
Optional and Responsive Locking in Distributed Collaborative Object Graphics
Editing Systems

David Chen and Chengzheng Sun
School of Computing and Information Technology

Griffith University
Brisbane, QLD 4 1 I I , Australia

D. C hen 0 ci t .gu .edu . au, C . Sun @ ci t .gu .edu . au

Abstract

Object-based collaborative graphics editing systems al-
low multiple users to edit the same graphics document at
the same time from multiple sites. This paper examines the
use of locking to prevent the generation of conflicting oper-
ations in this type of systems. Two types of locks are exam-
ined: object and region. A locking scheme which preserves
the intentions of all operations is proposed. Furthermore,
the problems of lock ownership caused by concurrent oper-
ations are resolved.

Keywords locking, consistency maintenance, collaborative
editing, graphics editing, distributed system.

1 Introduction

Real-time collaborative editing systems (CESs) allow
multiple uSers from different sites to edit the same doc-
ument at the same time. A particular type of CESs
is the object-based graphics collaborative editing systems
(OCESs). An OCES document contains one or more graph-
ical objects. Each object is represented by a set of attributes
such as type, size, position, color, group, etc.. Editing oper-
ations can be used to create, modify or destroy objects. In
this type of systems conflicts may occur when concurrent
operations are generated from multiple sites to change the
same attribute of the same object. The execution of confict-
ing operations may cause inconsistency.

Locking is a technique originally developed for database
systems [:2] can be used to avoid conflicts. The concept of
locking can be easily understood by the users, i.e. if some-
one locks an item, other people cannot access it. Therefore,
locking is also used to maintain consistency in many OCESs
including Ensemble [6], GroupDraw [4], GroupCraphics
[7], and GroupKit [3]. In these systems, before an oper-
ation can be generated to edit an object, an exclusive lock

on that object must be obtained. For example, to move an
object, a lock on that object must first be obtained. This will
guarantee that only one user, the lock owner, can edit an ob-
ject at a time and conflict will not occur. Since locking is
required before each request to edit an existing object, most
systems provide locking implicitly. Once a user generate a
request to edit an object, the system will automatically try
to obtain the lock on that object.

Our OCES called GRACE [1, 8](GRAphics Collabora-
tive Editing system) works in an environment where the
users coordinate their activities, and conflict is possible but
would be rare. So compulsory locking would be ineffi-
cient. GRACE is designed to provide high responsiveness,
so pessimistic locking is not suitable. There are certain con-
sistency properties GRACE needs to maintain. The roll
back method used in optimistic locking scheme does not
satisfy these properties. Therefore, GRACE uses a multi-
versioning scheme which provides fast response time and
maintains the consistency properties.

Despite the use of the multi-versioning scheme, locking
still has an important role in GRACE. Locking can be used
to reduce the amount of conflicting operations. Locks can
be placed by the system or the users where conflicts are
likely to occur. Once exclusive locks are obtained, future
conflicts will be prevented. In summary, without locking,
consistency will still be maintained by the multi-versioning
scheme. With the use of locking, the amount of possible
conflicts can be reduced. Therefore, this locking scheme is
optional [lo]. This is in contrast to other OCES locking
schemes where locking is compulsory.

In order to incorporate locking into GRACE, concur-
rency control issues regarding locking operations need to be
addressed. For example, how to solve inconsistency prob-
lems caused by concurrent locking operations targeting the
same object? The solution to these problems should not
slow down the response time and need to satisfy the consis-
tency properties maintained by GRACE. The next section

414
0-7695-0577-5/00 $10.00 0 2000 IEEE

presents the existing results on GRACE, which includes the
consistency properties maintained by GRACE. Section 3
examines the types of locks suitable for OCESs, locking op-
eration generation, and inconsistency associated with lock-
ing. The locking scheme is presented in Section 4. Finally
the results presented in this paper are summarized in Sec-
tion 5.

