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Abstract   Transformations are found which give new density functions for

strings isospectral to a given string, for the Dirichlet case. The formalism is

also cast in a group-theoretic framework which unifies the procedure and

enables invariant functions to be found. Several interesting examples of

density functions for isospectral strings, including general power law forms,

are given.
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1. Introduction

Amongst vibrating systems, isospectral systems are those sharing the same set of

eigenfrequencies. In an earlier paper [1] the author was primarily concerned with

nonhomogeneous systems isospectral to homogeneous systems, e.g. nonuniform

strings with harmonic frequency spectra as for the constant density case. In this paper,

transformations yielding new density functions for strings isospectral to strings with

any given density function are found, for the case of Dirichlet end conditions.

Isospectral systems are important in the study of inverse problems, since they

are concrete realizations of the fact that the system is not uniquely determined by its

eigenvalues: for strings, another set of values is required for unique reconstruction of

the density. This may be another spectrum with different boundary conditions [2], or a

set of nodal positions [3], [4], or eigenfunction norming constants. These matters have

been reviewed by McLaughlin [5] and Gladwell [6, chapter 9], [7].

The present paper makes a simultaneous change of independent and dependent

variables which leaves the governing differential equation unchanged in general form.

Our work is quite different from the approach of Gladwell and Morassi [8], which is

based upon the use of the Darboux Lemma after reduction of the governing equation

to Sturm-Liouville form. They dealt mainly with longitudinal vibrations of rods, and

only briefly, but with equal applicability, to strings.
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2. Transformations

The one-dimensional linearized wave equation for the transverse motion of a

nonhomogeneous elastic string  may be written in the form
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ν∂ξφ=
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ν∂    ,                                             (2.1)

where ν is the displacement, t is the time, and φ(ξ) = (1/T)ρ(ξ), where ρ(ξ) is the

lineal density which may depend on the independent position variable ξ. Here, T is

the tension; henceforth we shall absorb T into ρ and simply refer to φ as the density.

We seek transformations to new coordinate x and new displacement u which

preserve the structural form, but not the exact form, of the wave equation (2.1), and

the Dirichlet boundary conditions of vanishing displacement at the ends. Let

x   =   x(ξ)   ;      ν(ξ,t)   =   γ(x) u(x,t)   ,              (2.2a), (2.2b)

where γ(x) is some positive nonsingular position-dependent but time-independent

multiplicative function. Thus the Dirichlet (fixed end) boundary condition is

preserved: u=0 if and only if ν=0. We wish to find functions x(ξ) and γ(x) such that

the new displacement u satisfies a nonhomogeneous wave equation
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where f(x) is some new density function, "dual" to the density function φ(ξ). Now

∂2ν/∂t2 = γ ∂2u/∂t2 . If the time dependence in the displacement ν is assumed to be of

the form exp(iωt), where ω is the angular frequency of the transverse vibrations, then

the new displacement u will have the same time dependence with the same set of

eigenfrequencies, and the two different strings with density functions φ and f

respectively will be isospectral for Dirichlet boundary conditions. Since the time

variable is not transformed, the dependence of the displacement functions on t will

henceforth be suppressed.

Denote differentiation with respect to x by a dash ' and differentiation with

respect to ξ by a grave ` . Thus, for instance, ∂ν/∂ξ   ≡  ν`  ≡  ν' x`  =   x` (γu' + γ'u) .

Then

∂2ν/∂ξ2    =    (x`)2 γ u"   +   [ x`` γ  +  2 (x`)2 γ' ] u'   +   [ x`` γ'  +  (x`)2 γ" ] u   .   (2.4)

To obtain (2.3) from (2.4) and (2.1), first of all the coefficient of u in (2.4) must

vanish. This may be written as  0  =  (γ' x`)`  ≡  γ̀ ` . Thus the dependence of γ on ξ is

immediately known as a linear form:

γ(x(ξ))   =   constant.ξ  +  constant      .                                (2.5)

(The constants are here written generically.)

Secondly, the coefficient of u' in (2.4) must vanish. This may be written as  0

=  (1/γ)(γ2x`)` . Thus
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dx/dξ  =  constant / γ2   .                                             (2.6)

From (2.5), this gives (generically)

x(ξ)   =   (constant.ξ + constant) / (constant.ξ + constant)   .            (2.7a)

This is a (real) bilinear (Möbius) transformation. The inverse of such a coordinate

transformation is again a bilinear transformation:

ξ(x)   =   (constant.x + constant) / (constant.x + constant)   .           (2.7b)

For convenience, the two strings will be taken as having equal length L:

