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AbstratAurate numerial integration of line integrals is of fundamental importane for thereliable implementation of the boundary element method. Usually, the regular integralsarising from a boundary element method implementation are evaluated using standardGaussian quadrature. However, the singular integrals whih arise are often evaluated inanother way, sometimes using a di�erent integration method with di�erent nodes andweights.This paper presents a straightforward transformation to improve the auray of eval-uating singular integrals. The transformation is, in a sense, a generalisation of the popularmethod of Telles with the underlying idea being to utilise the same Gaussian quadraturepoints as used for evaluating non{singular integrals in a typial boundary element methodimplementation. The new transformation is also shown to be equivalent to other existingtransformations in ertain situations.Comparison of the new method with existing oordinate transformation tehniquesshows that a more aurate evaluation of weakly singular integrals an be obtained. Thetehnique an also be extended to evaluate ertain Hadamard �nite{part integrals. Basedon the observation of several integrals onsidered, guidelines are suggested for the besttransformation order to use (ie the degree to whih nodes should be lustered near thesingular point).Key words: nonlinear oordinate transformation, boundary element method, weakly singularintegrals, numerial integration, Hadamard �nite{part integrals.
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1 IntrodutionWeakly singular line integrals arise in the boundary element method when the soure point lieson the element over whih the integration is to be performed. When onsidering, for example,the two dimensional Laplae equation, the boundary element kernel is of the form ln 1r wherer is the distane from the soure point to the integration point. Hene, multipliation of thiskernel by some basis funtion, �, and subsequent integration over the urrent element, �, givesrise to a weakly singular integral of the formg = Z� ln 1r�d�: (1.1)There are several methods available to evaluate the above integral, most of whih fall intothe ategories of either oordinate transformation (to inrease the smoothness of the integrandat the singular point) [1, 2, 3, 4℄ or interval splitting [5, 6, 7, 8℄. The idea behind bothategories of tehniques is to use the same Gaussian quadrature points and weights as thoseused for the non{singular integrals. For example, if 10 Gaussian points and weights are usedto evaluate the non-singular integrals, it is desirable to use the same 10 points and weightsto evaluate the singular integrals. The �rst ategory of tehniques, oordinate transformation,would simply reloate these 10 points on the interval of integration to improve the auray ofthe evaluation of the singular integral. On the other hand, the seond ategory of tehniques,interval splitting, splits the interval at the singularity and uses the 10 points on eah subinterval,requiring a total of 20 evaluations of the integrand, instead of 10. An ideal interval splittingmethod should more aurately evaluate a singular integral using the same 10 Gaussian pointstwie, than a oordinate transformation tehnique using 20 Gaussian points over the entireinterval. As a result, this will redue storage requirements and operation ounts in the omputerode implementing the numerial methods, as only the nodes and weights for the 10 pointGaussian quadrature rule need to be determined and stored. Other possible tehniques for3



evaluating these integrals inlude using a ompletely di�erent set of integration points andweights dependent on the kernel [9℄ and integral simpli�ation [1, 10℄. We shall say no more ofthese methods.It has reently been shown [11℄ that a nonlinear transformation, introdued by Monegatoand Sloan [12℄ and subsequently used by Suderi [13℄ to study ow around an airfoil with ap,an be used to evaluate integrals of the form (1.1). This is a polynomial transformation ofarbitrary odd degree, with zero Jaobian at the singularity whih does not require the intervalof integration to be split at the singularity. Hene it falls into the �rst of the two ategories,i.e. oordinate transformation, for numerial evaluation of singular integrals desribed above.The transformation of Monegato and Sloan works well when the singularity is at the endpoints of the interval. On the other hand, as it may be seen from Tables 4, 5 and 6, relativeerrors an be reasonably large at other points of the interval for lower order transformations.Of ourse, the method an be improved by �rst splitting the interval of integration at thesingularity and applying the Monegato{Sloan transformation on eah subinterval. In this ase,the transformation no longer has to be of odd degree and the transformation due to Sato etal. [5℄ is reovered. The popular transform due to Telles [2℄ arises as a speial ase of theMonegato{Sloan transformation when the polynomial is of degree three.The method outlined below is an interval splitting tehnique whih arose from a reent studyof semi{sigmoidal transformations [7℄ and their subsequent numerial analysis [8℄. It turns outthat this tehnique is related to the tehniques of Telles and Monegato and Sloan when thesingularity is at one of the end points of the interval.The next setion of the paper desribes the integrals of primary interest in this paper andthe following setion introdues the oordinate transformation to be studied. In setion fourseveral integrals, whih ompare the relative auray of this method with existing tehniques,are evaluated and in setion �ve the tehnique is generalised to onsider ertain Hadamard4



�nite{part integrals.
2 Weakly Singular IntegralsThis paper is primarily onerned with evaluation of boundary element method line integralsof the form given in equation (1.1) where, as mentioned previously, � is an arbitrary boundaryelement in two dimensional spae, r is the distane from the soure point (x0; y0) to the element� and � is a basis funtion. The usual pratie is to transform the integral into one along thepath from �1 to 1 in a loal oordinate system, resulting in the integralg = Z 1�1 ln 1r(s)�(s)J(s)ds; (2.1)where J(s) is the Jaobian of the transformation. Assuming that the singularity ours at somepoint s0, �1 � s0 � 1, in the loal oordinate system, then r(s) = js� s0j.Although the integrals of onern to boundary element method pratitioners usually ontaina weak singularity of the logarithmi type, the methods to be desribed here apply equally wellto weakly singular integrals having an algebrai singularity at s0,g� = Z 1�1 js� s0j��(s)J(s)ds (2.2)where � > �1.We aim to evaluate the integral in equation (2.1) using Gauss-Legendre quadrature with thesame integration weights and node points as for the non{singular integrals arising in a boundaryelement method formulation. The next setion desribes what is e�etively a transformation ofthese points and weights whih results in an aurate evaluation of weakly singular integrals.