2 Existing results on GRACE

GRACE has a distributed replicated architecture. Users
of the system may be located in geographically-separated
sites. All sites are connected via the Internet. Each site
runs a copy of the GRACE software and has a copy of the
shared document being edited. When an operation is gener-
ated, it is executed immediately at the local site. Then it is
sent directly to all remote sites for execution. Depends on
their orders of generation and execution, operations may be
dependent or independent of each other. This dependency
relationship in Definition 1, is based on the causal order-
ing relationship “+” [9] which follows Lamport’s event
ordering [5].

Definition 1 Dependency relationship:
Given any two operations 0, and ob, (1) o b is said to be
dependent on 0, iff 0, 3 ob. (2) 0, and ob are said to
be independent (or concurrent) iff neither 0, 3 Ob, nor
0 6 + o,, which is expressed as 0,llOb.

State vectors are used to determine the dependency rela-
tionships between operations. A state vector is a list of log-
ical clocks. Each site maintains a state vector. Whenever an
operation is generated at a site, it is time-stamped with the
state vector value of that site. By comparing the state vector
values between two operations, their dependency relation-
ship can be determined [9].

[9]:
causality preservation, convergence and intention preserva-
tion. Causality preservation is maintained by delaying the
execution of an operation until all operations causally be-
fore it have been executed. Convergence is achieved by
serialization. Intention preservation is achieved by object
multi-versioning scheme [1, 81.

Definition 2 Conflicting operations
Given two operations 0, and ob, 0, and Ob are conflicting
iff O,(IOb and their effects are to change the same attribute
of the same object to different values.

With the multi-versioning scheme, the conflicting rela-
tionship between operations is first defined as in Definition
2. The execution of n mutually conflicting operations tar-
geting object G will result in n concurrent versions of G
in which each version will accommodate the effect of a
conflicting operation. Non-conflicting operations have the

GRACE maintains three consistency properties

compatible relationship. For any pair of compatible oper-
ations targeting the same object, there must be an object
version which contains the effects of both operations.

As a part of the multi-versioning scheme, an object iden-
tification scheme is used to uniquely and consistently iden-
tify all objects and to allow concurrent versions made from
the same object be determined. An object identifier consists
of a set of operation identifiers. When an object is created
by a create operation, its identifier set will contain the iden-
tifer of the create operation. A concurrent version’s identi-
fier contains the identifier of the object it is made from plus
the identifier of the operation that created the version.

3 Locking in GRACE

In OCGEs, graphical objects are the obvious and suit-
able choice for applying locking since editing operations
are generated to edit objects. Locking objects can prevent
conflicts from occurring on those objects. Therefore, object
locks have been chosen as one of the locking operations in
GRACE. An object locking operation contains one or more
object identifiers which specify the locking targets.

The other type of lock is region lock. A region lock can
be used to lock an area of the shared document. Once a re-
gion is locked, only the lock owner can modify, create or
delete objects within that region. Region locks are useful
because users can specify private working areas which no
other users can intrude. Conceptually, a region can be re-
garded as an object which contains a rectangular area (the
region) and a list of objects within the region.

The term lockable item or simply item will be used in
the following sections to represent either objects or regions
which can be locked.

3.1 To lock or not to lock?

Locking before applying operations is compulsory in
other OCESs. However, locking is optional in GRACE.
Locks can be generated implicitly or explicitly. Locks are
generated implicitly if they are placed automatically by the
system. This approach is commonly used when locking is
compulsory. However, to apply optional locks implicitly re-
quires an intelligent system which can decide whether locks
are required for a certain situation. The discussion of im-
plicit locking generation is outside the scope of this paper.
Locks are generated explicitly if they are issued by users
Cjust like other editing operations).

What do the users get by locking before editing? If a user
has locked an item, then the system guarantees that user the
editing right to that item. If a user U1 does not lock an item
before editing, then it is possible that another user U2 may
lock that item. If U, has locked that item then U1 would

415

request validation hence no conflict will occur on that item (until that item be- Rejection

comes unlocks). In addition to editing rights, locking can 1

With the introduction of locking, user generated editing
and locking requests need to be validated. A user’s request
is valid if its target item is either unlocked or s h e owns
the lock of this item. Once a request has been validated, an
operation is generated. Invalid requests are rejected, and the
users are informed.

