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Abstra
tA

urate numeri
al integration of line integrals is of fundamental importan
e for thereliable implementation of the boundary element method. Usually, the regular integralsarising from a boundary element method implementation are evaluated using standardGaussian quadrature. However, the singular integrals whi
h arise are often evaluated inanother way, sometimes using a di�erent integration method with di�erent nodes andweights.This paper presents a straightforward transformation to improve the a

ura
y of eval-uating singular integrals. The transformation is, in a sense, a generalisation of the popularmethod of Telles with the underlying idea being to utilise the same Gaussian quadraturepoints as used for evaluating non{singular integrals in a typi
al boundary element methodimplementation. The new transformation is also shown to be equivalent to other existingtransformations in 
ertain situations.Comparison of the new method with existing 
oordinate transformation te
hniquesshows that a more a

urate evaluation of weakly singular integrals 
an be obtained. Thete
hnique 
an also be extended to evaluate 
ertain Hadamard �nite{part integrals. Basedon the observation of several integrals 
onsidered, guidelines are suggested for the besttransformation order to use (ie the degree to whi
h nodes should be 
lustered near thesingular point).Key words: nonlinear 
oordinate transformation, boundary element method, weakly singularintegrals, numeri
al integration, Hadamard �nite{part integrals.
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1 Introdu
tionWeakly singular line integrals arise in the boundary element method when the sour
e point lieson the element over whi
h the integration is to be performed. When 
onsidering, for example,the two dimensional Lapla
e equation, the boundary element kernel is of the form ln 1r wherer is the distan
e from the sour
e point to the integration point. Hen
e, multipli
ation of thiskernel by some basis fun
tion, �, and subsequent integration over the 
urrent element, �, givesrise to a weakly singular integral of the formg = Z� ln 1r�d�: (1.1)There are several methods available to evaluate the above integral, most of whi
h fall intothe 
ategories of either 
oordinate transformation (to in
rease the smoothness of the integrandat the singular point) [1, 2, 3, 4℄ or interval splitting [5, 6, 7, 8℄. The idea behind both
ategories of te
hniques is to use the same Gaussian quadrature points and weights as thoseused for the non{singular integrals. For example, if 10 Gaussian points and weights are usedto evaluate the non-singular integrals, it is desirable to use the same 10 points and weightsto evaluate the singular integrals. The �rst 
ategory of te
hniques, 
oordinate transformation,would simply relo
ate these 10 points on the interval of integration to improve the a

ura
y ofthe evaluation of the singular integral. On the other hand, the se
ond 
ategory of te
hniques,interval splitting, splits the interval at the singularity and uses the 10 points on ea
h subinterval,requiring a total of 20 evaluations of the integrand, instead of 10. An ideal interval splittingmethod should more a

urately evaluate a singular integral using the same 10 Gaussian pointstwi
e, than a 
oordinate transformation te
hnique using 20 Gaussian points over the entireinterval. As a result, this will redu
e storage requirements and operation 
ounts in the 
omputer
ode implementing the numeri
al methods, as only the nodes and weights for the 10 pointGaussian quadrature rule need to be determined and stored. Other possible te
hniques for3



evaluating these integrals in
lude using a 
ompletely di�erent set of integration points andweights dependent on the kernel [9℄ and integral simpli�
ation [1, 10℄. We shall say no more ofthese methods.It has re
ently been shown [11℄ that a nonlinear transformation, introdu
ed by Monegatoand Sloan [12℄ and subsequently used by S
uderi [13℄ to study 
ow around an airfoil with 
ap,
an be used to evaluate integrals of the form (1.1). This is a polynomial transformation ofarbitrary odd degree, with zero Ja
obian at the singularity whi
h does not require the intervalof integration to be split at the singularity. Hen
e it falls into the �rst of the two 
ategories,i.e. 
oordinate transformation, for numeri
al evaluation of singular integrals des
ribed above.The transformation of Monegato and Sloan works well when the singularity is at the endpoints of the interval. On the other hand, as it may be seen from Tables 4, 5 and 6, relativeerrors 
an be reasonably large at other points of the interval for lower order transformations.Of 
ourse, the method 
an be improved by �rst splitting the interval of integration at thesingularity and applying the Monegato{Sloan transformation on ea
h subinterval. In this 
ase,the transformation no longer has to be of odd degree and the transformation due to Sato etal. [5℄ is re
overed. The popular transform due to Telles [2℄ arises as a spe
ial 
ase of theMonegato{Sloan transformation when the polynomial is of degree three.The method outlined below is an interval splitting te
hnique whi
h arose from a re
ent studyof semi{sigmoidal transformations [7℄ and their subsequent numeri
al analysis [8℄. It turns outthat this te
hnique is related to the te
hniques of Telles and Monegato and Sloan when thesingularity is at one of the end points of the interval.The next se
tion of the paper des
ribes the integrals of primary interest in this paper andthe following se
tion introdu
es the 
oordinate transformation to be studied. In se
tion fourseveral integrals, whi
h 
ompare the relative a

ura
y of this method with existing te
hniques,are evaluated and in se
tion �ve the te
hnique is generalised to 
onsider 
ertain Hadamard4



�nite{part integrals.
2 Weakly Singular IntegralsThis paper is primarily 
on
erned with evaluation of boundary element method line integralsof the form given in equation (1.1) where, as mentioned previously, � is an arbitrary boundaryelement in two dimensional spa
e, r is the distan
e from the sour
e point (x0; y0) to the element� and � is a basis fun
tion. The usual pra
ti
e is to transform the integral into one along thepath from �1 to 1 in a lo
al 
oordinate system, resulting in the integralg = Z 1�1 ln 1r(s)�(s)J(s)ds; (2.1)where J(s) is the Ja
obian of the transformation. Assuming that the singularity o

