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Abstract 

 

The principal stress based Evolutionary Structural Optimisation (ESO) method is 

presented herein for topology optimisation of arch, tied arch, cable-stayed and suspension 

bridges with both stress and displacement constraints.  Two performance index formulas are 

developed to determine the efficiency of the topology design.  A refined mesh scheme is 

proposed to improve the details of the final topology without resorting to the complete analysis 

of a finer mesh.  Furthermore, cable-supported bridges are optimised with frequency constraint 

incorporating the "nibbling" technique.  The applicability, simplicity and effectiveness of the 

method are demonstrated through the topology optimisation of the four types of bridges. 
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1. Introduction 

 

 Bridges are remarkable, eye-catching structures which are often regarded as 

landmarks.  Traditionally, bridge structures are designed based on engineering theories and 
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previous experience, which would involve the preliminary design, structural analysis and 

check against strength/stiffness/stability/frequency requirements.  This is followed by design 

modification, re-analysis and re-checking.  Undoubtedly, such design process is very 

expensive and time-consuming.  With the rapid development of advanced computer 

technologies, sophisticated optimum design approaches have gained increasing popularity in 

recent years as they can significantly improve the efficiency of a design.  According to the 

prescribed structural type, loading, material and code-specified requirements, an optimum 

design defines a set of design variables and constraints as well as the target function.  It 

involves a loop of structural analysis, structural optimisation, re-analysis and re-

optimisation.  A rational distribution of the material in a structure can only be achieved by 

the optimum design.  For this reason, a safe and economic structural design is ensured. 

 

 The aim of topology optimisation is to find a conceptual layout of a design by 

distributing a given amount of material in a domain thereby achieving the lightest and stiffest 

structure while satisfying certain specified design constraints.  Unlike the conventional shape 

optimisation, topology optimisation does not generate the optimum shape from an initial 

known shape.  Topology optimisation is of considerable practical interest due to the fact that 

it can achieve much greater savings and much increased system performances than the mere 

cross-section (sizing) optimisation.  Topology optimisation can not only improve 

significantly the efficiency of the design, but also serve as a preprocessing tool for detailed 

sizing and shape optimisation. 

 

 Extensive research effort has been made in the area of topology optimisation of both 

discrete and continuum structures, as summarised by Bendsøe and Kikuchi [1], Topping [2], 

Rozvany et al. [3] and Thierauf [4].  A classical truss topology optimisation problem is to 

achieve minimum weight subject to equilibrium and stress constraints.  Such problem can 

conveniently be formulated in terms of the ground structure approach where the optimal 

substructures can be found from a set of all possible connected bars defined on a discrete 

grid (see Ref. [5]).  The method of (discretized) optimality criteria, proposed by Rozvany et 

al. (see Refs. [6,7]), was derived by applying the duality theory of mathematical 

programming to a separable approximation of the design problem.  It has been found 

particularly efficient for the topology optimisation of multipurpose structures (see Ref. [8]).  

For topology optimisation of continuum structures, Bendsøe and Kikuchi [9], Suzuki and 

Kikuchi [10], and Bendsøe et al. [11] developed a homogenisation method based on the 
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homogenisation theory where the initial design domain is homogeneous at the macroscopic 

scale.  The method has been successfully applied to solve many types of topology 

optimisation problems including composite material structures (see Ref. [12]) and those with 

multiple constraints (see Ref. [13]).  Another distinct approach to topology optimisation of 

continuum structures is the density method (see Ref. [14]) where a simple energy method is 

used and a formula for Young’s modulus is assumed thereby generating optimal material 

distribution.  More recently, stochastic algorithms such as genetic algorithms have received 

increasing attention.  Genetic algorithms which follow a global search procedure are capable 

of gradually improving the solution in succeeding populations using operations that mimic 

those of the natural evolution (see Ref. [15]).  However such random search methods require 

a great number of function evaluations and are very expensive in terms of computational 

cost.  Rozvany [8], in discussing the efficiency and robustness of various optimisation 

methods, states that the optimality criteria methods are most efficient but least robust 

whereas the random search methods are least efficient but most robust.  The writer also 

comments that the Evolutionary Structural Optimisation (ESO) method proposed by Xie and 

Steven (see Refs. [16,17]) and the fully stressed design method by Hinton and Sienz (see 

Ref. [18]) have shown to be very efficient in achieving good practical solutions. 

