these integrals.

Consider the integral

fﬂﬁwﬂo:f‘%ﬂilﬁh@nm (5.1)

where —1 < s5 < 1, 0 < a < 1, f is a Lipschitz continuous function on [—1, 1] and the double
bars denote the Hadamard finite—part integral. The integral H(f;so, @) can be split at the

singularity and rewritten as

H(f;so,a):—jé_so%ds—i-f %ds. (5.2)

1 (80— 3)

From [17] we define

") [P = f) f(b)
]é 7(b—t)1+a dt ._/a b—nre dt_a(b—a)"” (5.3)

S (O L (U (O D ()
f o) et o

Using these definitions, the integral H(f; sq, &) can again be rewritten as

U N O (Pt
H(f: 50, ) { I L, <30+1>a}

{/0 fS—SO It _%}

and




or

H(f;SO,O{>:

0 f(so) — f(s) s L f(s) = f(s0) s
s B s !

5o (85— 8p)tte
f(s0)  f(s0)
a(sp+ 1) all —sy)*

(5.6)
+

The two integrals in equation (5.6) are now weakly singular and so can be evaluated using
the monomial transformation. Hence, in order to obtain a value for the Hadamard finite—part

integral, H(f; s, @), we proceed as follows:

1. Map both integrals in equation (5.6) onto the interval [0,1] with s mapping to 0 (c.f.

equations (3.17) and (3.18)),
2. Apply the transformation pu,(s) = s" to both integrals,
3. Evaluate the integrals using Gaussian Quadrature,
4. Add the additional terms in equation (5.6).

As an example to illustrate this method, consider the following integral

! sgn(s — 0.2)
1 |8 - O.2|1'2

H(e%0.2,0.2) = j[

e ds. (5.7)

The integral has previously been considered by Kutt [18] and is also used as an illustrative
example for the bicubic transformation method of Cerrolaza and Alarcon [3]. The value for the
integral given by Kutt is 2.4464143506. Using 14 Gaussian quadrature points on each subin-
terval (28 function evaluations) the bicubic transformation yields a value for the integral of
2.4463. Application of the method outlined above to this integral yields a value of 2.4464170777
using only six Gaussian points (12 function evaluations) and a fourth order monomial trans-
formation. This value can be improved to give 2.4464143408 by using 14 Gaussian points (28
function evaluations) and a fifth order transformation. By firstly splitting the interval of inte-

gration at the singularity and then integrating by parts twice, Mathematica yields a value of

17



H(e*;0.2,0.2) = 2.446414340789413. The results for the evaluation of this integral are shown
in Table 8.

It is possible to extend the above approach to a more general exponent « in the denominator
of equation (5.1). Let a be such that n < @ < n+ 1 where n € {0,1,2,...}, then, following

Elliott [17], take a Taylor series of the function f about the point s5. This is given by

FO) = 1)+ gy [ £ 0= (5:)
where
— M (s0)(5 = 50)"
fa(s) = 2 T+l (5.9)

Then, following some algebra, it can be shown that

=10, [ 10 b,
Lo s (S - 80)

4 (50 _ 8) . 1+a

H(f;50,0) =
(5.10)

3 ) [@M“”+ :
(o= k)T(k+1) [(so+1)** (1 —s0)*"
The two integrals in this expression are again weakly singular and so can be evaluated as
suggested above.

The above concept also applies to integer values of a. Here, the resulting integrals in
equation (5.10) are regular and so standard Gauss—Legendre quadrature can be applied in their
evaluation. This is, of course, equivalent to a monomial transformation of order 1. In particular,
a = 0 corresponds to a Cauchy principal value integral and equation (5.10) would correspond
to the so—called ‘bootstrap’ techniques, applied to the boundary element method by Guiggiani

and Casalini [19].