0≤x≤L. Furthermore, the end-point coordinates  will be taken the same: when x=0,

ξ=0; when x=L, ξ=L. There are then only two parameters left in the bilinear

transformation relating x and ξ, but since the relation involves a quotient, there is then

only one essential parameter. With a view towards group-theoretical considerations,

the identity transformation ξ=x should correspond to the case when the parameter is

zero. A suitable parametrization for (2.7b) (with L≥ξ≥0) is

Bx1
x)BL1(

+
+=ξ    ;      

L
1B −>    .                             (2.8a,b)

Note that the inverse of the coordinate transformation (2.8), namely
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)L(B1
x

ξ−+
ξ=                                                           (2.9a)

may be written as

ξ+
ξ+=
B

)LB(x
1

1    ,                                                 (2.9b)

which is of the same form as (2.8), where

BL
BB

+
−=

1
   .                                                        (2.10)

Whilst B <0 if B>0, equation (2.10) preserves B  > -1/L if B > -1/L. (These forms

suggests an underlying group structure, as indeed there must be by consideration of

the set of transformations which leave the structural form of the wave equation

unchanged. This will be pursued in the next section.)

From (2.6), dξ/dx = constant.γ2, so from (2.8) one arrives at γ =

constant/(1+Bx). Since a multiplicative constant in γ does not affect the linear wave

equation, there is no loss of generality in taking this last constant as unity. Thus

Bx1
1)x(

+
=γ    .                                                 (2.11)

Notice that neither ξ(x) nor γ(x) depends on the density function.
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Finally, from the first term on the right side of  (2.4) and using the wave

equation (2.1), and noting (2.2b) and the fact that x` ≡ 1/ξ' , comparison with the new

wave equation (2.3) yields

( ))x(
dx
d)x(f

2
ξφ





 ξ=    .                                             (2.12)

The above coordinate transformation result (2.8) now gives the sought-after

transformation between density functions: the dual to φ is given by








+
+φ

+
+=

Bx1
x)BL1(

)Bx1(
)BL1()x(f 4

2
   .                           (2.13)

The transformation between the displacement functions is, from equations

(2.2), (2.8) and (2.11),








+
+ν+=

Bx
x)BL()Bx()x(u

1
11    .                          (2.14)

As mentioned above, the two string systems are isospectral, and this is independent of

the value of B. Thus equations (2.13), (2.14), with (2.8b), represent a whole family of

strings isospectral to (2.1).
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3. Group-theoretical aspects

The Lie group structure of the whole formalism may be conveniently studied by

making a change of notation, first of all for i=1,2, corresponding to Section 2 above,

and then extending this to i=3:

i i
i i

i

u uf (x )
tx

2 2

2 2
∂ ∂=

∂∂
   ;                                                   (3.1)

i
i i i

i i

xx (x ) ( B L)
B x
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1
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+
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= +
+

   ;     
L
1Bi −>    ;            (3.2)

i i i
i i i

i ii i

( B L) ( B L)xf (x ) f
B x( B x )

2
1

1 1 4
11

1 1
11

+
+ +

++

 + +=  ++  
   ;                  (3.3)

 i i
i i i i i

i i

( B L)xu (x , t) ( B x ) u , t
B x

1
1 1 1

1

11
1

+
+ + +

+

 += +  + 
   .               (3.4)

It may be noted that all of these transformations only involve substitutions: no

integrals are involved here.

Consider first the coordinates themselves. From (3.2), the transformation 1 →

2 → 3 gives overall

,

,

( B L)x
x

B x
+

=
+

12 3
1

12 3

1
1

   ,                                                  (3.5)
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where

B1,2   =   B1  +  B2  +  B1B2L   .                                         (3.6)

Regarding the B as the Lie group parameter, equation (3.5) confirms closure, since it

is of the same form as (3.2); it can be confirmed that B1,2>-1/L. Equation (3.6) is the

group parameter combination law. The identity transformation has B1=0. The inverse

transformation parameter, for given B1, is just given by 1B  (c.f. (2.10)), when B1,2=0.

Associativity can also be confirmed, using (3.6).

The group of transformations specified by the parameter B, being a one-

dimensional Lie group, is of course Abelian, as confirmed by (3.6): B1,2 = B2,1. Any

one-parameter group is equivalent to an additive group by suitable choice of

parameter [9, p.294]. Let , B(B ) ([ B / B ] | )−
=Ψ = ∂ ∂

2

1
1 12 2 0 . Then the additive parameter

is given by 
B

(B ) dBβ = Ψ∫ 1 10
. Here, Ψ(B1) = 1/(1+LB1), so

β   =   (1/L) loge(1+BL)   ,                                     (3.7)

with β1,2 = β1 + β2. (Because of (2.8b), β is real.) The correctness of this is readily

confirmed by noting that the composition law (3.6) may be written as (1 + B1,2L)   =

(1 + B1L) (1 + B2L), and taking logarithms. Thus B=0 iff β=0, and B = [exp(βL)-1]/L.