urs at somepoint s0, �1 � s0 � 1, in the lo
al 
oordinate system, then r(s) = js� s0j.Although the integrals of 
on
ern to boundary element method pra
titioners usually 
ontaina weak singularity of the logarithmi
 type, the methods to be des
ribed here apply equally wellto weakly singular integrals having an algebrai
 singularity at s0,g� = Z 1�1 js� s0j��(s)J(s)ds (2.2)where � > �1.We aim to evaluate the integral in equation (2.1) using Gauss-Legendre quadrature with thesame integration weights and node points as for the non{singular integrals arising in a boundaryelement method formulation. The next se
tion des
ribes what is e�e
tively a transformation ofthese points and weights whi
h results in an a

urate evaluation of weakly singular integrals.
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3 A Monomial TransformationThe motivation for this approa
h began with re
ent work on sigmoidal and semi{sigmoidaltransformations (see [14℄ and [7℄, respe
tively). In general a sigmoidal transformation, 
r, ofthe interval [0,1℄ onto itself is a fun
tion of the form (see [14℄)
r(t) := fr(t)fr(t) + fr(1� t) ; 0 � t � 1; (3.1)where fr(t) = O(tr) near t = 0 and r is the order of the transformation. A semi-sigmoidaltransformation, �r, (see [7℄) is de�ned in terms of a sigmoidal transformation by�r(t) := 2
r( t2) = 
r( t2)=
r(12); 0 � t � 1; (3.2)as 
r(12) = 12 , by (3.1). It 
an be shown that �r is a
tually a sigmoidal transformation of theinterval [0,2℄ onto itself [7℄. It has been shown 
omputationally [7℄ and via error analysis [8℄that semi{sigmoidal transformations more a

urately evaluate integrals of the forms (2.1) and(2.2) than do sigmoidal transformations.Let us generalise the semi{sigmoidal transformation idea to the (1/m)th sigmoidal transfor-mation, 
r;m, mapping [0,1℄ onto itself and de�ned by
r;m(t) := 
r(t=m)
r(1=m) ; 0 � t � 1; (3.3)where m 2 N. The sigmoidal transformation is obtained when m = 1 and the semi{sigmoidaltransformation is obtained when m = 2. Sin
e a transformation with m = 2 yields morea

urate evaluation of weakly singular integrals than when m = 1, it is reasonable therefore toask, what is limm!1 
r;m(t)? Using equations (3.1) and (3.3) it follows thatlimm!1 
r;m(t) = limm!1 fr(t=m)fr(t=m) + fr(1� t=m) fr(1=m) + fr(1� 1=m)fr(1=m) : (3.4)
6



Fix t 2 [0; 1℄. Sin
e fr(�) = 
r�r near � = 0, for m� 1 we have from (3.4) thatlimm!1 
r;m(t) = limm!1 
r(t=m)r
r(t=m)r + fr(1� t=m) 
r(1=m)r + fr(1� 1=m)
r(1=m)r (3.5)= tr limm!1 
r(1=m)r + fr(1� 1=m)
r(t=m)r + fr(1� t=m) (3.6)= tr (3.7)sin
e, from (3.1), fr(1) 6= 0. Thus the transformation tr, whi
h maps [0,1℄ onto itself, althoughnot a sigmoidal transformation, is a limit of the (1/m)th sigmoidal transformation as m!1.Based upon the above argument, we de�ne the monomial transformation, �r, as�r(t) := tr; 0 � t � 1; (3.8)where the order of the transformation, r, does not need to be integral.The monomial transformation also arises from several other existing transformations. Firstly,
onsider the transformation of Sato et al. [5℄ (with singularity at t = �1)
Sr (t) = �1 + 12r�1 (1 + t)r (3.9)whi
h is a transformation of [-1,1℄ onto itself. Now transform the interval [-1,1℄ (with singularityat -1) onto the interval [0,1℄ (with singularity at zero) usingu = 1 + t2 (3.10)then 
Sr (t) + 12 = ur = �r(u); 0 � u � 1: (3.11)Hen
e, we see that the monomial transformation on [0,1℄ is equivalent to the transformation ofSato et al. over [-1,1℄ with singularity at t = �1. Using the transformation u = 1�t2 , it 
an beshown that the monomial transformation is also equivalent to the transformation of Sato et al.with singularity at t = 1. 7



Se
ondly, 
onsider the Monegato{Sloan transformation (see [12℄), whi
h is also a mappingof the interval [�1; 1℄ onto itself, de�ned bys = �r(t) := s0 + Æ(s0; r)(t� t0)r (3.12)for an arbitrary singular point s0, �1 < s0 < 1. We restri
t r to being an odd integer andÆ(s0; r) and t0 are de�ned byÆ(s0; r) = 2�r �(1 + s0)1=r + (1� s0)1=r�r ; (3.13)and t0 = (1 + s0)1=r � (1� s0)1=r(1 + s0)1=r + (1� s0)1=r ; (3.14)respe
tively. Now if s0 = �1, say, it follows that t0 = �1 and Æ(�1; r) = 21�r so thats = �r(t) = �1 + 21�r(t+ 1)r: (3.15)In this 
ase Monegato and Sloan's restri
tion of r being an odd integer 
an be removed and oneof the transformations of Sato et al. [5℄ is re
overed. Hen
e, from above, it 
an be seen that�r is the generalisation of the monomial transformation on [0,1℄ to the interval [�1; 1℄. Similar
omments apply to the 
ase where s0 = 1.Finally, the monomial transformation is also re
overed from the transformation of Monegatoand S
uderi [15℄ 
p;q(t) = (p+ q � 1)!(p� 1)!(q � 1)! Z t0 up�1(1� u)q�1 du (3.16)with q = 1.In order to apply the monomial transformation for an arbitrary singularity, s0 2 (�1; 1),�rstly, split the integral at s0 to giveg = Z s0�1 ln 1r(s)�(s)J(s)ds+ Z 1s0 ln 1r(s)�(s)J(s)ds: (3.17)8