How to determine if an item is locked or not? Conceptu-
ally, each item has an attribute which indicates if that item
is locked and by who. Each site maintains a list of all items.
By finding an item in this list, the locking status of this item
at a site can be determined.

Ideally, a user’s request should be valid if at all sites the
target item is either locked by this user or this item is un-
locked. If a user owns the lock of an item at the local site,
then this user will own the lock of this item at all sites. In
this case, validation for any request by this user on this item
can be done by checking the local locking status of this
item. However, if an item is unlocked at the local site, it
does not mean that this item is unlocked at all other sites.
Under this condition, to validate a user request on an item
which is unlock at the local site, synchronization is required
to determine if this item is also unlock at other remote sites.
This would slow down the validation process and thus the
response time. In order to achieve fast response time, the
synchronization in the validation process needs to be elimi-
nated. Without synchronization, only the local locking sta-
tus is known. Therefore, the validation condition is reduced
to require only the item be unlocked locally as stated in Def-
inition 3.

Definition 3 A valid request
Given an editing or locking request Q generated by user UQ
from site j , to edit/lock item I, Q is valid if either UQ owns
the lock on I or I is not locked in site j.

With this definition of a valid request, the validation pro-
cess only checks the local document to determine if a re-
quest is valid. This means synchronization is not needed in
the process starting from when a request is generated, until
when an operation is executed locally. Only after that, is

4 Instant locking scheme

How to apply and preserve the effects of independent
operations targeting the same item, where there is at least
one locking operation? To satisfy the consistency property,
once an operation is generated it has to be applied at all
sites. Therefore, the basic idea behind this approach is to
allow independent operations targeting the same item be
applied to that item.

In order to examine the effects of this approach in detail,
consider the application of this approach to an example with
two independent operations 01 and 0 2 . 01 is a locking op-
eration and 0 2 can be either an editing or locking operation,
so there are two situations at site IC after 01 has been applied
to I:

1. If 0 2 is an editing operation, then at site I C , I is first
locked by 01 before being modified by 02. This
means that a locked item may be modified by a user
who does not own the lock on that item.

2 . If 0 2 is also a locking operation, then at site I C , I is
first locked by 01 before it is also locked by 0 2 . This
means after a user has locked an item, it may have to
share the ownership of that lock with other users.

So what is the point of locking if after a user has locked
an item, that item may be modified or locked by other users?
In this example, 01 and 0 2 are independent operations and
only because of this will such situation occur. It is impos-
sible to have an operation 0 3 where 01 -+ 0 3 and 0 3 is
generated by a different user from 01 to edithock I. Such a
request would be invalid.

The users should be informed that after they have locked
an item, it is possible that this item may still be modified
or locked by other users. At some stage, operations inde-
pendent of the locking operation will all be applied, then
the locked item can only be modified by its owner(s). The
users should be informed of this event. This period, starting

416

from when a locking operation is executed, until all opera-
tions independent of that locking operation are executed is
called the unstable period. During this period, a lock is said
to be unstable. After the unstable period, a lock become
stabilized.

Definition 4 Unstable period
Let I by any item at site j and 0 be any locking operation
to lock I . The unstable period of the lock on I starts when
0 is executed at I at site j until all operations independent
of 0 have been executed at site j .

While a lock is unstable, the number of owner of that
lock can increase due to the application of independent
locking operations. It is also possible for conflicts to occur
on an object while its lock is unstable (the locking effect for
this situation is discussed in Section 4.2). After this lock
has stabilized, the number of lock owner cannot increase.
Only the lock owners can edit or unlock this locked item.
The number of owner decreases when an unlock operation
is applied to this item. If the number of owner of this item
is one, then the lock is exclusive and no conflict will occur
on this item.

With this locking scheme, when a locking operation is
generated the user who generated this operation will gain
ownership to the target item instantly. Therefore this lock-
ing scheme is called instant locking scheme and the lock
placed by this locking scheme is called instant lock. The
next three subsections address some specific issues associ-
ated with this locking scheme.