Because this exponential form is rather more complicated, the parametrization using

B itself is actually more convenient for writing down transformations, and will

continue to be used for the function transformations.
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From the relations (3.3), "closure" for the density functions can be confirmed.

, ,

,,

( B L) ( B L)x
f (x ) f

B x( B x )

 + +
=   ++  

2
12 12 3

3 3 14
12 312 3

1 1
11

                      (3.8)

where B1,2 is again given by equation (3.6). The result of two successive

transformations is thus just another overall transformation. This has the important

consequence that the dual of the dual of a density does not give another new family of

isospectral densities, but is just another dual of the original system with appropriate

parameter. It may be the same as the original system, but only if B1,2=0, i.e. B B=2 1

(c.f. (2.10)). Thus if fj is dual to fi, then fi is dual to fj, so one may simply talk of dual

densities. Similar statements concerning closure may be made for dual eigenfunctions,

using the relations (3.4).

The transformed function on the right hand side of equation (3.3) has two

components, a transformation of independent coordinate and a multiplying function.

For infinitesimal transformations, the corresponding Lie group generator will

therefore consist of two parts. There is a differential operator part, as is customary for

purely coordinate transformations, but there is also a non-differential part containing

only the coordinate itself, due to the multiplying function.

For a transformation with infinitesimal parameter δB, the generator for

transformations of functions given by (3.3), defined by f2(x)  =  [1 + i δB Qf] f1(x)  +

O(δB)2 , is found to be

Qf   =   - i [ 2(L - 2x)  +  (L - x) x 
dx
d  ]    .                 (3.9)



12

A useful application of this Lie group formalism is to find invariants using the

group generator (3.9). This enables one to find self-dual systems, i.e. systems which,

under the transformations considered in this paper, remain exactly the same. Since the

function remains unchanged, the condition in terms of the generator for a strictly self-

dual function g(x) is

Qf g   =   0   .                                                          (3.10)

The resulting first-order linear differential equation is easily solved to give

constantg(x)
[x(L x)]

=
− 2    .                                            (3.11)

This might not have been so easily obtainable by inspection from (3.3). (It can be

checked that g2(x) = g1(x).)  Regarded as a density function for 0≤x≤L, this function is

obviously unphysical, being infinite at the end-points. There are therefore no physical

strictly self-dual systems. Each physical density has dual densities different from

itself, and the corresponding systems are distinct but isospectral.
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4. Examples

(i) The first and familiar case is that of a constant density k:

f1(x1)   =   k   ,                                           (4.1)

with harmonic eigenfrequencies

ωn   =   nπ/[L√k]   ;   n = 1,2,3, ...      ,                    (4.2)

and spatial eigenfunctions

u1(x1)   =   sin(nπx1/L)   .                                       (4.3)

The dual densities are given from (3.3) by

( B L) kf (x )
( B x )

+=
+

2
1

2 2 4
1 2

1
1

   ,                                   (4.4)

and the corresponding eigenfunctions from (3.4) are

n ( B L) xu (x ) ( B x ) sin
L ( B x )

 π += +  + 
1 2

2 2 1 2
1 2

11
1

   .           (4.5)
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The strings with these inverse-fourth-power type densities (4.4) are isospectral to the

constant density case for all values of the parameter B1>-1/L, and their frequency

spectrum is given by (4.2) (which is independent of B1). We shall call this the Borg

string, since it was discussed by Borg [10, Section 20], who made a transformation to

the normal Liouville form of second-order d.e. : the string isospectrality there only

works for f1 = constant. It may be observed, however, that the functional forms of the

multiplying function γ(x) and the coordinate transformation ξ(x) as appearing in this

known example (4.5) are actually the same for the general formalism of this paper,

and independent of the density, as noted after (2.11).

The n-1 internal nodes of the nth eigenfunction (4.5) corresponding to the dual

densities (4.4) are given by

LB)]n/N([
)n/N(

L
x )N(

1

2
11 −+

=    ,   N = 1,2, ... ,n-1 .                                  (4.6)

Unlike the uniform case of (4.3), the nodes here are not uniformly spaced, clearly

distinguishing the eigenfunctions from those of the uniform case (cf. the discussion of

uniqueness in the Introduction).