Next, the variable of integration is 
hanged so that both integrals are evaluated over the range[0,1℄, ensuring that the point s0 maps to 0 in both 
ases. That is, for the �rst integral inequation (3.17), apply the transformation s = s0 � (1 + s0)t and in the se
ond integral applythe transformation s = s0 + (1� s0)t, to giveg = (1 + s0) Z 10 ln 1r(s0 � (1 + s0)t)�(s0 � (1 + s0)t)J(s0 � (1 + s0)t)dt+ (1� s0) Z 10 ln 1r(s0 + (1� s0)t)�(s0 + (1� s0)t)J(s0 + (1� s0)t)dt: (3.18)The advantage of the monomial transformation (equation (3.8)) is that it 
an be dire
tly
ompared with the previously de�ned semi{sigmoidal transformations [7℄ through the erroranalysis des
ribed in the paper by Johnston and Elliott [8℄. Using the notation of that paper,for the integral de�ned by I2(g;�) := Z 1�1(1� �)� ln(1� �)g(�)d�; (3.19)where g is an arbitrary \well{behaved" fun
tion, an asymptoti
 estimate for the trun
ation errorwhen evaluating the transformed integral via n{point Gauss{Legendre quadrature is given byE2;n;r(g;�) � (2n+ 1)�2r(1+�)23+��2r(1+�)rg(1)
1+�r �(2r(1 + �))�f��r 
os(�(r(1 + �)� 1)) + sin(�(r(1 + �)� 1))� [2r ln(2n+ 1) + (2r � 1) ln 2� ln 
r � 2r (2r(1 + �))℄g : (3.20)
The quantity in this equation whi
h depends on the transformation itself is 
r, the 
oeÆ
ientof tr in the sigmoidal transformation of order r near t = 0. For the monomial transformation,
r = 1 for all values of r, whi
h, as 
an be seen from Table 1, is smaller, for a given r, than the
orresponding 
r for any of the sigmoidal or semi{sigmoidal transformations given in [14℄ and[16℄. Hen
e, for the monomial transformation applied to the integral I2(g;�) the asymptoti
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estimate for the error is given byEmono2;n;r (g;�) � (2n+ 1)�2r(1+�)23+��2r(1+�)rg(1)�(2r(1 + �))�f��r 
os(�(r(1 + �)� 1)) + sin(�(r(1 + �)� 1))� [2r ln(2n+ 1) + (2r � 1) ln 2� 2r (2r(1 + �))℄g : (3.21)
4 Numeri
al ExamplesIn order to assess the utility of the transformation des
ribed above and to establish its optimumbehaviour, several integrals of importan
e in the boundary element method are evaluated.The results are 
ompared in terms of the relative error, de�ned byrelative error = ����Iapproximate � Iexa
tIexa
t ���� (4.1)where Iapproximate and Iexa
t are the approximate and exa
t values of the integral being 
onsid-ered.4.1 A Simple ExampleFirstly, 
onsider the integral I(s0) = Z 1�1 ln js� s0jds (4.2)whi
h, in terms of the boundary element method, 
ontains the logarithmi
 kernel and a 
onstantbasis fun
tion, �(s) � 1, (the Ja
obian, J(s), of the transformation from an arbitrary integralto the one above has been ignored). The integral I(s0) 
an be evaluated expli
itly asI(s0) = (ln(1� s0)� 1)(1� s0) + (ln(1 + s0)� 1)(1 + s0) (4.3)for �1 < s0 < 1 and I(�1) = 2(ln 2 � 1). This integral has been 
onsidered previously as atest integral for other proposed integration s
hemes for several values of s0: s0 = 1, s0 = �0:3[2, 6, 7℄; s0 = 0:8 [3, 6, 7℄. 10



Now 
onsider evaluating the integral I(s0) using the monomial transformation, equation(3.8). Re
all that to evaluate this integral, the interval of integration must be split at thesingularity and ea
h subinterval mapped onto [0; 1℄, with the singularity mapping to 0 in both
ases. Hen
e for a fair 
omparison, evaluation of the integral I(s0) using the monomial trans-formation should use half the number of Gaussian points in ea
h integration that the Telles andMonegato{Sloan transformations 
an use (that is, there is the same total number of fun
tionevaluations in both 
ases). Figure 1 shows a 
omparison of trun
ation errors (the numera-tor of the relative error (4.1)) between the Telles transformation (r = 3 in equation (3.12)),the Monegato{Sloan transformation of orders 5 and 7 (all with 20 Gaussian points) and themonomial transformation of orders 3, 5 and 7 using 10 Gaussian points in ea
h interval.It 
an be seen from Figure 1 that even a monomial transformation of order 3 is approximatelytwo orders of magnitude more a

urate than the original Telles approa
h. The �gure alsoshows that, for most values of s0, the monomial transformation is more a

urate than thetransformation of Monegato and Sloan, for a given order. The ex
eption to this is whens0 = 1, where 10 points should be used for the Monegato{Sloan transformation whi
h will yieldidenti
al results to the monomial transformation. In fa
t, the trun
ation error is independent ofs0, a result whi
h 
an be demonstrated for the integral I(s0) using the error estimates given byJohnston and Elliott [8℄. It turns out that the asymptoti
 error for the numeri
al approximationto I(s0), for integer r, is given by (equation (3.21) with � = 0 and g(1) = 1)Emono2;n;r (1; 0) � (�1)r23�2rr2�(2r)�(2n+ 1)2r ; (4.4)independent of s0.In
reasing the order of the transformation redu
es the asymptoti
 error up to a 
ertainpoint, then it in
reases again. An optimal value is predi
ted numeri
ally at r = 15. On theother hand, di�erentiating the error estimate (4.4) with respe
t to r, and equating to zero,11



gives r � (2n + 1) as a minimum for n � 1. Hen
e for n = 10, the minimum error shouldo