 

 Compared to other methods for structural optimisation, the ESO method is attractive 

due to its simplicity in concept and effectiveness in application.  The conventional ESO 

method employing the von Mises stress (σVM) as the optimisation criterion, has a simple 

concept of producing a fully stressed design by systematically removing inefficient material 

from an oversized structure (see Ref. [16]).  The method has proven to be successful in 

solving practical structural problems.  However, it cannot be used to produce topologies for 

various bridge type structures with complicated geometry and loading conditions (see Ref. 

[19]) because it does not take into account the actual material properties in tension and 

compression.  Most engineering structures including bridges are constructed of materials like 

concrete which are strong in compression, or of materials like steel which are highly 

effective in tension.  Examples of such structures include arch bridges where every part of 

the arch is under compression and cable-stayed bridges where the cables work solely in 

tension.  To optimise such material-oriented structures, the characteristics of different 

materials and their tension and compression behaviour must be monitored.  This has led to 

the present principal stress based ESO method (see Refs. [20,21]) which is employed in this 

study to directly obtain the most appropriate bridge topology.  The methodology, in 
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conjunction with the stress, displacement and frequency considerations, is discussed in some 

details.  The applicability, simplicity and effectiveness of the method are confirmed through 

the topology optimisation of various bridges. 

 

2. Principal stress based ESO method 

 

To achieve optimum design of engineering structures that makes the best utilisation of 

the available materials, the conventional ESO method has been extended to cover tension- 

and compression-dominant designs (see Ref. [20]).  This is accomplished by introducing into 

the optimisation process the principal stress criteria or the maximum and the minimum 

principal stresses (σ11 and σ22).  Relevant design constraints are described in Section 2.1 

followed by the derivation of the performance index formulas for design efficiency 

measurement. 

 

2.1. Design constraints for tension/compression-dominant designs 

 

2.1.1. Stress constraint 

 

Two parallel algorithms were developed by Guan et al. to differentiate tension- and 

compression-oriented elements in a design area based on which the tension- or compression-

dominant design with stress constraint can be performed [21].  Similar to the conventional 

ESO method, a linear static analysis is carried out on a large enough design domain with fine 

mesh of finite elements.  Consequently, each element’s maximum and minimum principal 

stresses e
11σ  and e

22σ  can be determined.  If a tension-dominant structure is to be designed, 

the compression-oriented elements (whose 0022 .≤σ  and |σ22|>>|σ11|) should be removed.  

On the contrary, if a compression-dominant structure is desired, the tension-oriented 

elements (whose 0011 .≥σ  and |σ11|>>|σ22|) should be eliminated.  This has led to the new 

element removal algorithms which form the core of the principal stress based ESO method.  

In a mathematical form, to generate a tension-dominant structure, remove the elements if 

 

 max,i
e RR 1111 σσ ×≤  when 0022 .e ≤σ  (1) 
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And, to generate a compression-dominant structure, remove the elements if 

 

 max,i
e RR 2222 σσ ×≤  when 0011 .e ≥σ  (2) 

 

where max,11σ  is the absolute maximum value of σ11 among the elements whose 0022 .e ≤σ ; 

max22,σ  is the absolute maximum value of σ22 among the elements whose 0011 .e ≥σ ; RRi is 

the rejection ratio to ensure that only a small number of elements are removed each time.  