5



3 A Monomial TransformationThe motivation for this approah began with reent work on sigmoidal and semi{sigmoidaltransformations (see [14℄ and [7℄, respetively). In general a sigmoidal transformation, r, ofthe interval [0,1℄ onto itself is a funtion of the form (see [14℄)r(t) := fr(t)fr(t) + fr(1� t) ; 0 � t � 1; (3.1)where fr(t) = O(tr) near t = 0 and r is the order of the transformation. A semi-sigmoidaltransformation, �r, (see [7℄) is de�ned in terms of a sigmoidal transformation by�r(t) := 2r( t2) = r( t2)=r(12); 0 � t � 1; (3.2)as r(12) = 12 , by (3.1). It an be shown that �r is atually a sigmoidal transformation of theinterval [0,2℄ onto itself [7℄. It has been shown omputationally [7℄ and via error analysis [8℄that semi{sigmoidal transformations more aurately evaluate integrals of the forms (2.1) and(2.2) than do sigmoidal transformations.Let us generalise the semi{sigmoidal transformation idea to the (1/m)th sigmoidal transfor-mation, r;m, mapping [0,1℄ onto itself and de�ned byr;m(t) := r(t=m)r(1=m) ; 0 � t � 1; (3.3)where m 2 N. The sigmoidal transformation is obtained when m = 1 and the semi{sigmoidaltransformation is obtained when m = 2. Sine a transformation with m = 2 yields moreaurate evaluation of weakly singular integrals than when m = 1, it is reasonable therefore toask, what is limm!1 r;m(t)? Using equations (3.1) and (3.3) it follows thatlimm!1 r;m(t) = limm!1 fr(t=m)fr(t=m) + fr(1� t=m) fr(1=m) + fr(1� 1=m)fr(1=m) : (3.4)
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Fix t 2 [0; 1℄. Sine fr(�) = r�r near � = 0, for m� 1 we have from (3.4) thatlimm!1 r;m(t) = limm!1 r(t=m)rr(t=m)r + fr(1� t=m) r(1=m)r + fr(1� 1=m)r(1=m)r (3.5)= tr limm!1 r(1=m)r + fr(1� 1=m)r(t=m)r + fr(1� t=m) (3.6)= tr (3.7)sine, from (3.1), fr(1) 6= 0. Thus the transformation tr, whih maps [0,1℄ onto itself, althoughnot a sigmoidal transformation, is a limit of the (1/m)th sigmoidal transformation as m!1.Based upon the above argument, we de�ne the monomial transformation, �r, as�r(t) := tr; 0 � t � 1; (3.8)where the order of the transformation, r, does not need to be integral.The monomial transformation also arises from several other existing transformations. Firstly,onsider the transformation of Sato et al. [5℄ (with singularity at t = �1)Sr (t) = �1 + 12r�1 (1 + t)r (3.9)whih is a transformation of [-1,1℄ onto itself. Now transform the interval [-1,1℄ (with singularityat -1) onto the interval [0,1℄ (with singularity at zero) usingu = 1 + t2 (3.10)then Sr (t) + 12 = ur = �r(u); 0 � u � 1: (3.11)Hene, we see that the monomial transformation on [0,1℄ is equivalent to the transformation ofSato et al. over [-1,1℄ with singularity at t = �1. Using the transformation u = 1�t2 , it an beshown that the monomial transformation is also equivalent to the transformation of Sato et al.with singularity at t = 1. 7



Seondly, onsider the Monegato{Sloan transformation (see [12℄), whih is also a mappingof the interval [�1; 1℄ onto itself, de�ned bys = �r(t) := s0 + Æ(s0; r)(t� t0)r (3.12)for an arbitrary singular point s0, �1 < s0 < 1. We restrit r to being an odd integer andÆ(s0; r) and t0 are de�ned byÆ(s0; r) = 2�r �(1 + s0)1=r + (1� s0)1=r�r ; (3.13)and t0 = (1 + s0)1=r � (1� s0)1=r(1 + s0)1=r + (1� s0)1=r ; (3.14)respetively. Now if s0 = �1, say, it follows that t0 = �1 and Æ(�1; r) = 21�r so thats = �r(t) = �1 + 21�r(t+ 1)r: (3.15)In this ase Monegato and Sloan's restrition of r being an odd integer an be removed and oneof the transformations of Sato et al. [5℄ is reovered. Hene, from above, it an be seen that�r is the generalisation of the monomial transformation on [0,1℄ to the interval [�1; 1℄. Similaromments apply to the ase where s0 = 1.Finally, the monomial transformation is also reovered from the transformation of Monegatoand Suderi [15℄ p;q(t) = (p+ q � 1)!(p� 1)!(q � 1)! Z t0 up�1(1� u)q�1 du (3.16)with q = 1.In order to apply the monomial transformation for an arbitrary singularity, s0 2 (�1; 1),�rstly, split the integral at s0 to giveg = Z s0�1 ln 1r(s)�(s)J(s)ds+ Z 1s0 ln 1r(s)�(s)J(s)ds: (3.17)8