6 Conclusion

This paper has introduced a monomial transformation with Gaussian quadrature to improve
the accuracy of evaluating both weakly and strongly singular integrals. The transformation

18



arises from several other previously published transformations with the underlying idea being
to utilise the same Gaussian quadrature points used for evaluating non-singular integrals in a
typical boundary element method implementation. The method requires the original interval
to be split at the singularity and the two subintervals mapped onto [0, 1] with the singularity
mapped to 0 in both cases. Although the method requires some degree of pre-implementation
algebra, it generally yields more accurate numerical results for the same number of function
evaluations than existing transformations. The transformation has also been shown to be
equivalent to other existing transformations in certain cases.

The technique has been implemented and numerically compared with other coordinate trans-
formations and interval splitting techniques for two different types of integrals applicable in a
boundary element method context. Generally, the new techniques are numerically superior to
the existing methods, with, as mentioned above, the monomial transformation performing bet-
ter than the recently introduced Monegato—Sloan transformation [12, 13, 11]. The technique
has also been shown to be able to evaluate accurately certain Hadamard finite—part integrals.

The only question which arises with these new methods is: what order of transformation is
optimal? Utilising too higher an order of transformation tends to increase the relative error. For
the integrals (sq), generally choosing the order numerically equal to the number of Gaussian
points seems appropriate, yet for the J integrals, an order equal to half the number of Gaussian
points is indicated. The asymptotic error estimates show that it is possible to improve the
accuracy of the numerical calculations by using non-integer orders of transformation.

In summary, the monomial transformation presented above, with an order equal to half the
number of Gaussian points used, generally yields more accurate values for the integrals described
above than the other methods presented. Alternatively, non-integer orders of transformation
obtained by solving equation (4.6) can also yield accurate evaluations of the weakly singular

integrals.
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Captions

Table 1: Values of the coefficient ¢, for various orders of sigmoidal and semi-sigmoidal Sidi
and Elliott transformations.

Table 2: Truncation and relative errors for the integral I(1) obtained using the monomial
method for various orders of transformation and 10 Gaussian points. The non-integer trans-
formation orders are the zeros of equation (4.6) with n = 10.

Table 3: Truncation and relative errors for the integral I(1) obtained using the monomial
method for various orders of transformation and 20 Gaussian points. The non-integer trans-
formation orders are the zeros of equation (4.6) with n = 20.

Table 4: Approximate values and relative errors for the integral I(1), obtained using the
various integration schemes with various numbers of Gaussian integration points and (where
appropriate) various orders of transformation. The number of function evaluations for each
integration scheme at the given number of Gaussian integration points is also shown. The
non—integer transformation orders for the monomial transformation are the zeros of equation
(4.6) with n = 10.

Table 5: Approximate values and relative errors for the integral 7(—0.3), obtained using the
various integration schemes with various numbers of Gaussian integration points and (where
appropriate) various orders of transformation. The number of function evaluations for each
integration scheme at the given number of Gaussian integration points is also shown. The
non—integer transformation orders for the monomial transformation are the zeros of equation
(4.6) with n = 10.

Table 6: Approximate values and relative errors for the integral 7(0.8), obtained using the
various integration schemes with various numbers of Gaussian integration points and (where

appropriate) various orders of transformation. The number of function evaluations for each
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integration scheme at the given number of Gaussian integration points is also shown. The
non—integer transformation orders for the monomial transformation are the zeros of equation
(4.6) with n = 10.

Table 7: Relative errors for the integrals Jy, Jo, J3, Jy and J5 comparing the monomial
transformation to other previously published transformations. Here the integrals Jo and J;
contain an interior singularity, hence the number of function evaluations is twice the number of
Gaussian quadrature points for the bicubic and monomial transformation methods and equal to
the number of Gaussian quadrature points for the other methods, as well as for the remaining
integrals.

Table 8: Values of the integral H(e®;0.2,0.2) obtained using the bicubic transformation [3]
and equation (5.6) using various numbers of Gaussian integration points and orders of trans-
formation.