When considering the stress constraint only, an iterative procedure is performed which is 

defined by repeated cycles of finite element analysis and systematic removal of inefficiently 

used material.  Each cycle is continued using the same value of RRi, until no more elements 

are deleted at the current iteration i.  To proceed to the next iteration, RRi has to be increased 

by adding the evolution ratio ER.  Such a process continues until a desired topology of 

improved quality is obtained. 

 

 Note that when the structure is subjected to multiple load cases, an element can be 

removed only if Eq. (1) or (2) is satisfied by all the load cases present in the structure.  This 

is to ensure that the optimum design is achieved in which every part of the remaining 

material has its own role to play for at least one load case and possibly for all load cases. 

 

2.1.2. Stress and displacement constraints 

 

 With stress constraint only, the principal stress based ESO has provided an effective 

means of generating tension- and compression-dominant designs (see Ref. [20]).  However, 

even with its extended capability in comparison with the conventional ESO method, the 

principal stress based ESO still features a stress driven optimisation technique.  In an 

engineering sense, it is more rigorous to optimise a structure with both stress and 

displacement constraints.  In the light of this, the displacement control must be imposed in 

addition to removing the elements that satisfy the stress condition.  This requires the 

determination of the displacement sensitivity number i,dα  based on the formulas developed 

by Xie and Steven [17]. 
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In a finite element analysis, the static behaviour of a structure can be expressed by the 

stiffness equation as 

 

 PuK =⋅  (3) 

 

where K is the global stiffness matrix of a structure and, u and P are, respectively, the global 

nodal displacement and nodal load vectors.  Assuming that the element i (i = 1, N) is to be 

removed from a structure where N is the total number of elements in the design domain.  

This would induce a change in the stiffness matrix, ΔKi, as well as a change in the 

displacement vector Δu.  However, it is assumed that the element removal has no effect on 

the load vector.  By manipulating the modified stiffness equation, the change in the specified 

jth displacement component ju  due to the removal of the ith element can be represented by 

the displacement sensitivity number i,dα .  Or, 

 

 |||| iiijijd,id, uKu ⋅⋅== Tαα  (4) 

 

where ij,dα  can be a positive or negative quantity.  Note that uj is to be limited to a 

prescribed value, ∗
ju , in the design process (i.e. *| jj u|u ≤ ).  Also in Eq. (4), ui and uij are 

respectively the displacement vectors of the ith element due to the real load P and due to the 

virtual unit load Fj; Ki is the stiffness matrix of the ith element and is equal but opposite to 

ΔKi.  In a more general case when a structure is designed for multiple load cases Pk (k = 1, 

L) and is subjected to multiple displacement constraints *
jku  (j = 1, M), the sensitivity 

number can then be derived as 

 

 ∑ ∑∑ ∑
= == =

⋅⋅⋅=⋅=
L

k
iki

T
ij

M

j
jk

L

k
ijkd,

M

j
jkid, ||||

1 11 1
uKuλαλα    (i = 1, N) (5) 

 

in which uik is the displacement vector of the ith element due to load case Pk; L and M are, 

respectively, the total number of load cases and that of the displacement constraints.  In Eq. 

(5), *
jkjkjk u/|u|=λ  is the weighting parameter indicating the contribution of the jth 

displacement constraint under the kth load case. 
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To minimise the displacement change |u| jk  during the optimisation process, the 

elements that have the lowest i,dα  among all or those whose ijk,dα  are closest to zero should 

be removed from the design domain.  The proposed optimisation procedure considering both 

stress and displacement constraints may be summarised as follows: 

1. Discretize a large enough area that can cover the final design into a dense finite 

element mesh. 

2. Define a range variable (r) to be used with the displacement constraint. 

3. Specify the direction and location of the displacement constraint as well as the 

value of the imposed displacement limit. 

4. Solve the stiffness equation for each of the actual loads Pk (k = 1, L) and for the 

virtual unit load F. 