Next, the variable of integration is hanged so that both integrals are evaluated over the range[0,1℄, ensuring that the point s0 maps to 0 in both ases. That is, for the �rst integral inequation (3.17), apply the transformation s = s0 � (1 + s0)t and in the seond integral applythe transformation s = s0 + (1� s0)t, to giveg = (1 + s0) Z 10 ln 1r(s0 � (1 + s0)t)�(s0 � (1 + s0)t)J(s0 � (1 + s0)t)dt+ (1� s0) Z 10 ln 1r(s0 + (1� s0)t)�(s0 + (1� s0)t)J(s0 + (1� s0)t)dt: (3.18)The advantage of the monomial transformation (equation (3.8)) is that it an be diretlyompared with the previously de�ned semi{sigmoidal transformations [7℄ through the erroranalysis desribed in the paper by Johnston and Elliott [8℄. Using the notation of that paper,for the integral de�ned by I2(g;�) := Z 1�1(1� �)� ln(1� �)g(�)d�; (3.19)where g is an arbitrary \well{behaved" funtion, an asymptoti estimate for the trunation errorwhen evaluating the transformed integral via n{point Gauss{Legendre quadrature is given byE2;n;r(g;�) � (2n+ 1)�2r(1+�)23+��2r(1+�)rg(1)1+�r �(2r(1 + �))�f��r os(�(r(1 + �)� 1)) + sin(�(r(1 + �)� 1))� [2r ln(2n+ 1) + (2r � 1) ln 2� ln r � 2r (2r(1 + �))℄g : (3.20)
The quantity in this equation whih depends on the transformation itself is r, the oeÆientof tr in the sigmoidal transformation of order r near t = 0. For the monomial transformation,r = 1 for all values of r, whih, as an be seen from Table 1, is smaller, for a given r, than theorresponding r for any of the sigmoidal or semi{sigmoidal transformations given in [14℄ and[16℄. Hene, for the monomial transformation applied to the integral I2(g;�) the asymptoti
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estimate for the error is given byEmono2;n;r (g;�) � (2n+ 1)�2r(1+�)23+��2r(1+�)rg(1)�(2r(1 + �))�f��r os(�(r(1 + �)� 1)) + sin(�(r(1 + �)� 1))� [2r ln(2n+ 1) + (2r � 1) ln 2� 2r (2r(1 + �))℄g : (3.21)
4 Numerial ExamplesIn order to assess the utility of the transformation desribed above and to establish its optimumbehaviour, several integrals of importane in the boundary element method are evaluated.The results are ompared in terms of the relative error, de�ned byrelative error = ����Iapproximate � IexatIexat ���� (4.1)where Iapproximate and Iexat are the approximate and exat values of the integral being onsid-ered.4.1 A Simple ExampleFirstly, onsider the integral I(s0) = Z 1�1 ln js� s0jds (4.2)whih, in terms of the boundary element method, ontains the logarithmi kernel and a onstantbasis funtion, �(s) � 1, (the Jaobian, J(s), of the transformation from an arbitrary integralto the one above has been ignored). The integral I(s0) an be evaluated expliitly asI(s0) = (ln(1� s0)� 1)(1� s0) + (ln(1 + s0)� 1)(1 + s0) (4.3)for �1 < s0 < 1 and I(�1) = 2(ln 2 � 1). This integral has been onsidered previously as atest integral for other proposed integration shemes for several values of s0: s0 = 1, s0 = �0:3[2, 6, 7℄; s0 = 0:8 [3, 6, 7℄. 10



Now onsider evaluating the integral I(s0) using the monomial transformation, equation(3.8). Reall that to evaluate this integral, the interval of integration must be split at thesingularity and eah subinterval mapped onto [0; 1℄, with the singularity mapping to 0 in bothases. Hene for a fair omparison, evaluation of the integral I(s0) using the monomial trans-formation should use half the number of Gaussian points in eah integration that the Telles andMonegato{Sloan transformations an use (that is, there is the same total number of funtionevaluations in both ases). Figure 1 shows a omparison of trunation errors (the numera-tor of the relative error (4.1)) between the Telles transformation (r = 3 in equation (3.12)),the Monegato{Sloan transformation of orders 5 and 7 (all with 20 Gaussian points) and themonomial transformation of orders 3, 5 and 7 using 10 Gaussian points in eah interval.It an be seen from Figure 1 that even a monomial transformation of order 3 is approximatelytwo orders of magnitude more aurate than the original Telles approah. The �gure alsoshows that, for most values of s0, the monomial transformation is more aurate than thetransformation of Monegato and Sloan, for a given order. The exeption to this is whens0 = 1, where 10 points should be used for the Monegato{Sloan transformation whih will yieldidential results to the monomial transformation. In fat, the trunation error is independent ofs0, a result whih an be demonstrated for the integral I(s0) using the error estimates given byJohnston and Elliott [8℄. It turns out that the asymptoti error for the numerial approximationto I(s0), for integer r, is given by (equation (3.21) with � = 0 and g(1) = 1)Emono2;n;r (1; 0) � (�1)r23�2rr2�(2r)�(2n+ 1)2r ; (4.4)independent of s0.Inreasing the order of the transformation redues the asymptoti error up to a ertainpoint, then it inreases again. An optimal value is predited numerially at r = 15. On theother hand, di�erentiating the error estimate (4.4) with respet to r, and equating to zero,11



gives r � (2n + 1) as a minimum for n � 1. Hene for n = 10, the minimum error shouldour at r = 21. The main reason for this disrepany ould be due to lak of working preisionon the omputer. At r = 15, the absolute error is of the order of 10�13 (near the workinglimits of the mahine); however, the formula for the error estimate predits an absolute errorof approximately 10�15 when r = 21. Although these two results are quite lose together, it isprobably safest to hoose the order of the transformation to be equal to the number of Gaussianpoints used. This may not be optimal, but it tends to err on the side of aution.4.1.1 Non{Integer Transformation OrdersInterestingly, the error estimate an be improved by using non{integer values for r, the orderof the transformation. The asymptoti error for evaluating the integral I(s0) with a general ris given by Emono2;n;r (1; 0) � (2n+ 1)�2r23�2rr�(2r)�f��r os(�(r � 1)) + sin(�(r � 1)) [2r ln(2n+ 1) + (2r � 1) ln 2� 2r (2r)℄g : (4.5)Plots of the absolute values of Emono2;n;r (1; 0) for n = 10 and n = 20 are shown in Figures 2and 3, respetively. The important feature of these urves is the presene of several \inverted"spikes. Eah spike orresponds to a value of r at whih Emono2;n;r (1; 0) is zero (sine the graphs areplots of absolute values). These �gures also show the atual error for the numerial alulations.It an be seen that the asymptoti error generally agrees very losely with the alulatedvalues. However, for n = 10, the asymptoti error underestimates the atual error for ordersof transformation greater than about 7. Also, for n = 20, round o� errors a�et the numerialalulation and so it is diÆult to make omparisons with the asymptoti errors for orders oftransformation greater than about 7.Based on observations from the above plots, it is theoretially possible to hoose a valueof r whih gives a trunation error of zero, for a given value of n. These values of r an be12