Figure 1: Plot of the absolute value of the truncation error for evaluation of the integral I(so)
as the singularity offset, sq, varies from 0 to 1. Integration is performed with the Telles method
and the Monegato—Sloan transformation of orders 5 and 7 utilising 20 Gaussian quadrature
points and the monomial transformation of orders 3, 5 and 7, utilising 10 Gaussian quadrature
points, yet requiring 20 function evaluations.

Figure 2: Plot of the absolute value of the truncation error obtained from equation (4.5) with
n = 10 (dotted line) and from computations (solid line) using 10 Gaussian points. The grid
lines emphasise the position of the integer transformation orders.

Figure 3: Plot of the absolute value of the truncation error obtained from equation (4.5) with

n = 20 (dotted line) and from computations (solid line) using 20 Gaussian points.
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Transformation | Sidi Transformation [16] Elliott Transformation [14]
Order (r) Sigmoidal | Semi—Sigmoidal | Sigmoidal | Semi—Sigmoidal
2 2
2 5 7 -
2 2 2 2 2 2
; 5 7 5 7
3rt 3rt
1 To 128 - -
5 8mt t 6t 3rt
15 30 5 40
50 50
6 2 1024 - -
7 1675 R 207 57°
35 140 7 112
Table 1:
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Transformation Order

|Truncation Error|

Relative Error

1 1.15x10 2 1.87x10 2
1.16144 4.09x10°5 6.67x10°
2 1.67x107* 2.72%10~*
2.19614 1.12x1076 1.82%x 1076
3 4.58%x1076 7.47%1076
3.22443 3.03x10°8 4.93%10°8
4 2.08x10°7 3.38x10° 7
4.24946 1.65x107° 2.70x107°
5 1.43x1078 2.33x1078
5.27234 1.59%x 10710 2.59%x 10710
6 1.41x107? 2.30x107°
6.29361 2.27x10~ 1 3.70x10 1!
7 1.92x10°10 3.13x10°10
7.31357 4.47x10712 7.28%x 10712
8 3.52x 10711 5.73x10~ 11
8.33240 1.16x 10712 1.89%x 10712
9 8.43x10 12 1.37x10 11
9.35021 3.86x10 13 6.29x10 13
10 2.62x1012 4.27x1012
Table 2:
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Transformation Order

|Truncation Error|

Relative Error

1 3.01x1073 4.90x10 3
1.13364 6.97x10°6 1.14%x10°°
2 1.14x107° 1.86x107?
2.15782 5.05%x1078 8.24x1078
3 8.09%x1078 1.32%x1077
3.17690 2.64x10710 4.31x10°10
4 9.35%x10°10 1.52%x10°°
4.19346 2.53%10 12 4.192x10 12
5 1.62x10~11 2.64x10~11
5.20845 4.70x10714 7.65x107 14
6 3.91x10~13 6.38%x 10713
6.22235 TTTx10716 1.27x10°15
7 1.51x10 14 2.46x10 14
7.23543 2.22%x1071° 3.62x1071°
8 1.67x10715 2.71x1071
8.24784 2.33x1071° 3.80x1071°
9 2.29%x10°1° 3.62x10°1°
9.25953 2.33x10°1° 3.80x10°1°
10 2.11x1071° 3.44x1071°
Table 3:
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Integration Nodes | Function Order Quadrature Relative

Method Evaluations Approximation Error

Telles[2] 10 10 — -0.613701054 | 7.47x107°
20 20 — -0.613705558 | 1.32x1077

Sanz—Serna[4] 10 10 — -0.636944787 | 3.78x1072
20 20 — -0.618233902 | 7.37x1073

Bicubic[3] 10 10 — -0.614206553 | 8.16x10~*
20 20 — -0.614199611 | 8.05x10~*

Sigmoidal

Transformations [6]

Simple 10 10 2 -0.613870561 | 2.69x10~*

Sidi 10 10 6 -0.613704893 | 1.21x10°°

Elliott 10 10 3 -0.613675583 | 4.90x107°

Semi-Sigmoidal

Transformations|7]