ur at r = 21. The main reason for this dis
repan
y 
ould be due to la
k of working pre
isionon the 
omputer. At r = 15, the absolute error is of the order of 10�13 (near the workinglimits of the ma
hine); however, the formula for the error estimate predi
ts an absolute errorof approximately 10�15 when r = 21. Although these two results are quite 
lose together, it isprobably safest to 
hoose the order of the transformation to be equal to the number of Gaussianpoints used. This may not be optimal, but it tends to err on the side of 
aution.4.1.1 Non{Integer Transformation OrdersInterestingly, the error estimate 
an be improved by using non{integer values for r, the orderof the transformation. The asymptoti
 error for evaluating the integral I(s0) with a general ris given by Emono2;n;r (1; 0) � (2n+ 1)�2r23�2rr�(2r)�f��r 
os(�(r � 1)) + sin(�(r � 1)) [2r ln(2n+ 1) + (2r � 1) ln 2� 2r (2r)℄g : (4.5)Plots of the absolute values of Emono2;n;r (1; 0) for n = 10 and n = 20 are shown in Figures 2and 3, respe
tively. The important feature of these 
urves is the presen
e of several \inverted"spikes. Ea
h spike 
orresponds to a value of r at whi
h Emono2;n;r (1; 0) is zero (sin
e the graphs areplots of absolute values). These �gures also show the a
tual error for the numeri
al 
al
ulations.It 
an be seen that the asymptoti
 error generally agrees very 
losely with the 
al
ulatedvalues. However, for n = 10, the asymptoti
 error underestimates the a
tual error for ordersof transformation greater than about 7. Also, for n = 20, round o� errors a�e
t the numeri
al
al
ulation and so it is diÆ
ult to make 
omparisons with the asymptoti
 errors for orders oftransformation greater than about 7.Based on observations from the above plots, it is theoreti
ally possible to 
hoose a valueof r whi
h gives a trun
ation error of zero, for a given value of n. These values of r 
an be12



obtained as zeros of the trans
endental equation�r 
ot(�(r � 1)) = 2r ln(2n+ 1) + (2r � 1) ln 2� 2r (2r) (4.6)The �rst few zeros of this equation for n = 10 and n = 20 are given in Tables 2 and 3,respe
tively. These tables also show the values of the 
al
ulated trun
ation and relative errorsat these zeros and at the adja
ent integer orders of transformation. It 
an be seen that the zerosof the trans
endental equation generally give smaller trun
ation errors. The ex
eption is whenn = 20 with transformation orders greater than 7 where round o� errors have a 
onsiderablee�e
t on the 
al
ulated quantities.4.1.2 Spe
i�
 Values of s0Tables 4, 5 and 6 
ompare approximate values of the integral I(s0) obtained from variousintegration s
hemes with the exa
t value, as well as showing the relative error, for the spe
i�
values of s0 at s0 = 1, s0 = �0:3 and s0 = 0:8, respe
tively. Note that the prin
ipal fa
tor inmaking a fair 
omparison between methods is the number of fun
tion evaluations. Also, in the
ases of the the sigmoidal and semi{sigmoidal transformations, the transformation order shownis optimal.Table 4 shows the results for s0 = 1. Re
all that in this situation, sin
e the singularity isat an end point, the Monegato{Sloan and monomial transformations are identi
al and, further,when these transformations are of order 3, both are identi
al to the Telles transformation. Thetable indi
ates that even at modest transformation orders (r = 5; 7) the new transformationsprovide a more a

urate evaluation of the integral I(1) than most of the other methods. Theex
eption is the sixth order (optimal) Sidi transformation whi
h yields more a

urate valuesthan the �fth order monomial transformation, but not the sixth order monomial transforma-tion. The values for I(1) determined with the monomial transformation with 10 Gaussian13



points are more a

urate than the values obtained with the Telles, Sanz{Serna and bi
ubi
transformations, ea
h using 20 Gaussian quadrature points.The same 
omments apply to the evaluation of the integral I(�0:3), (Table 5). Generally,the monomial transformations of order �ve or higher result in the most a

urate evaluations,with the sixth order Sidi transformation being the ex
eption. However, a sixth order monomialtransformation is more a

urate than this Sidi transformation. Note that the monomial trans-formation of order 3 is equivalent to splitting the interval at the singularity and applying theTelles approa
h on ea
h subinterval, after mapping these onto [�1; 1℄.Finally, the above 
omments also apply to the results shown in Table 6, for the evaluationof the integral I(0:8).In ea
h of the above tables non{integer transformation orders for the monomial transfor-mation are also in
luded. These orders are again the zeros of equation 4.6 and are identi
al forea
h example as the trun
ation error is independent of s0. It 
an again be seen that havinga non{integer transformation order redu
es the error in the approximation to the value of theintegral and these orders give superior results to the adja
ent integer transformation orders.4.2 Quadrati
 Basis Fun
tionsNow 
onsider quadrati
 boundary elements where there are three basis fun
tions: �1(x) =x(x � 1)=2; �2(x) = 1 � x2 and �3(x) = x(x + 1)=2. Singular integrals are obtained for ea
hof the node points on the element a
ting as sour
e points and for ea
h basis fun
tion. The �veintegrals to be evaluated are:1. basis fun
tion x(x� 1)=2, sour
e point (-1,0) and basis fun
tion x(x+ 1)=2, sour
e point(1,0) J1 = Z 1�1 ln(x+ 1)x(x� 1)2 dx = Z 1�1 ln(1� x)x(x + 1)2 dx = ln 64� 171814



2. basis fun
tion x(x� 1)=2, sour
e point (0,0) and basis fun
tion x(x + 1)=2, sour
e point(0,0) J2 = Z 1�1 ln jxjx(x� 1)2 dx = Z 1�1 ln jxjx(x + 1)2 dx = �193. basis fun
tion x(x� 1)=2, sour
e point (1,0) and basis fun
tion x(x + 1)=2, sour
e point(-1,0) J3 = Z 1�1 ln(1� x)x(x� 1)2 dx = Z 1�1 ln(1 + x)x(x + 1)2 dx = ln 64 + 1184. basis fun
tion 1� x2, sour
e point (-1,0) and basis fun
tion 1� x2, sour
e point (1,0)J4 = Z 1�1 ln(x + 1)(1� x2)dx = Z 1�1 ln(1� x)(1� x2)dx = 2 ln 64� 1095. basis fun
tion 1� x2, sour
e point (0,0)J5 = Z 1�1 ln jxj(1� x2)dx = �169As a �nal example, 
onsider evaluating the J integrals with the monomial transformation(Table 7). Here, the integrals J2 and J5 must be split to apply the transformation and soit should be remembered that twi
e as many fun
tion evaluations are required. Generally,the monomial transformation produ
es the lowest relative error of all the methods 
onsidered.However, there is again the problem of an optimal order. It appears, as in the 
ase of theMonegato{Sloan transformation [11℄, that the order of the transformation should be numeri
allyequal to half the number of Gaussian points used whi
h is di�erent from the 
ase with theevaluation of the integral I(s0) using the monomial transformation where the order should beequal to the number of Gaussian points used.It is also possible to use non{integer transformation orders for the monomial method whenevaluating the above integrals. However, an exhaustive study for these integrals would o