obtained as zeros of the transendental equation�r ot(�(r � 1)) = 2r ln(2n+ 1) + (2r � 1) ln 2� 2r (2r) (4.6)The �rst few zeros of this equation for n = 10 and n = 20 are given in Tables 2 and 3,respetively. These tables also show the values of the alulated trunation and relative errorsat these zeros and at the adjaent integer orders of transformation. It an be seen that the zerosof the transendental equation generally give smaller trunation errors. The exeption is whenn = 20 with transformation orders greater than 7 where round o� errors have a onsiderablee�et on the alulated quantities.4.1.2 Spei� Values of s0Tables 4, 5 and 6 ompare approximate values of the integral I(s0) obtained from variousintegration shemes with the exat value, as well as showing the relative error, for the spei�values of s0 at s0 = 1, s0 = �0:3 and s0 = 0:8, respetively. Note that the prinipal fator inmaking a fair omparison between methods is the number of funtion evaluations. Also, in theases of the the sigmoidal and semi{sigmoidal transformations, the transformation order shownis optimal.Table 4 shows the results for s0 = 1. Reall that in this situation, sine the singularity isat an end point, the Monegato{Sloan and monomial transformations are idential and, further,when these transformations are of order 3, both are idential to the Telles transformation. Thetable indiates that even at modest transformation orders (r = 5; 7) the new transformationsprovide a more aurate evaluation of the integral I(1) than most of the other methods. Theexeption is the sixth order (optimal) Sidi transformation whih yields more aurate valuesthan the �fth order monomial transformation, but not the sixth order monomial transforma-tion. The values for I(1) determined with the monomial transformation with 10 Gaussian13



points are more aurate than the values obtained with the Telles, Sanz{Serna and biubitransformations, eah using 20 Gaussian quadrature points.The same omments apply to the evaluation of the integral I(�0:3), (Table 5). Generally,the monomial transformations of order �ve or higher result in the most aurate evaluations,with the sixth order Sidi transformation being the exeption. However, a sixth order monomialtransformation is more aurate than this Sidi transformation. Note that the monomial trans-formation of order 3 is equivalent to splitting the interval at the singularity and applying theTelles approah on eah subinterval, after mapping these onto [�1; 1℄.Finally, the above omments also apply to the results shown in Table 6, for the evaluationof the integral I(0:8).In eah of the above tables non{integer transformation orders for the monomial transfor-mation are also inluded. These orders are again the zeros of equation 4.6 and are idential foreah example as the trunation error is independent of s0. It an again be seen that havinga non{integer transformation order redues the error in the approximation to the value of theintegral and these orders give superior results to the adjaent integer transformation orders.4.2 Quadrati Basis FuntionsNow onsider quadrati boundary elements where there are three basis funtions: �1(x) =x(x � 1)=2; �2(x) = 1 � x2 and �3(x) = x(x + 1)=2. Singular integrals are obtained for eahof the node points on the element ating as soure points and for eah basis funtion. The �veintegrals to be evaluated are:1. basis funtion x(x� 1)=2, soure point (-1,0) and basis funtion x(x+ 1)=2, soure point(1,0) J1 = Z 1�1 ln(x+ 1)x(x� 1)2 dx = Z 1�1 ln(1� x)x(x + 1)2 dx = ln 64� 171814



2. basis funtion x(x� 1)=2, soure point (0,0) and basis funtion x(x + 1)=2, soure point(0,0) J2 = Z 1�1 ln jxjx(x� 1)2 dx = Z 1�1 ln jxjx(x + 1)2 dx = �193. basis funtion x(x� 1)=2, soure point (1,0) and basis funtion x(x + 1)=2, soure point(-1,0) J3 = Z 1�1 ln(1� x)x(x� 1)2 dx = Z 1�1 ln(1 + x)x(x + 1)2 dx = ln 64 + 1184. basis funtion 1� x2, soure point (-1,0) and basis funtion 1� x2, soure point (1,0)J4 = Z 1�1 ln(x + 1)(1� x2)dx = Z 1�1 ln(1� x)(1� x2)dx = 2 ln 64� 1095. basis funtion 1� x2, soure point (0,0)J5 = Z 1�1 ln jxj(1� x2)dx = �169As a �nal example, onsider evaluating the J integrals with the monomial transformation(Table 7). Here, the integrals J2 and J5 must be split to apply the transformation and soit should be remembered that twie as many funtion evaluations are required. Generally,the monomial transformation produes the lowest relative error of all the methods onsidered.However, there is again the problem of an optimal order. It appears, as in the ase of theMonegato{Sloan transformation [11℄, that the order of the transformation should be numeriallyequal to half the number of Gaussian points used whih is di�erent from the ase with theevaluation of the integral I(s0) using the monomial transformation where the order should beequal to the number of Gaussian points used.It is also possible to use non{integer transformation orders for the monomial method whenevaluating the above integrals. However, an exhaustive study for these integrals would oupytoo muh spae as eah integral requires the solution of a slightly di�erent transendental15