Simple 10 10 4 -0.613704922 | 1.16x10°°

Sidi 10 10 6 -0.613705645 | 1.05x10°®

Elliott 10 10 7 -0.613705559 | 1.30x1077

Monegato—Sloan

Transformations [12]
10 10 5 -0.613705625 | 2.32x10°®
10 10 7 -0.613705639 | 3.13x10710

Monomial

Transformations
10 10 5 -0.613705625 | 2.32x107%
10 10 5.27234 | -0.613705639 | 2.59x 10710
10 10 6 -0.613705640 | 2.30x107°
10 10 6.29361 | -0.613705639 | 3.70x10~!
10 10 7 -0.613705639 | 3.13x10°1°
10 10 7.31357 | -0.613705639 | 7.28x10712
10 10 8 -0.613705639 | 5.73x10~1
10 10 8.33240 | -0.613705639 | 1.89x10712
10 10 9 -0.613705639 | 1.37x10 1
10 10 9.35021 | -0.613705639 | 6.29x1013
10 10 10 -0.613705639 | 4.27x1012

Exact — — — -0.613705639 —

Table 4:
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Integration Nodes | Function Order Quadrature Relative

Method Evaluations Approximation Error

Telles[2] 10 10 — -1.903280847 | 2.78x107°
20 20 — -1.908001667 | 3.13x10 *
30 30 — -1.909028486 | 2.25x10°*

Sanz—Serna[4] 10 10 — -1.919845628 | 5.89x10°
20 20 — -1.910086538 | 7.79x10*
30 30 — -1.909049250 | 2.36x107*

Bicubic[3] 8 16 — -1.909620476 | 5.35x10*
10 20 — -1.909606313 | 5.28x107*
12 24 — -1.909597834 | 5.23x107*

Sigmoidal

Transformations [6]

Simple 10 20 2 -1.908762751 | 8.58x107°

Sidi 10 20 6 -1.908598116 | 4.20x1077

Elliott 10 20 3 -1.908568861 | 1.57x107°

Semi-Sigmoidal

Transformations|7]

Simple 10 20 4 -1.908598452 | 2.44x10~°

Sidi 10 20 6 -1.908598923 | 3.37x107°

Elliott 10 20 7 -1.908598837 | 4.18x10°®

Monegato—Sloan

Transformations [12]
20 20 5 -1.908624812 | 1.36x107°
20 20 7 -1.908598686 | 3.37x10°7
20 20 9 -1.908598904 | 6.88x107°

Monomial

Transformations
10 20 3 -1.908594332 | 2.40x107°
10 20 3.22443 | -1.908598978 | 3.19x1078
10 20 4 -1.908599124 | 1.08x1077
10 20 4.24946 | -1.908598915 | 9.74x10~1°
10 20 5 -1.908598903 | 7.48x107°
10 20 5.27234 | -1.908598917 | 3.05x10"
10 20 6 -1.908598918 | 7.39x10~10
10 20 6.29361 | -1.908598917 | 1.50x 10712
10 20 7 -1.908598917 | 1.01x101°
10 20 7.31357 | -1.908598917 | 9.93x10~13
10 20 8 -1.908598917 | 1.84x10 !
10 20 8.33240 | -1.908598917 | 3.68x10713
10 20 9 -1.908598917 | 4.42x10712
10 20 9.35021 | -1.908598917 | 1.47x107"
10 20 10 -1.908598917 | 1.37x10!2

Exact — — — -1.908598917 —

Table 5:
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Integration Nodes | Function Order Quadrature Relative

Method Evaluations Approximation Error

Telles[2] 10 10 — -1.267467471 | 2.84x107°
20 20 — -1.263490728 | 3.01x10 *
30 30 — -1.263522749 | 2.76x10°*