upytoo mu
h spa
e as ea
h integral requires the solution of a slightly di�erent trans
endental15



to obtain the appropriate transformation orders. However, to illustrate this idea, 
onsiderevaluating the integral J1 with 10 Gaussian points. Using a transformation order of 5.2777 givesa relative error of 3.88�10�13 whi
h is mu
h smaller than many other error values obtained. Asanother example, using a transformation order of 5.1962 when evaluating J3 with 10 Gaussianpoints gives a relative error of 1.94�10�16, again mu
h better than most other te
hniques.
5 Hadamard Finite{Part IntegralsHadamard �nite{part integrals also play a role in the boundary element method. Here it willbe shown that the above monomial transformation 
an also be applied to these integrals.Consider the integral H(f ; s0; �) = Z 1�1 sgn(s� s0)js� s0j1+� f(s) ds (5.1)where �1 < s0 < 1, 0 < � < 1, f is a Lips
hitz 
ontinuous fun
tion on [�1; 1℄ and the doublebars denote the Hadamard �nite{part integral. The integral H(f ; s0; �) 
an be split at thesingularity and rewritten asH(f ; s0; �) = � Z s0�1 f(s)(s0 � s)1+� ds+ Z 1s0 f(s)(s� s0)1+� ds: (5.2)From [17℄ we de�ne Z ba f(t)(b� t)1+� dt := Z ba f(t)� f(b)(b� t)1+� dt� f(b)�(b� a)� ; (5.3)and Z ba f(t)(t� a)1+� dt := Z ba f(t)� f(a)(t� a)1+� dt� f(a)�(b� a)� : (5.4)Using these de�nitions, the integral H(f ; s0; �) 
an again be rewritten asH(f ; s0; �) = ��Z s0�1 f(s)� f(s0)(s0 � s)1+� ds� f(s0)�(s0 + 1)��+�Z 1s0 f(s)� f(s0)(s� s0)1+� ds� f(s0)�(1� s0)�� (5.5)16



or H(f ; s0; �) = Z s0�1 f(s0)� f(s)(s0 � s)1+� ds+ Z 1s0 f(s)� f(s0)(s� s0)1+� ds+ f(s0)�(s0 + 1)� � f(s0)�(1� s0)� : (5.6)The two integrals in equation (5.6) are now weakly singular and so 
an be evaluated usingthe monomial transformation. Hen
e, in order to obtain a value for the Hadamard �nite{partintegral, H(f ; s0; �), we pro
eed as follows:1. Map both integrals in equation (5.6) onto the interval [0,1℄ with s0 mapping to 0 (
.f.equations (3.17) and (3.18)),2. Apply the transformation �r(s) = sr to both integrals,3. Evaluate the integrals using Gaussian Quadrature,4. Add the additional terms in equation (5.6).As an example to illustrate this method, 
onsider the following integralH(es; 0:2; 0:2) = Z 1�1 sgn(s� 0:2)js� 0:2j1:2 es ds: (5.7)The integral has previously been 
onsidered by Kutt [18℄ and is also used as an illustrativeexample for the bi
ubi
 transformation method of Cerrolaza and Alar
on [3℄. The value for theintegral given by Kutt is 2.4464143506. Using 14 Gaussian quadrature points on ea
h subin-terval (28 fun
tion evaluations) the bi
ubi
 transformation yields a value for the integral of2.4463. Appli
ation of the method outlined above to this integral yields a value of 2.4464170777using only six Gaussian points (12 fun
tion evaluations) and a fourth order monomial trans-formation. This value 
an be improved to give 2.4464143408 by using 14 Gaussian points (28fun
tion evaluations) and a �fth order transformation. By �rstly splitting the interval of inte-gration at the singularity and then integrating by parts twi
e, Mathemati
a yields a value of17



H(es; 0:2; 0:2) = 2:446414340789413. The results for the evaluation of this integral are shownin Table 8.It is possible to extend the above approa
h to a more general exponent � in the denominatorof equation (5.1). Let � be su
h that n < � < n + 1 where n 2 f0; 1; 2; : : :g, then, followingElliott [17℄, take a Taylor series of the fun
tion f about the point s0. This is given byf(s) = fn(s) + 1�(n + 1) Z ss0 f (n+1)(y)(s� y)n dy (5.8)where fn(s) = nXk=0 f (k)(s0)(s� s0)k�(k + 1) : (5.9)Then, following some algebra, it 
an be shown thatH(f ; s0; �) = Z s0�1 fn(s)� f(s)(s0 � s)1+� ds+ Z 1s0 f(s)� fn(s)(s� s0)1+� ds� nXk=0 f (k)(s0)(�� k)�(k + 1) � (�1)(k+1)(s0 + 1)��k + 1(1� s0)��k � : (5.10)The two integrals in this expression are again weakly singular and so 
an be evaluated assuggested above.The above 
on
ept also applies to integer values of �. Here, the resulting integrals inequation (5.10) are regular and so standard Gauss{Legendre quadrature 
an be applied in theirevaluation. This is, of 
ourse, equivalent to a monomial transformation of order 1. In parti
ular,� = 0 
orresponds to a Cau
hy prin
ipal value integral and equation (5.10) would 
orrespondto the so{
alled `bootstrap' te
hniques, applied to the boundary element method by Guiggianiand Casalini [19℄.
6 Con
lusionThis paper has introdu
ed a monomial transformation with Gaussian quadrature to improvethe a

ura
y of evaluating both weakly and strongly singular integrals. The transformation18