5. Determine the number of elements (Ns) with the lowest principal stress || e
11σ  or 

|| e
22σ , for tension- or compression-dominant design, respectively, according to 

Eq. (1) or (2). 

6. Calculate the sensitivity number i,dα  using Eq. (5) for each of the elements (Ns in 

total) that satisfies the stress condition. 

7. Remove a number of elements (Nd) with the lowest i,dα  where (Nd) is equal to the 

range variable (r).  Note that sd NN ⊆ . 

8. Repeat Steps 4 to 7 until the displacement limit is reached. 
 

The above element removal scheme implies that whilst the lowly stressed element is 

removed from the structure, the remaining part of the structure is still stiff enough and its 

maximum deflection must not exceed the prescribed limit.  This scheme is employed to 

optimise an over designed domain until a reasonable topology is generated that satisfy both 

stress and displacement conditions. 

 

2.1.3. Frequency constraint with "nibbling" technique 

 

The optimum design of structures satisfying frequency constraint is also of great 

importance, particularly for bridge type structures.  It is often necessary to manipulate the 

natural frequencies of a structure away from the frequency range of dynamic excitation in 
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order to avoid resonant conditions and to prevent induced damage to the structure.  In a finite 

element analysis, the state of free vibrations of a structure is governed by the eigenvalue 

problem as 

 

 ( ) 02 =⋅⋅− nn uMK ω  (6) 

 

where K and M are respectively the global stiffness and mass matrices; ωn is the nth natural 

frequency; un is the nth eigenvector. 

 

The change in frequency 2
nω  due to the removal of the ith element can be derived 

based on the Rayleigh concept and the assumption of insignificant variation in mode shape 

(see Ref. [17]).  This leads to the frequency sensitivity number i,fα , as an indicator of the 

change in 2
nω .  Or, 

 

( ) i,niiii,ni,f uKMu ⋅−⋅⋅= 2T ωα  (7) 

 

where Ki and Mi are respectively the stiffness and mass matrices of the ith element; un,i are 

the components of the nth structural eigenvector of the ith element and is normalized with 

respect to M.  Note that i,fα  can be positive or negative.  To increase a specified frequency 

ωn, the elements that have the maximum positive i,fα  should be removed from the design 

domain. 

 

An optimisation scheme considering frequency constraint is proposed herein.  The 

frequency analysis is performed on a resulting topology (close to the optimum design) 

generated with the stress and displacement constraints.  Aiming at improving the details of 

the resulting topology while increasing the fundamental frequency of the structure, the 

frequency optimisation is performed without creating further cavities in the remaining 

material.  This requires the use of a "nibbling" technique proposed by Xie and Steven [17] 

where only the surrounding shape/perimeter of the topology is altered.  The optimisation 

procedure incorporating the frequency constraint with "nibbling" technique is summarised 

below in 5 steps: 
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1. Select the appropriate topology that is generated with the stress and displacement 

constraints. 

2. Solve the eigenvalue problem using Eq. (6). 

3. Calculate the sensitivity number i,fα  for each element according to Eq. (7). 

4. To increase the frequency, remove no more than 10 elements of the maximum 

positive i,fα .  Note that the elements to be removed must also satisfy the condition 

that at least one of the element’s edges or sides is not connected to any other elements 

in the structure.  This is to ensure that only the structural boundaries are modified 

without creating holes in the remaining material. 

5. Repeat Steps 2 to 4 until an optimum design is reached when no more elements can 

be removed. 

 

The proposed element removal scheme incorporating the frequency constraint with 

"nibbling" technique is capable of increasing the fundamental frequency of the structure and 

improving the details of the final topology.  In other words, the topology can be re-shaped 

under the frequency constraint following the optimisation with stress and displacement 

constraints. 