to obtain the appropriate transformation orders. However, to illustrate this idea, onsiderevaluating the integral J1 with 10 Gaussian points. Using a transformation order of 5.2777 givesa relative error of 3.88�10�13 whih is muh smaller than many other error values obtained. Asanother example, using a transformation order of 5.1962 when evaluating J3 with 10 Gaussianpoints gives a relative error of 1.94�10�16, again muh better than most other tehniques.
5 Hadamard Finite{Part IntegralsHadamard �nite{part integrals also play a role in the boundary element method. Here it willbe shown that the above monomial transformation an also be applied to these integrals.Consider the integral H(f ; s0; �) = Z 1�1 sgn(s� s0)js� s0j1+� f(s) ds (5.1)where �1 < s0 < 1, 0 < � < 1, f is a Lipshitz ontinuous funtion on [�1; 1℄ and the doublebars denote the Hadamard �nite{part integral. The integral H(f ; s0; �) an be split at thesingularity and rewritten asH(f ; s0; �) = � Z s0�1 f(s)(s0 � s)1+� ds+ Z 1s0 f(s)(s� s0)1+� ds: (5.2)From [17℄ we de�ne Z ba f(t)(b� t)1+� dt := Z ba f(t)� f(b)(b� t)1+� dt� f(b)�(b� a)� ; (5.3)and Z ba f(t)(t� a)1+� dt := Z ba f(t)� f(a)(t� a)1+� dt� f(a)�(b� a)� : (5.4)Using these de�nitions, the integral H(f ; s0; �) an again be rewritten asH(f ; s0; �) = ��Z s0�1 f(s)� f(s0)(s0 � s)1+� ds� f(s0)�(s0 + 1)��+�Z 1s0 f(s)� f(s0)(s� s0)1+� ds� f(s0)�(1� s0)�� (5.5)16



or H(f ; s0; �) = Z s0�1 f(s0)� f(s)(s0 � s)1+� ds+ Z 1s0 f(s)� f(s0)(s� s0)1+� ds+ f(s0)�(s0 + 1)� � f(s0)�(1� s0)� : (5.6)The two integrals in equation (5.6) are now weakly singular and so an be evaluated usingthe monomial transformation. Hene, in order to obtain a value for the Hadamard �nite{partintegral, H(f ; s0; �), we proeed as follows:1. Map both integrals in equation (5.6) onto the interval [0,1℄ with s0 mapping to 0 (.f.equations (3.17) and (3.18)),2. Apply the transformation �r(s) = sr to both integrals,3. Evaluate the integrals using Gaussian Quadrature,4. Add the additional terms in equation (5.6).As an example to illustrate this method, onsider the following integralH(es; 0:2; 0:2) = Z 1�1 sgn(s� 0:2)js� 0:2j1:2 es ds: (5.7)The integral has previously been onsidered by Kutt [18℄ and is also used as an illustrativeexample for the biubi transformation method of Cerrolaza and Alaron [3℄. The value for theintegral given by Kutt is 2.4464143506. Using 14 Gaussian quadrature points on eah subin-terval (28 funtion evaluations) the biubi transformation yields a value for the integral of2.4463. Appliation of the method outlined above to this integral yields a value of 2.4464170777using only six Gaussian points (12 funtion evaluations) and a fourth order monomial trans-formation. This value an be improved to give 2.4464143408 by using 14 Gaussian points (28funtion evaluations) and a �fth order transformation. By �rstly splitting the interval of inte-gration at the singularity and then integrating by parts twie, Mathematia yields a value of17



H(es; 0:2; 0:2) = 2:446414340789413. The results for the evaluation of this integral are shownin Table 8.It is possible to extend the above approah to a more general exponent � in the denominatorof equation (5.1). Let � be suh that n < � < n + 1 where n 2 f0; 1; 2; : : :g, then, followingElliott [17℄, take a Taylor series of the funtion f about the point s0. This is given byf(s) = fn(s) + 1�(n + 1) Z ss0 f (n+1)(y)(s� y)n dy (5.8)where fn(s) = nXk=0 f (k)(s0)(s� s0)k�(k + 1) : (5.9)Then, following some algebra, it an be shown thatH(f ; s0; �) = Z s0�1 fn(s)� f(s)(s0 � s)1+� ds+ Z 1s0 f(s)� fn(s)(s� s0)1+� ds� nXk=0 f (k)(s0)(�� k)�(k + 1) � (�1)(k+1)(s0 + 1)��k + 1(1� s0)��k � : (5.10)The two integrals in this expression are again weakly singular and so an be evaluated assuggested above.The above onept also applies to integer values of �. Here, the resulting integrals inequation (5.10) are regular and so standard Gauss{Legendre quadrature an be applied in theirevaluation. This is, of ourse, equivalent to a monomial transformation of order 1. In partiular,� = 0 orresponds to a Cauhy prinipal value integral and equation (5.10) would orrespondto the so{alled `bootstrap' tehniques, applied to the boundary element method by Guiggianiand Casalini [19℄.
6 ConlusionThis paper has introdued a monomial transformation with Gaussian quadrature to improvethe auray of evaluating both weakly and strongly singular integrals. The transformation18