Sanz—Serna[4] 10 10 — -1.275118510 | 8.89x10°°
20 20 — -1.265359207 | 1.17x10°3
30 30 — -1.264321919 | 3.56x107*

Bicubic[3] 8 16 — -1.2646 5.76x10*
10 20 — -1.2637 1.36x107*
12 24 — -1.2638 5.66x107°

Sigmoidal

Transformations [6]

Simple 10 20 2 -1.264035961 | 1.30x10~*

Sidi 10 20 6 -1.263870813 | 6.12x1077

Elliott 10 20 3 -1.263841530 | 2.37x107°

Semi-Sigmoidal

Transformations [7]

Simple 10 20 4 -1.263870995 | 4.67x10~°

Sidi 10 20 6 -1.263871592 | 5.09x107°

Elliott 10 20 7 -1.263871506 | 6.31x10°®

Monegato—Sloan

Transformations [12]
20 20 5 -1.263888702 | 1.35x107°
20 20 7 -1.263872297 | 5.63x10° "
20 20 9 -1.263871580 | 4.80x107°

Monomial

Transformations
10 20 3 -1.263867001 | 3.63x107°
10 20 3.22443 | -1.263871601 | 1.22x1078
10 20 4 -1.263871793 | 1.64x1077
10 20 4.24946 | -1.263871586 | 8.65x10~!
10 20 5 -1.263871571 | 1.13x10°®
10 20 5.27234 | -1.263871586 | 3.94x10"
10 20 6 -1.263871587 | 1.12x107°
10 20 6.29361 | -1.263871586 | 1.01x1071!
10 20 7 -1.263871585 | 1.52x101°
10 20 7.31357 | -1.263871586 | 2.51x10 12
10 20 8 -1.263871586 | 2.78x10 !
10 20 8.33240 | -1.263871586 | 7.36x10713
10 20 9 -1.263871586 | 6.67x10712
10 20 9.35021 | -1.263871586 | 2.63x107'3
10 20 10 -1.263871586 | 2.07x1012