 

 Note that the current investigation deals with element removal only where removed 

elements no longer exist in the finite element grid.  It is recognised that a bi-directional ESO 

method (BESO) based on the process of adding and removing elements has become 

available (see Ref. [22]).  The BESO methos involves setting up a reasonable initial design, 

which is large enough to allow unnecessary materials to be removed.  Such process can be 

tedious for practical structures like bridges with complicated geometry and loading 

conditions. 

 

2.2. Performance index formulas 

 

 One of the critical concerns in topology optimisation is the determination of the 

efficiency of a series of designs generated during the optimisation process.  In other words, 

an indicator is essential to compare the performances of the progressive designs and from 

which, an optimum topology can be determined.  A performance index (PI) in terms of von 

Mises stress has been proposed by Liang et al. [23] based on a scaling design concept by 
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Kirsch [24] where the actual design variable such as the element thickness is scaled with 

respect to the design constraint.  Based on the same scaling design concept, two PI formulas 

associated with the tension-/compression-dominant design are developed herein to cover the 

situation where the principal stresses are used as the optimisation criteria. 

 

 For tension-/compression-dominant design, the optimization of the continuum 

structures can be posed in the following form: 

 

 minimize ∑
=

=
N

e
eVV

1
 (8) 

 

 subject to *
max, 2222 σσ ≤  for tension-dominant design 

 

 or *
max, 1111 σσ ≤  for compression-dominant design (9) 

 

where V and Ve are respectively the volume of the total material and that of any individual 

element e; ∗
11σ  (or ∗

22σ ) is the maximum (or minimum) principal stress limit.  The stress 

constraint given in Eq. (9) implies that for tension-dominant design, the absolute maximum 

value of σ22 in the design domain must not exceed the prescribed stress limit *
22σ .  For 

compression-dominant design, on the other hand, the maximum σ11 in the design domain 

must not exceed the prescribed stress limit *
11σ . 

 

 For the linear elastic plane stress problems, the structural stiffness matrix is a linear 

function of the design variable such as the thickness or the volume of the structure.  For a 

bridge structure under consideration, each structural component, of different cross-sectional 

thickness, can be assigned design or non-design domains.  The non-design domain is 

normally defined for support regions and for areas where the structural form of certain 

components is known a priori.  The material in the non-design domain is not removable 

during the entire optimisation process.  This results in the volume variation in the design 

domain only.  Hence, it is more meaningful and accurate to consider the stress and the 

volume of the design domain.  Such consideration is reflected by a subscript "d" in the PI 

formulas. 
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 When tension-dominant design is performed, the volume of the design domain can be 

scaled with respect to the stress constraint.  As a result, the relative volume of the initial 

(original) design domain, '
o,dV , can be expressed as 

 

 ( )*
o,dmax,o,d

'
o,d VV 2222 σσ⋅=  (10) 

 

in which o,dV  and 
o,dmax,22σ  are respectively the volume of, and the max,22σ , in the 

original design domain.  In an iterative optimisation process, the relative volume of the 

current design at ith iteration, '
i,dV , can also be scaled as 

 

 ( )*
i,dmax,i,d

'
i,d VV 2222 σσ⋅=  (11) 

 

where i,dV  and 
i,dmax,22σ  are respectively the volume of, and the max,22σ , in the current 

design domain at ith iteration. 

 

 The performance index PId,t at the ith iteration can then be determined as 

 

 
i,di,dmax,

o,do,dmax,
'

i,d

'
o,d

t,d V

V

V
V

PI
⋅

⋅
==

22

22

σ

σ
 (12) 

 

 Similarly for compression-dominant design, 

 

 
i,di,dmax,

o,do,dmax,
'

i,d

'
o,d

c,d V

V

V
V

PI
⋅

⋅
==

11

11

σ

σ
 (13) 

 

where 
o,dmax,11σ  and 

i,dmax,11σ  are respectively the max,11σ  in the design domain at the 

initial stage and at the ith iteration. 
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With the performance index formulas in hand, the efficiency of the material-oriented 

topology designs can be measured during the optimisation process.  The Performance Index 

PId,t (or PId,c) can also reflect the changes in the volume and the principal stress level in the 

design domain.  Note that PId,t and PId,c are dimensionless quantities and they increase with 

the optimisation process, which suggests that the topology of the structure is improved by 

systematically removing under-utilised material.  The optimum topology can then be 

selected as the one corresponding to the highest PId,t (or PId,c) value.  It should be noted that 

there may exist several local maxima on the PI curve, which cannot be considered as an 

optimum because the prescribed displacement limit is not reached. 