4.1 Instant lock sharing

This section discusses the details of lock sharing. What
should be the lock ownership for independent locking op-
erations whose target item is the same or overlaps? For in-
dependent object locking operations targeting the same ob-
ject, the users who generated those operations will share the
ownership on that object. For independent region locks with
overlapping regions, the ownership for overlapping regions
will be shared and non-overlapping regions remain exclu-
sive. For example, two target regions R1 and Rz with over-
lapping area of P. Only the ownership of P will be share
and the ownership for rest of R1 and R2 remains exclusive.

Lock ownership for these two situations are obvious.
However, what should be the lock ownership if there are
independent object and region locking operations where the
object G is inside the region R? Let UR be the set of owners
who generated the region locking operations and UG be the
set of owners who generated object locking operations. The
lock ownership on G and R is as follows:

All users in UR and U c should own G because G is
inside R (or partially inside).

Only the users in UR should own R because users in
U c did not request for the region lock.

Since G is within a region lock, its behaviour is different

All users in UR can edit G and can move G within R.
from other locked objects. The effect on G is as follows:

e All users in UG can edit G but cannot move G within
R, since UG do not have access to R.

e All users in UR and UG can move G outside of R.

e After G has been moved outside of R (i.e. at the com-
pletion of drag and drop) then UR lose their lock own-
ership on G. This is because the ownership of U, on
G is solely due to G being in R. So if G is outside of
R, it is not within the scope of the region lock.

4.2 Instant locking and concurrent versions

For any object G with a lock that is shared or in the un-
stable period, conflicts may occur on G. Conflict will result
in concurrent versions. What should be the lock ownership
for these versions of G?

Our approach is to let the users who caused the creation
of the versions own different versions according to which
object their operation is applied to. For example, users U1
and U, issued conflicting operations 01 and 0 2 on G. 01
is applied to G1 and 0 2 is applied to Gz. Then U1 will own
the lock on GI and U2 will own the lock on Ga. So the
locks on both versions are exclusive.

The example works because each lock owner generated
a conflicting operation which is applied to a different ver-
sion. As the result, the lock ownership can be determined
by which versions their operations are applied to. However,
it is possible that a lock owner may generate an operation
which is applied to more than one version. In this case, that
user should own all locks to the versions which hisher oper-
ation is applied to. It is also possible that a lock owner may
not generate any operation while conflicts occurred on the
locked object. The only solution which will produce consis-
tent lock ownership at all sites (without extra synchroniza-
tion) is to let this user own the locks to all versions of that
object.

In summary, let S be a set of independent operations all
targeting the locked object G. Assume there is at least a pair
of conflicting operations in S. For any user UG who owns
the lock on G, after executing all operations in S :

e If UG generated an operation 0 E S, then for any ver-
sion G' of G which 0 is applied to, UG will own the
lock on G' .

If UG did not generate any operation in S , then UG
owns the lock for all versions of G.

417

4.3 When does a lock stabilize?

How to determine when a lock stabilizes? How would
a site know when all operations independent of the locking
operation have been executed at that site? This problem is
similar to the garbage collection problem described by Sun
et al for REDUCE [9]. The solution is based on the as-
sumption that the underlying network is reliable and order-
preserving between any pair of sites (e.g. TCP). Therefore,
if a sequence of operations is sent from the same site, then
these operations will arrive at its destination in the sending
order.

The basic approach is that whenever a site j executes a
locking operation 0, j needs to sent a message to all remote
sites telling them that j has executed 0. If site k receives
this message from j then k knows that any operation inde-
pendent of 0 from j must have already arrived and been
executed al. k. If there are N sites, and k has received N - 1
messages (excluding itself), then operations independent of
0 from all sites must have already arrived and been exe-
cuted at k .

The actual implementation can be done by simply check-
ing dependency of the operations. Dependency can be de-
termined by comparing the state vectors. After j has exe-
cuted 0, it sends a message M containing the state vector
of j to all :sites. By comparing the state vector of 0 with M
it can be determined that 0 + M . So all operation from j
independent of 0 must have already arrived.