Exact — — — -1.263871586 —

Table 6:
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Integration Nodes J1 Jo J3 Jy Js
Method
Telles|2] 10 6.43x10°° | 1.91x107° | 1.24x107° | 7.57x107° | 6.33x10°3
20 1.13x1077 | 3.45x1078 | 3.39x10713 | 2.11x10712 | 8.37x10~*
30 1.04x10°% | 9.15x10710 | 3.87x10°16 | 1.89x10 14 | 2.53x10*
Sanz—Sernal4] 10 3.22x1072 | 1.90x10° | 2.87x10°* | 1.78x10°% | 6.32x10°3
20 6.33x1073 | 3.44x107% | 1.13x107° | 6.98x107° | 8.36x10~*
30 2.54%x107% | 9.14x10719 | 2.12x10°% | 1.30x107° | 2.53x10°*
Bicubic[3] 6 6.31x10°% | 1.80x107 | 1.04x10°¢ | 6.41x10°¢ | 5.63x10°4
8 7.00x<107* | 2.38x1077 | 1.67x107% | 1.03x107° | 5.74x10~*
10 7.00x107% | 2.13x10°7 | 1.67x10°% | 1.03x107° | 5.66x10~*
Monegato 10 3 6.43x107°% | 1.91x107° | 1.24x10°? | 7.57x107Y | 6.33x10°3
and Sloan [12] 5 2.00x1078 | 6.06x1076 | 2.52x1071% | 1.47x107! | 5.46x10~*
By (1) 7 8.77x10710 | 6.97x107* | 2.85x1072 | 8.75x107° | 3.87x1076
9 2.78x1076 | 1.34x1072 | 6.92x107% | 2.12x107° | 1.69x10~3
11 9.10x107° | 5.23x1072 | 2.27x107% | 6.95x10"% | 6.53x10°3
20 3 1.13x1077 | 3.45x1078 | 3.39x10713 | 2.11x10712 | 8.37x10~*
5 2.27x1071 | 6.03x107 | 4.65%1071% | 1.04x1071® | 1.82x107°
7 2.74x107 1 | 1.46x10712 | 5.04x10715 | 5.79x10715 | 6.67x10° 7
9 3.11x10716 | 3.25%x10713 | 3.49%x1071° | 1.01x10~1* | 3.88x10~8
11 1.56x10716 | 9.48%x10713 | 2.13x10°1® | 1.11x10 1 | 3.35x10?
30 3 1.04x107% | 9.15x10710 | 3.87x10716 | 1.89x1071* | 2.53x107*
5 420x1071 | 1.21x10713 | 3.49%1071° | 5.94%x107® | 2.46x10°
7 7.78x10716 | 2.75x1071% | 4.26x1071° | 6.53%x1071° | 4.03x10~8
9 6.23x10716 | 5501071 | 5.04x1071% | 2.23x1071® | 1.03x10?
11 | 3.11x10716 | 7.24x1071 | 5.04x107" | 2.67x107™ | 3.85x 10711
Monomial 10 3 6.43x1076 | 4.22x10712 | 1.24x107? | 7.57x107% | 2.58x107°
L (1) 5 2.00x107% | 1.54x10713 | 2.52x107%2 | 1.47x10° 1 | 8.03x107°
7 8.77x10710 | 1.78x107° | 2.85%x107? | 8.75x107? | 3.31x10~10
9 2.78%x107% | 4.08x10°% | 6.92x10°% | 2.12x107° | 5.10x10°7
11 9.10x107° | 1.28x107* | 2.27x10~* | 6.95x10~* | 1.60x10~?
20 3 1.13x1077 | 5.39x10716 | 3.39x10°13 | 2.11x10712 | 4.55x10°8
5 2.27x1071 | 8.65x10716 | 2.13%x10715 | 1.04x10715 | 9.10x10~12
7 1.65x10™™ | 1.75x107 | 9.68x10716 | 5.79%x1071% | 7.12x10715
9 9.34%x10716 | 2.62x10°1° | 7.75x10716 | 1.01x1071* | 6.25%x 1016
11 | 1.56x10710 | 3.50x107 ™ | 2.13x1071° | 1.11x10~ | 2.50x 1016
30 3 1.04x10°% | 9.99x10°16 | 3.87x10°16 | 1.89x10" 14 | 4.18x10°?
5 4.20x10713 | 1.87x10715 | 5.81x10716 | 5.94x10~" | 1.68x 1013
7 6.23x10716 | 2.75x1071° | 2.32x1071° | 6.53x1071 | 6.25x1016
9 1.56x10716 | 2.75x10~1 | 3.10x10~1® | 2.23%x1071® | 6.25%x 10716
11 1.09%x 10715 | 2.75x1071 | 3.10x1071° | 2.67x1071° | 1.12x1071°
Table 7:
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Integration
Method

Nodes

H(e*;0.2,0.2)

Bicubic [3]

10
12
14

1.8527
2.3340
2.4161
2.4381
2.4463

Monomial
Transformation

(per (£))

10

12

14

@U%WMH@U%C@MH@U%O&M»—‘@@%O&L\D}—‘CDCﬂHkOOL\D}—"

2.4237967672518645
2.4475356352225854
2.4463411780657549
2.4464170776621725
2.4464042804000257
2.4463837836628519
2.4317114729771538
2.4468866061407848
2.4463945358188206
2.4464151732102102
2.4464142831323148
2.4464136505780085
2.4359366648979179
2.4466537812436022
2.4464072227470863
2.4464145524817416
2.4464143404615943
2.4464143366994762
2.4384903781581060
2.4465511606749515
2.4464112737280366
2.4464144094011337
2.4464143407888552
2.4464143405025225
2.4401668485611978
2.4464993422672459
2.4464128411487094
2.4464143671516903
2.4464143407894703
2.4464143407297541

Table &:
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