arises from several other previously published transformations with the underlying idea beingto utilise the same Gaussian quadrature points used for evaluating non{singular integrals in atypial boundary element method implementation. The method requires the original intervalto be split at the singularity and the two subintervals mapped onto [0; 1℄ with the singularitymapped to 0 in both ases. Although the method requires some degree of pre{implementationalgebra, it generally yields more aurate numerial results for the same number of funtionevaluations than existing transformations. The transformation has also been shown to beequivalent to other existing transformations in ertain ases.The tehnique has been implemented and numerially ompared with other oordinate trans-formations and interval splitting tehniques for two di�erent types of integrals appliable in aboundary element method ontext. Generally, the new tehniques are numerially superior tothe existing methods, with, as mentioned above, the monomial transformation performing bet-ter than the reently introdued Monegato{Sloan transformation [12, 13, 11℄. The tehniquehas also been shown to be able to evaluate aurately ertain Hadamard �nite{part integrals.The only question whih arises with these new methods is: what order of transformation isoptimal? Utilising too higher an order of transformation tends to inrease the relative error. Forthe integrals I(s0), generally hoosing the order numerially equal to the number of Gaussianpoints seems appropriate, yet for the J integrals, an order equal to half the number of Gaussianpoints is indiated. The asymptoti error estimates show that it is possible to improve theauray of the numerial alulations by using non{integer orders of transformation.In summary, the monomial transformation presented above, with an order equal to half thenumber of Gaussian points used, generally yields more aurate values for the integrals desribedabove than the other methods presented. Alternatively, non{integer orders of transformationobtained by solving equation (4.6) an also yield aurate evaluations of the weakly singularintegrals. 19
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CaptionsTable 1: Values of the oeÆient r for various orders of sigmoidal and semi{sigmoidal Sidiand Elliott transformations.Table 2: Trunation and relative errors for the integral I(1) obtained using the monomialmethod for various orders of transformation and 10 Gaussian points. The non{integer trans-formation orders are the zeros of equation (4.6) with n = 10.Table 3: Trunation and relative errors for the integral I(1) obtained using the monomialmethod for various orders of transformation and 20 Gaussian points. The non{integer trans-formation orders are the zeros of equation (4.6) with n = 20.Table 4: Approximate values and relative errors for the integral I(1), obtained using thevarious integration shemes with various numbers of Gaussian integration points and (whereappropriate) various orders of transformation. The number of funtion evaluations for eahintegration sheme at the given number of Gaussian integration points is also shown. Thenon{integer transformation orders for the monomial transformation are the zeros of equation(4.6) with n = 10.Table 5: Approximate values and relative errors for the integral I(�0:3), obtained using thevarious integration shemes with various numbers of Gaussian integration points and (whereappropriate) various orders of transformation. The number of funtion evaluations for eahintegration sheme at the given number of Gaussian integration points is also shown. Thenon{integer transformation orders for the monomial transformation are the zeros of equation(4.6) with n = 10.Table 6: Approximate values and relative errors for the integral I(0:8), obtained using thevarious integration shemes with various numbers of Gaussian integration points and (whereappropriate) various orders of transformation. The number of funtion evaluations for eah23