arises from several other previously published transformations with the underlying idea beingto utilise the same Gaussian quadrature points used for evaluating non{singular integrals in atypi
al boundary element method implementation. The method requires the original intervalto be split at the singularity and the two subintervals mapped onto [0; 1℄ with the singularitymapped to 0 in both 
ases. Although the method requires some degree of pre{implementationalgebra, it generally yields more a

urate numeri
al results for the same number of fun
tionevaluations than existing transformations. The transformation has also been shown to beequivalent to other existing transformations in 
ertain 
ases.The te
hnique has been implemented and numeri
ally 
ompared with other 
oordinate trans-formations and interval splitting te
hniques for two di�erent types of integrals appli
able in aboundary element method 
ontext. Generally, the new te
hniques are numeri
ally superior tothe existing methods, with, as mentioned above, the monomial transformation performing bet-ter than the re
ently introdu
ed Monegato{Sloan transformation [12, 13, 11℄. The te
hniquehas also been shown to be able to evaluate a

urately 
ertain Hadamard �nite{part integrals.The only question whi
h arises with these new methods is: what order of transformation isoptimal? Utilising too higher an order of transformation tends to in
rease the relative error. Forthe integrals I(s0), generally 
hoosing the order numeri
ally equal to the number of Gaussianpoints seems appropriate, yet for the J integrals, an order equal to half the number of Gaussianpoints is indi
ated. The asymptoti
 error estimates show that it is possible to improve thea

ura
y of the numeri
al 
al
ulations by using non{integer orders of transformation.In summary, the monomial transformation presented above, with an order equal to half thenumber of Gaussian points used, generally yields more a

urate values for the integrals des
ribedabove than the other methods presented. Alternatively, non{integer orders of transformationobtained by solving equation (4.6) 
an also yield a

urate evaluations of the weakly singularintegrals. 19
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CaptionsTable 1: Values of the 
oeÆ
ient 
r for various orders of sigmoidal and semi{sigmoidal Sidiand Elliott transformations.Table 2: Trun
ation and relative errors for the integral I(1) obtained using the monomialmethod for various orders of transformation and 10 Gaussian points. The non{integer trans-formation orders are the zeros of equation (4.6) with n = 10.Table 3: Trun
ation and relative errors for the integral I(1) obtained using the monomialmethod for various orders of transformation and 20 Gaussian points. The non{integer trans-formation orders are the zeros of equation (4.6) with n = 20.Table 4: Approximate values and relative errors for the integral I(1), obtained using thevarious integration s
hemes with various numbers of Gaussian integration points and (whereappropriate) various orders of transformation. The number of fun
tion evaluations for ea
hintegration s
heme at the given number of Gaussian integration points is also shown. Thenon{integer transformation orders for the monomial transformation are the zeros of equation(4.6) with n = 10.Table 5: Approximate values and relative errors for the integral I(�0:3), obtained using thevarious integration s
hemes with various numbers of Gaussian integration points and (whereappropriate) various orders of transformation. The number of fun
tion evaluations for ea
hintegration s
heme at the given number of Gaussian integration points is also shown. Thenon{integer transformation orders for the monomial transformation are the zeros of equation(4.6) with n = 10.Table 6: Approximate values and relative errors for the integral I(0:8), obtained using thevarious integration s
hemes with various numbers of Gaussian integration points and (whereappropriate) various orders of transformation. The number of fun
tion evaluations for ea
h23



integration s
heme at the given number of Gaussian integration points is also shown. Thenon{integer transformation orders for the monomial transformation are the zeros of equation(4.6) with n = 10.Table 7: Relative errors for the integrals J1, J2, J3, J4 and J5 
omparing the monomialtransformation to other previously published transformations. Here the integrals J2 and J5
ontain an interior singularity, hen
e the number of fun
tion evaluations is twi
e the number ofGaussian quadrature points for the bi
ubi
 and monomial transformation methods and equal tothe number of Gaussian quadrature points for the other methods, as well as for the remainingintegrals.Table 8: Values of the integral H(es; 0:2; 0:2) obtained using the bi
ubi
 transformation [3℄and equation (5.6) using various numbers of Gaussian integration points and orders of trans-formation.Figure 1: Plot of the absolute value of the trun
ation error for evaluation of the integral I(s0)as the singularity o�set, s0, varies from 0 to 1. Integration is performed with the Telles methodand the Monegato{Sloan transformation of orders 5 and 7 utilising 20 Gaussian quadraturepoints and the monomial transformation of orders 3, 5 and 7, utilising 10 Gaussian quadraturepoints, yet requiring 20 fun
tion evaluations.Figure 2: Plot of the absolute value of the trun
ation error obtained from equation (4.5) withn = 10 (dotted line) and from 
omputations (solid line) using 10 Gaussian points. The gridlines emphasise the position of the integer transformation orders.Figure 3: Plot of the absolute value of the trun
ation error obtained from equation (4.5) withn = 20 (dotted line) and from 
omputations (solid line) using 20 Gaussian points.
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Transformation Sidi Transformation [16℄ Elliott Transformation [14℄Order (r) Sigmoidal Semi{Sigmoidal Sigmoidal Semi{Sigmoidal2 �24 �28 | |3 2�23 �26 2�23 �264 3�416 3�4128 | |5 8�415 �430 6�45 3�4406 5�632 5�61024 | |7 16�635 �6140 20�67 5�6112
Table 1:
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Transformation Order jTrun
ation Errorj Relative Error1 1.15�10�2 1.87�10�21.16144 4.09�10�5 6.67�10�52 1.67�10�4 2.72�10�42.19614 1.12�10�6 1.82�10�63 4.58�10�6 7.47�10�63.22443 3.03�10�8 4.93�10�84 2.08�10�7 3.38�10�74.24946 1.65�10�9 2.70�10�95 1.43�10�8 2.33�10�85.27234 1.59�10�10 2.59�10�106 1.41�10�9 2.30�10�96.29361 2.27�10�11 3.70�10�117 1.92�10�10 3.13�10�107.31357 4.47�10�12 7.28�10�128 3.52�10�11 5.73�10�118.33240 1.16�10�12 1.89�10�129 8.43�10�12 1.37�10�119.35021 3.86�10�13 6.29�10�1310 2.62�10�12 4.27�10�12Table 2:
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Transformation Order jTrun
ation Errorj Relative Error1 3.01�10�3 4.90�10�31.13364 6.97�10�6 1.14�10�52 1.14�10�5 1.86�10�52.15782 5.05�10�8 8.24�10�83 8.09�10�8 1.32�10�73.17690 2.64�10�10 4.31�10�104 9.35�10�10 1.52�10�94.19346 2.53�10�12 4.12�10�125 1.62�10�11 2.64�10�115.20845 4.70�10�14 7.65�10�146 3.91�10�13 6.38�10�136.22235 7.77�10�16 1.27�10�157 1.51�10�14 2.46�10�147.23543 2.22�10�15 3.62�10�158 1.67�10�15 2.71�10�158.24784 2.33�10�15 3.80�10�159 2.22�10�15 3.62�10�159.25953 2.33�10�15 3.80�10�1510 2.11�10�15 3.44�10�15Table 3:
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Integration Nodes Fun
tion Order Quadrature RelativeMethod Evaluations Approximation ErrorTelles[2℄ 10 10 | -0.613701054 7.47�10�620 20 | -0.613705558 1.32�10�7Sanz{Serna[4℄ 10 10 | -0.636944787 3.78�10�220 20 | -0.618233902 7.37�10�3Bi
ubi
[3℄ 10 10 | -0.614206553 8.16�10�420 20 | -0.614199611 8.05�10�4SigmoidalTransformations [6℄Simple 10 10 2 -0.613870561 2.69�10�4Sidi 10 10 6 -0.613704893 1.21�10�6Elliott 10 10 3 -0.613675583 4.90�10�5Semi{SigmoidalTransformations[7℄Simple 10 10 4 -0.613704922 1.16�10�6Sidi 10 10 6 -0.613705645 1.05�10�8Elliott 10 10 7 -0.613705559 1.30�10�7Monegato{SloanTransformations [12℄ 10 10 5 -0.613705625 2.32�10�810 10 7 -0.613705639 3.13�10�10MonomialTransformations 10 10 5 -0.613705625 2.32�10�810 10 5.27234 -0.613705639 2.59�10�1010 10 6 -0.613705640 2.30�10�910 10 6.29361 -0.613705639 3.70�10�1110 10 7 -0.613705639 3.13�10�1010 10 7.31357 -0.613705639 7.28�10�1210 10 8 -0.613705639 5.73�10�1110 10 8.33240 -0.613705639 1.89�10�1210 10 9 -0.613705639 1.37�10�1110 10 9.35021 -0.613705639 6.29�10�1310 10 10 -0.613705639 4.27�10�12Exa
t | | | -0.613705639 |Table 4:
28