Definition 5 Lock stabilization
For any item I locked by operation 0, the lock on I at site
j becomes stable iff j has received an operation dependent
on 0 from all participating sites.

5 Summary

Inconsistency caused by conflicting operations is a typ-
ical distributed system problem. This paper has presented
a locking scheme used to reduce the amount of conflicts
that may occur. This locking scheme is used to support the
consistency maintenance scheme of multi-versioning. Un-
like other systems where locking is compulsory, this locking
scheme is optional. Locks can be generated by the system
or by the users like other editing operations. Fast response
time for lock generation is ensure by the distributed repli-
cated architecture and optimistic operation execution. Two
different types of locking items are proposed: object and
region. Object locking is widely used in other OCES, but
region locking is unique in GRACE.

GRACE is the first OCES to adopt optional locking.
However, optional locking was first proposed for REDUCE
[IO], which is a collaborative text editing system. These
two systems take similar approaches to optional locking, but
also solve different context specific problems related to text
and graphics editing. The problem both systems need to

solve is when independent operations target the same item.
REDUCE uses shared locking to solve this problem, which
is part of the instant locking scheme in GRACE. The differ-
ence between shared locking presented for REDUCE and
instant locking presented in this paper is that this paper ex-
amines the effects of shared locks in more depth, and ad-
dress the occurrence of the unstable period and discusses
the possible effects duration of this period.

A prototype GRACE has been built as a Java application.
Currently, GRACE only supports some basic objects and
operations. We plan to extend the functionality of GRACE
so it can be used for collaborative CAD or to draw connect
diagrams such as ER-diagram, flow charts etc. By imple-
menting and using the system, more research issues will be
identified and investigated.

References

[I] D. Chen and C. Sun. A distributed algorithm for graphic
objects replication in real-time group editors. In Proc. ofthe
International ACM SIGGROUP Conference on Supporting
Group Work, pages 121-130, Phoenix, USA, Nov. 1999.

[2] R. Elmasri and S . B. Navathe. Fundamentals ofDatabase
Systems. The benjamidcummings publishing company,
Inc., 1989.

[3] S . Greenberg and D. Marwood. Real time groupware as a
distributed system: concurrency control and its effect on the
interface. In Proc. ACM Conference on Computer Supported
Cooperative Work, pages 207-217, Nov. 1994.

[4] S. Greenberg, M. Roseman, and D. Webster. Issues and ex-
periences designing and implementing two group drawing
tools, In Proc. of the 25th Annual Hawaii Intemational Con-
ference on the System Sciences, pages 139-250, Jan. 1992.

[5] L. Lamport. Time, clocks and the ordering of events in a
distributed system. Commun. ACM, 21(7):558-565, 1978.

[6] R. E. Newman-Wolfe, M. L. Webb, and M. Montes. Implicit
locking in the Ensemble concurrent object-oriented graphics
editor. In Proc. ACM Conference on Computer Supported
Cooperative Work, pages 265-272, Nov. 1992.

[7] M. 0. Pendergast. GroupGraphics: prototype to product.
In S . Greenberg, S . Hayne, and R. Rada, editors, Groupware
for Real-time Drawing: A Designer's guide, pages 209-227.
McGraw-Hill, 1995.

[8] C. Sun and D.Chen. A multi-version approach to conflict
resolution in distributed groupware systems. In Proceedings
of the 20th IEEE International Conference on Distributed
Computing Systems, pages 316-325, Taiwan, Apr. 2000.

[9] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen. Achieiv-
ing convergence, causality-preservation, and intention-
preservation in real-time cooperative editing systems. ACM
Transactions on Computer-Human Interaction, 5(1):63-
108, Mar. 1998.

[10) C. Sun and R. Sosic. Optional locking integrated with oper-
ational transformation in distributed real-time group editors.
In Proceedings of ACM 18th Symposium on Principles of
Distributed Computing, pages 43-52, Atlanta, USA, May
1999.