integration sheme at the given number of Gaussian integration points is also shown. Thenon{integer transformation orders for the monomial transformation are the zeros of equation(4.6) with n = 10.Table 7: Relative errors for the integrals J1, J2, J3, J4 and J5 omparing the monomialtransformation to other previously published transformations. Here the integrals J2 and J5ontain an interior singularity, hene the number of funtion evaluations is twie the number ofGaussian quadrature points for the biubi and monomial transformation methods and equal tothe number of Gaussian quadrature points for the other methods, as well as for the remainingintegrals.Table 8: Values of the integral H(es; 0:2; 0:2) obtained using the biubi transformation [3℄and equation (5.6) using various numbers of Gaussian integration points and orders of trans-formation.Figure 1: Plot of the absolute value of the trunation error for evaluation of the integral I(s0)as the singularity o�set, s0, varies from 0 to 1. Integration is performed with the Telles methodand the Monegato{Sloan transformation of orders 5 and 7 utilising 20 Gaussian quadraturepoints and the monomial transformation of orders 3, 5 and 7, utilising 10 Gaussian quadraturepoints, yet requiring 20 funtion evaluations.Figure 2: Plot of the absolute value of the trunation error obtained from equation (4.5) withn = 10 (dotted line) and from omputations (solid line) using 10 Gaussian points. The gridlines emphasise the position of the integer transformation orders.Figure 3: Plot of the absolute value of the trunation error obtained from equation (4.5) withn = 20 (dotted line) and from omputations (solid line) using 20 Gaussian points.
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Transformation Sidi Transformation [16℄ Elliott Transformation [14℄Order (r) Sigmoidal Semi{Sigmoidal Sigmoidal Semi{Sigmoidal2 �24 �28 | |3 2�23 �26 2�23 �264 3�416 3�4128 | |5 8�415 �430 6�45 3�4406 5�632 5�61024 | |7 16�635 �6140 20�67 5�6112
Table 1:
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Transformation Order jTrunation Errorj Relative Error1 1.15�10�2 1.87�10�21.16144 4.09�10�5 6.67�10�52 1.67�10�4 2.72�10�42.19614 1.12�10�6 1.82�10�63 4.58�10�6 7.47�10�63.22443 3.03�10�8 4.93�10�84 2.08�10�7 3.38�10�74.24946 1.65�10�9 2.70�10�95 1.43�10�8 2.33�10�85.27234 1.59�10�10 2.59�10�106 1.41�10�9 2.30�10�96.29361 2.27�10�11 3.70�10�117 1.92�10�10 3.13�10�107.31357 4.47�10�12 7.28�10�128 3.52�10�11 5.73�10�118.33240 1.16�10�12 1.89�10�129 8.43�10�12 1.37�10�119.35021 3.86�10�13 6.29�10�1310 2.62�10�12 4.27�10�12Table 2:
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Transformation Order jTrunation Errorj Relative Error1 3.01�10�3 4.90�10�31.13364 6.97�10�6 1.14�10�52 1.14�10�5 1.86�10�52.15782 5.05�10�8 8.24�10�83 8.09�10�8 1.32�10�73.17690 2.64�10�10 4.31�10�104 9.35�10�10 1.52�10�94.19346 2.53�10�12 4.12�10�125 1.62�10�11 2.64�10�115.20845 4.70�10�14 7.65�10�146 3.91�10�13 6.38�10�136.22235 7.77�10�16 1.27�10�157 1.51�10�14 2.46�10�147.23543 2.22�10�15 3.62�10�158 1.67�10�15 2.71�10�158.24784 2.33�10�15 3.80�10�159 2.22�10�15 3.62�10�159.25953 2.33�10�15 3.80�10�1510 2.11�10�15 3.44�10�15Table 3:
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Integration Nodes Funtion Order Quadrature RelativeMethod Evaluations Approximation ErrorTelles[2℄ 10 10 | -0.613701054 7.47�10�620 20 | -0.613705558 1.32�10�7Sanz{Serna[4℄ 10 10 | -0.636944787 3.78�10�220 20 | -0.618233902 7.37�10�3Biubi[3℄ 10 10 | -0.614206553 8.16�10�420 20 | -0.614199611 8.05�10�4SigmoidalTransformations [6℄Simple 10 10 2 -0.613870561 2.69�10�4Sidi 10 10 6 -0.613704893 1.21�10�6Elliott 10 10 3 -0.613675583 4.90�10�5Semi{SigmoidalTransformations[7℄Simple 10 10 4 -0.613704922 1.16�10�6Sidi 10 10 6 -0.613705645 1.05�10�8Elliott 10 10 7 -0.613705559 1.30�10�7Monegato{SloanTransformations [12℄ 10 10 5 -0.613705625 2.32�10�810 10 7 -0.613705639 3.13�10�10MonomialTransformations 10 10 5 -0.613705625 2.32�10�810 10 5.27234 -0.613705639 2.59�10�1010 10 6 -0.613705640 2.30�10�910 10 6.29361 -0.613705639 3.70�10�1110 10 7 -0.613705639 3.13�10�1010 10 7.31357 -0.613705639 7.28�10�1210 10 8 -0.613705639 5.73�10�1110 10 8.33240 -0.613705639 1.89�10�1210 10 9 -0.613705639 1.37�10�1110 10 9.35021 -0.613705639 6.29�10�1310 10 10 -0.613705639 4.27�10�12Exat | | | -0.613705639 |Table 4:
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Integration Nodes Funtion Order Quadrature RelativeMethod Evaluations Approximation ErrorTelles[2℄ 10 10 | -1.903280847 2.78�10�320 20 | -1.908001667 3.13�10�430 30 | -1.909028486 2.25�10�4Sanz{Serna[4℄ 10 10 | -1.919845628 5.89�10�320 20 | -1.910086538 7.79�10�430 30 | -1.909049250 2.36�10�4Biubi[3℄ 8 16 | -1.909620476 5.35�10�410 20 | -1.909606313 5.28�10�412 24 | -1.909597834 5.23�10�4SigmoidalTransformations [6℄Simple 10 20 2 -1.908762751 8.58�10�5Sidi 10 20 6 -1.908598116 4.20�10�7Elliott 10 20 3 -1.908568861 1.57�10�5Semi{SigmoidalTransformations[7℄Simple 10 20 4 -1.908598452 2.44�10�7Sidi 10 20 6 -1.908598923 3.37�10�9Elliott 10 20 7 -1.908598837 4.18�10�8Monegato{SloanTransformations [12℄ 20 20 5 -1.908624812 1.36�10�520 20 7 -1.908598686 3.37�10�720 20 9 -1.908598904 6.88�10�9MonomialTransformations 10 20 3 -1.908594332 2.40�10�610 20 3.22443 -1.908598978 3.19�10�810 20 4 -1.908599124 1.08�10�710 20 4.24946 -1.908598915 9.74�10�1010 20 5 -1.908598903 7.48�10�910 20 5.27234 -1.908598917 3.05�10�1110 20 6 -1.908598918 7.39�10�1010 20 6.29361 -1.908598917 1.50�10�1210 20 7 -1.908598917 1.01�10�1010 20 7.31357 -1.908598917 9.93�10�1310 20 8 -1.908598917 1.84�10�1110 20 8.33240 -1.908598917 3.68�10�1310 20 9 -1.908598917 4.42�10�1210 20 9.35021 -1.908598917 1.47�10�1310 20 10 -1.908598917 1.37�10�12Exat | | | -1.908598917 |Table 5:29



Integration Nodes Funtion Order Quadrature RelativeMethod Evaluations Approximation ErrorTelles[2℄ 10 10 | -1.267467471 2.84�10�320 20 | -1.263490728 3.01�10�430 30 | -1.263522749 2.76�10�4Sanz{Serna[4℄ 10 10 | -1.275118510 8.89�10�320 20 | -1.265359207 1.17�10�330 30 | -1.264321919 3.56�10�4Biubi[3℄ 8 16 | -1.2646 5.76�10�410 20 | -1.2637 1.36�10�412 24 | -1.2638 5.66�10�5SigmoidalTransformations [6℄Simple 10 20 2 -1.264035961 1.30�10�4Sidi 10 20 6 -1.263870813 6.12�10�7Elliott 10 20 3 -1.263841530 2.37�10�5Semi{SigmoidalTransformations [7℄Simple 10 20 4 -1.263870995 4.67�10�7Sidi 10 20 6 -1.263871592 5.09�10�9Elliott 10 20 7 -1.263871506 6.31�10�8Monegato{SloanTransformations [12℄ 20 20 5 -1.263888702 1.35�10�520 20 7 -1.263872297 5.63�10�720 20 9 -1.263871580 4.80�10�9MonomialTransformations 10 20 3 -1.263867001 3.63�10�610 20 3.22443 -1.263871601 1.22�10�810 20 4 -1.263871793 1.64�10�710 20 4.24946 -1.263871586 8.65�10�1110 20 5 -1.263871571 1.13�10�810 20 5.27234 -1.263871586 3.94�10�1110 20 6 -1.263871587 1.12�10�910 20 6.29361 -1.263871586 1.01�10�1110 20 7 -1.263871585 1.52�10�1010 20 7.31357 -1.263871586 2.51�10�1210 20 8 -1.263871586 2.78�10�1110 20 8.33240 -1.263871586 7.36�10�1310 20 9 -1.263871586 6.67�10�1210 20 9.35021 -1.263871586 2.63�10�1310 20 10 -1.263871586 2.07�10�12Exat | | | -1.263871586 |Table 6:30