Integration Nodes Fun
tion Order Quadrature RelativeMethod Evaluations Approximation ErrorTelles[2℄ 10 10 | -1.903280847 2.78�10�320 20 | -1.908001667 3.13�10�430 30 | -1.909028486 2.25�10�4Sanz{Serna[4℄ 10 10 | -1.919845628 5.89�10�320 20 | -1.910086538 7.79�10�430 30 | -1.909049250 2.36�10�4Bi
ubi
[3℄ 8 16 | -1.909620476 5.35�10�410 20 | -1.909606313 5.28�10�412 24 | -1.909597834 5.23�10�4SigmoidalTransformations [6℄Simple 10 20 2 -1.908762751 8.58�10�5Sidi 10 20 6 -1.908598116 4.20�10�7Elliott 10 20 3 -1.908568861 1.57�10�5Semi{SigmoidalTransformations[7℄Simple 10 20 4 -1.908598452 2.44�10�7Sidi 10 20 6 -1.908598923 3.37�10�9Elliott 10 20 7 -1.908598837 4.18�10�8Monegato{SloanTransformations [12℄ 20 20 5 -1.908624812 1.36�10�520 20 7 -1.908598686 3.37�10�720 20 9 -1.908598904 6.88�10�9MonomialTransformations 10 20 3 -1.908594332 2.40�10�610 20 3.22443 -1.908598978 3.19�10�810 20 4 -1.908599124 1.08�10�710 20 4.24946 -1.908598915 9.74�10�1010 20 5 -1.908598903 7.48�10�910 20 5.27234 -1.908598917 3.05�10�1110 20 6 -1.908598918 7.39�10�1010 20 6.29361 -1.908598917 1.50�10�1210 20 7 -1.908598917 1.01�10�1010 20 7.31357 -1.908598917 9.93�10�1310 20 8 -1.908598917 1.84�10�1110 20 8.33240 -1.908598917 3.68�10�1310 20 9 -1.908598917 4.42�10�1210 20 9.35021 -1.908598917 1.47�10�1310 20 10 -1.908598917 1.37�10�12Exa
t | | | -1.908598917 |Table 5:29



Integration Nodes Fun
tion Order Quadrature RelativeMethod Evaluations Approximation ErrorTelles[2℄ 10 10 | -1.267467471 2.84�10�320 20 | -1.263490728 3.01�10�430 30 | -1.263522749 2.76�10�4Sanz{Serna[4℄ 10 10 | -1.275118510 8.89�10�320 20 | -1.265359207 1.17�10�330 30 | -1.264321919 3.56�10�4Bi
ubi
[3℄ 8 16 | -1.2646 5.76�10�410 20 | -1.2637 1.36�10�412 24 | -1.2638 5.66�10�5SigmoidalTransformations [6℄Simple 10 20 2 -1.264035961 1.30�10�4Sidi 10 20 6 -1.263870813 6.12�10�7Elliott 10 20 3 -1.263841530 2.37�10�5Semi{SigmoidalTransformations [7℄Simple 10 20 4 -1.263870995 4.67�10�7Sidi 10 20 6 -1.263871592 5.09�10�9Elliott 10 20 7 -1.263871506 6.31�10�8Monegato{SloanTransformations [12℄ 20 20 5 -1.263888702 1.35�10�520 20 7 -1.263872297 5.63�10�720 20 9 -1.263871580 4.80�10�9MonomialTransformations 10 20 3 -1.263867001 3.63�10�610 20 3.22443 -1.263871601 1.22�10�810 20 4 -1.263871793 1.64�10�710 20 4.24946 -1.263871586 8.65�10�1110 20 5 -1.263871571 1.13�10�810 20 5.27234 -1.263871586 3.94�10�1110 20 6 -1.263871587 1.12�10�910 20 6.29361 -1.263871586 1.01�10�1110 20 7 -1.263871585 1.52�10�1010 20 7.31357 -1.263871586 2.51�10�1210 20 8 -1.263871586 2.78�10�1110 20 8.33240 -1.263871586 7.36�10�1310 20 9 -1.263871586 6.67�10�1210 20 9.35021 -1.263871586 2.63�10�1310 20 10 -1.263871586 2.07�10�12Exa
t | | | -1.263871586 |Table 6:30