(ii) A less familiar but still explicitly solvable example is the case of inverse-square

type density. This density will be called the Rayleigh string example, since it (but not

its isospectral duals) was solved by Rayleigh [11, Section 142] (using different end-

point coordinates). Let

Kf (x )
( bx )

=
+

2
1 1 2

11
   .                                        (4.7)

The eigenfunctions are



15

e

e

log ( bx )u (x ) bx sin N
log ( bL)

 += + π + 
1

1 1 1
11
1

   ,             (4.8)

and the eigenfrequencies are

 N
e

b N
K log ( bL)

πω = +
+

2 2

2
2

1
4 1

   ;      N = 1,2,3, ...   .       (4.9)

The dual density is given by

C

( B L) Kf (x )
( B x ) ( B x )

+=
+ +

2
1 2

2 2 2 2
1 2 2

1
1 1

                     (4.10)

where

  BC  =  b + B1 + bB1L   .                                                         (4.11)

This looks like a composition (c.f. (3.6)) of two transformations with parameters b

and B1, but here b is just a constant in (4.7), not a transformation parameter. (Note

that in the special case with b=0, i.e. BC=B1, one is transforming a constant density

case to the inverse fourth power density ~ 1/(1+B1x2)4, as for the density of the Borg

string above; the eigenfrequencies (4.9) tend to the values like (4.2) as b→0.)

For general b and B1, the eigenfunctions of the isospectral strings with dual

densities (4.10) are
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C
e

C
e

B xlog
B x

u (x ) ( B x )( B x ) sin N
log ( bL)

  +
  +  = + + π
 +
 
  

2

1 2
2 2 1 2 2

1
1

1 1
1

        (4.12)

with BC given by (4.11), and the eigenfrequencies are given by (4.9), independent of

B1.

In the special case that BC = 0 in (4.11), i.e. B b b /( bL)= ≡ − +1 1  (cf. (2.10)),

then

2
2

2
2

2

2
222

11
1

)]xL(b[

K

)xb(
)Lb(K)x(f

−+
=

+
+=        .        (4.13)

Such a density obviously has the same spectrum as (4.7) since it merely corresponds

to reversing the spatial coordinate, i.e. "turning the string around" (c.f. [8] for the case

of longitudinal vibrations of a rod). This is therefore a physically self-dual but not

strictly self-dual (cf. section 3) string.

(iii) The case of a string with linear variation in density

f1(x1)   =   K1 (1 + bx1)                                                  (4.14)

was studied for example by Fulcher [12]. The eigenfunctions involve Airy functions,

and the frequencies are given by the roots of a rather complicated transcendental

equations involving these functions. The dual densities are given by
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5
21

22
1122

1
11

)xB(

)xB(
)LB(K)x(f C

+

+
+=    ,                  (4.15)

where BC is again given as in (4.11). These densities therefore in general behave like

a linear form divided by a fifth-power form.

(iv) It is evident from the above examples that there is a general form for power law

dependences. For density

f1(x1)   =   K (1+bx1)n                                                (4.16)

the eigenfrequencies depend on K and b and n (and L). The dual densities are

n4
21

n
2C2

122
)xB1(

)xB1()LB1(K)x(f ++
++=                      (4.17)

where BC is given by equation (4.11), and the eigenfrequencies of the family of

isospectral strings are the same as for (4.16), independent of B1.

In the special case that BC = 0, i.e.

B1 = b  ≡ -b/(1+bL)   ,                                               (4.18)

then
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n4
2

2
22

)xb1(
)Lb1(K)x(f ++

+=    .                                        (4.19)

Here the constant b , equation (4.18), is fixed by b in (4.16): this is not a family. This

means that for a string with density of linear form raised to some power n, there is (in

addition to the general family (4.17)), one isospectral string with dual density just

involving power -4-n.

(v) Other cases of known solutions of nonhomogeneous strings with spatially varying

density may be invoked to yield new dual densities constructed as in Sections 1 or 2

above. For instance, Horgan and Chan [13], as well as mentioning densities

corresponding to the "Borg" and "Rayleigh" strings described above (inverse fourth

power and inverse square), give solutions and spectra for inverse linear dependence

and for exponential dependence. (Their results appear to apply to the fundamental

frequency only, but may evidently be extended to all frequencies by considering all

the positive roots of the transcendental equations involving Bessel functions in [13].)

These examples lead by the above procedures to new isospectral strings.
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5. Discussion

An explicit prescription for constructing densities dual to a given density has been

given, allowing one to generate isospectral strings in the Dirichlet configuration. The

dual densities, not distinguishable by the Dirichlet spectrum, could be distinguished

by consideration of some other property, as outlined in the Introduction. For instance,

the set of nodal points of u(x) will clearly not be the same as those of ν(ξ) , according

to equation (2.14). (See (4.6), for example.) Again, the case of a free end condition

(Neumann boundary condition: the derivative of the function vanishes at the end-

point) is evidently not preserved by transformations of the type (2.2b), so

eigenfunctions and eigenvalues for a free end will not be the same for densities which

are dual with respect to fixed ends.

This raises the interesting question of finding some other transformation or

approach which will produce densities dual to a given density when a free boundary

condition is involved. For instance, is there a nonuniform string which is isospectral

to a uniform string in the fixed-free configuration (Dirichlet boundary condition at

one end and Neumann condition at the other), with spectrum proportional to the odd

integers?
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