Integration Nodes Order J1 J2 J3 J4 J5Method (r)Telles[2℄ 10 6.43�10�6 1.91�10�5 1.24�10�9 7.57�10�9 6.33�10�320 1.13�10�7 3.45�10�8 3.39�10�13 2.11�10�12 8.37�10�430 1.04�10�8 9.15�10�10 3.87�10�16 1.89�10�14 2.53�10�4Sanz{Serna[4℄ 10 3.22�10�2 1.90�10�5 2.87�10�4 1.78�10�3 6.32�10�320 6.33�10�3 3.44�10�8 1.13�10�5 6.98�10�5 8.36�10�430 2.54�10�3 9.14�10�10 2.12�10�6 1.30�10�5 2.53�10�4Biubi[3℄ 6 6.31�10�4 1.80�10�7 1.04�10�6 6.41�10�6 5.63�10�48 7.00�10�4 2.38�10�7 1.67�10�6 1.03�10�5 5.74�10�410 7.00�10�4 2.13�10�7 1.67�10�6 1.03�10�5 5.66�10�4Monegato 10 3 6.43�10�6 1.91�10�5 1.24�10�9 7.57�10�9 6.33�10�3and Sloan [12℄ 5 2.00�10�8 6.06�10�6 2.52�10�12 1.47�10�11 5.46�10�4�r(t) 7 8.77�10�10 6.97�10�4 2.85�10�9 8.75�10�9 3.87�10�69 2.78�10�6 1.34�10�2 6.92�10�6 2.12�10�5 1.69�10�311 9.10�10�5 5.23�10�2 2.27�10�4 6.95�10�4 6.53�10�320 3 1.13�10�7 3.45�10�8 3.39�10�13 2.11�10�12 8.37�10�45 2.27�10�11 6.03�10�11 4.65�10�15 1.04�10�15 1.82�10�57 2.74�10�14 1.46�10�12 5.04�10�15 5.79�10�15 6.67�10�79 3.11�10�16 3.25�10�13 3.49�10�15 1.01�10�14 3.88�10�811 1.56�10�16 9.48�10�13 2.13�10�15 1.11�10�14 3.35�10�930 3 1.04�10�8 9.15�10�10 3.87�10�16 1.89�10�14 2.53�10�45 4.20�10�13 1.21�10�13 3.49�10�15 5.94�10�15 2.46�10�67 7.78�10�16 2.75�10�15 4.26�10�15 6.53�10�15 4.03�10�89 6.23�10�16 5.50�10�15 5.04�10�15 2.23�10�15 1.03�10�911 3.11�10�16 7.24�10�15 5.04�10�15 2.67�10�15 3.85�10�11Monomial 10 3 6.43�10�6 4.22�10�12 1.24�10�9 7.57�10�9 2.58�10�6�r(t) 5 2.00�10�8 1.54�10�13 2.52�10�12 1.47�10�11 8.03�10�97 8.77�10�10 1.78�10�9 2.85�10�9 8.75�10�9 3.31�10�109 2.78�10�6 4.08�10�6 6.92�10�6 2.12�10�5 5.10�10�711 9.10�10�5 1.28�10�4 2.27�10�4 6.95�10�4 1.60�10�520 3 1.13�10�7 5.39�10�16 3.39�10�13 2.11�10�12 4.55�10�85 2.27�10�11 8.65�10�16 2.13�10�15 1.04�10�15 9.10�10�127 1.65�10�14 1.75�10�15 9.68�10�16 5.79�10�15 7.12�10�159 9.34�10�16 2.62�10�15 7.75�10�16 1.01�10�14 6.25�10�1611 1.56�10�16 3.50�10�15 2.13�10�15 1.11�10�14 2.50�10�1630 3 1.04�10�8 9.99�10�16 3.87�10�16 1.89�10�14 4.18�10�95 4.20�10�13 1.87�10�15 5.81�10�16 5.94�10�15 1.68�10�137 6.23�10�16 2.75�10�15 2.32�10�15 6.53�10�15 6.25�10�169 1.56�10�16 2.75�10�15 3.10�10�15 2.23�10�15 6.25�10�1611 1.09�10�15 2.75�10�15 3.10�10�15 2.67�10�15 1.12�10�15Table 7:
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Integration Nodes Order H(es; 0:2; 0:2)Method (r)Biubi [3℄ 6 | 1.85278 | 2.334010 | 2.416112 | 2.438114 | 2.4463Monomial 6 1 2.4237967672518645Transformation 2 2.4475356352225854(�r(t)) 3 2.44634117806575494 2.44641707766217255 2.44640428040002576 2.44638378366285198 1 2.43171147297715382 2.44688660614078483 2.44639453581882064 2.44641517321021025 2.44641428313231486 2.446413650578008510 1 2.43593666489791792 2.44665378124360223 2.44640722274708634 2.44641455248174165 2.44641434046159436 2.446414336699476212 1 2.43849037815810602 2.44655116067495153 2.44641127372803664 2.44641440940113375 2.44641434078885526 2.446414340502522514 1 2.44016684856119782 2.44649934226724593 2.44641284114870944 2.44641436715169035 2.44641434078947036 2.4464143407297541Table 8:
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