Integration Nodes Order J1 J2 J3 J4 J5Method (r)Telles[2℄ 10 6.43�10�6 1.91�10�5 1.24�10�9 7.57�10�9 6.33�10�320 1.13�10�7 3.45�10�8 3.39�10�13 2.11�10�12 8.37�10�430 1.04�10�8 9.15�10�10 3.87�10�16 1.89�10�14 2.53�10�4Sanz{Serna[4℄ 10 3.22�10�2 1.90�10�5 2.87�10�4 1.78�10�3 6.32�10�320 6.33�10�3 3.44�10�8 1.13�10�5 6.98�10�5 8.36�10�430 2.54�10�3 9.14�10�10 2.12�10�6 1.30�10�5 2.53�10�4Bi
ubi
[3℄ 6 6.31�10�4 1.80�10�7 1.04�10�6 6.41�10�6 5.63�10�48 7.00�10�4 2.38�10�7 1.67�10�6 1.03�10�5 5.74�10�410 7.00�10�4 2.13�10�7 1.67�10�6 1.03�10�5 5.66�10�4Monegato 10 3 6.43�10�6 1.91�10�5 1.24�10�9 7.57�10�9 6.33�10�3and Sloan [12℄ 5 2.00�10�8 6.06�10�6 2.52�10�12 1.47�10�11 5.46�10�4�r(t) 7 8.77�10�10 6.97�10�4 2.85�10�9 8.75�10�9 3.87�10�69 2.78�10�6 1.34�10�2 6.92�10�6 2.12�10�5 1.69�10�311 9.10�10�5 5.23�10�2 2.27�10�4 6.95�10�4 6.53�10�320 3 1.13�10�7 3.45�10�8 3.39�10�13 2.11�10�12 8.37�10�45 2.27�10�11 6.03�10�11 4.65�10�15 1.04�10�15 1.82�10�57 2.74�10�14 1.46�10�12 5.04�10�15 5.79�10�15 6.67�10�79 3.11�10�16 3.25�10�13 3.49�10�15 1.01�10�14 3.88�10�811 1.56�10�16 9.48�10�13 2.13�10�15 1.11�10�14 3.35�10�930 3 1.04�10�8 9.15�10�10 3.87�10�16 1.89�10�14 2.53�10�45 4.20�10�13 1.21�10�13 3.49�10�15 5.94�10�15 2.46�10�67 7.78�10�16 2.75�10�15 4.26�10�15 6.53�10�15 4.03�10�89 6.23�10�16 5.50�10�15 5.04�10�15 2.23�10�15 1.03�10�911 3.11�10�16 7.24�10�15 5.04�10�15 2.67�10�15 3.85�10�11Monomial 10 3 6.43�10�6 4.22�10�12 1.24�10�9 7.57�10�9 2.58�10�6�r(t) 5 2.00�10�8 1.54�10�13 2.52�10�12 1.47�10�11 8.03�10�97 8.77�10�10 1.78�10�9 2.85�10�9 8.75�10�9 3.31�10�109 2.78�10�6 4.08�10�6 6.92�10�6 2.12�10�5 5.10�10�711 9.10�10�5 1.28�10�4 2.27�10�4 6.95�10�4 1.60�10�520 3 1.13�10�7 5.39�10�16 3.39�10�13 2.11�10�12 4.55�10�85 2.27�10�11 8.65�10�16 2.13�10�15 1.04�10�15 9.10�10�127 1.65�10�14 1.75�10�15 9.68�10�16 5.79�10�15 7.12�10�159 9.34�10�16 2.62�10�15 7.75�10�16 1.01�10�14 6.25�10�1611 1.56�10�16 3.50�10�15 2.13�10�15 1.11�10�14 2.50�10�1630 3 1.04�10�8 9.99�10�16 3.87�10�16 1.89�10�14 4.18�10�95 4.20�10�13 1.87�10�15 5.81�10�16 5.94�10�15 1.68�10�137 6.23�10�16 2.75�10�15 2.32�10�15 6.53�10�15 6.25�10�169 1.56�10�16 2.75�10�15 3.10�10�15 2.23�10�15 6.25�10�1611 1.09�10�15 2.75�10�15 3.10�10�15 2.67�10�15 1.12�10�15Table 7:
31



Integration Nodes Order H(es; 0:2; 0:2)Method (r)Bi
ubi
 [3℄ 6 | 1.85278 | 2.334010 | 2.416112 | 2.438114 | 2.4463Monomial 6 1 2.4237967672518645Transformation 2 2.4475356352225854(�r(t)) 3 2.44634117806575494 2.44641707766217255 2.44640428040002576 2.44638378366285198 1 2.43171147297715382 2.44688660614078483 2.44639453581882064 2.44641517321021025 2.44641428313231486 2.446413650578008510 1 2.43593666489791792 2.44665378124360223 2.44640722274708634 2.44641455248174165 2.44641434046159436 2.446414336699476212 1 2.43849037815810602 2.44655116067495153 2.44641127372803664 2.44641440940113375 2.44641434078885526 2.446414340502522514 1 2.44016684856119782 2.44649934226724593 2.44641284114870944 2.44641436715169035 2.44641434078947036 2.4464143407297541Table 8:
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