 

3. Optimisation of bridges with stress and displacement constraints 

 

 To illustrate the capability of the principal stress based ESO method in optimising 

tension and compression-dominant designs, four bridge type structures are studied with both 

stress and displacement constraints.  They are the arch, tied arch, cable-stayed and 

suspension bridges.  These structures are considered to be the most amenable design models 

as they have distinct characteristics in structural forms and they are constructed with major 

or dominant tension and/or compression components.  Note that the main objective of this 

study is to produce optimum topology for either compression- or tension-dominant structural 

components, therefore for arch and tied-arch bridges, the focus is to optimise the arch 

profile; whereas for cable-stayed and suspension bridges, generate optimum outlines of 

cable(s). 

 

3.1. Refined mesh scheme 

 

 Some research attempts have been made in the past two years in the optimisation of 

bridge structures with the same (or varying) material properties and uniform (or non-

uniform) thickness for the design and non-design domains (see Ref. [25]).  The results have 

confirmed the applicability and effectiveness of the principal stress based ESO in generating 

tension- and compression-dominant designs of bridge structures.  The optimum topologies 

obtained with the stress and displacement constraints well resemble, to a certain extent, the 

actual outlines of the bridges.  However, due to the limited number of elements adopted in 

the analysis, the details of the design topologies were some way from perfection particularly 

for tied arch, cable-stayed and suspension bridges.  It was obvious that an improved design 
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necessitated a much finer mesh.  This unfortunately would significantly increase the 

computational cost.  In the light of this, a refined mesh scheme is proposed herein to further 

improve the final design that is already produced using a regular mesh.  This scheme aims at 

generating the optimum topologies more economically without resorting to a complete, but 

costly analysis of a finer mesh.  A detailed implementation of the scheme is presented in the 

next section. 

 

3.2. Bridge material properties and load arrangements 

 

 All the bridge dimensions are quoted from existing bridges (see Refs. [26,27]).  The 

material properties and loadings are also determined using the appropriate values 

recommended for bridge design.  This is to ensure that the optimum designs can better 

reflect the real world situation.  The appropriate values of the displacement limit are used for 

each type of bridges.  These values are determined based on the recommendation of the 

Australian Bridge Design Code (see Ref. [28]) where the deflection allowance under the 

service load should not exceed 1/800 of the main span of the bridge.  The bridges are 

constructed using concrete and/or steel depending on their structural types and 

functionalities.  For concrete, the modulus of elasticity E is 21,000 MPa, the material density 

ρ is 2400 kg/m3 and the Poisson’s ratio ν is 0.2.  For steel, E is 210 GPa, ρ is 7800 kg/m3 

and ν is 0.3.  As the analysis is based on the plane stress assumption, the equivalent cross-

sectional thickness of three-dimensional structures is adopted.  In all the analyses, the 

rejection ratio RRi and the evolution ratio ER are both taken as 0.1. 

 

All the bridges are investigated under two loading conditions, viz, the uniformly 

distributed load (UDL) and the combined UDL and moving loads.  When the design domain 

is subjected to the UDL, only half the domain is considered due to symmetry.  Under such 

loading condition, it is necessary to consider two load cases: one is the UDL (100 kN/m); the 

other is the unit virtual load applied at the mid-span of the top of the deck where the 

displacement is to be controlled.  For the combined loading condition, the entire domain 

with ten load cases is considered.  Each of the first nine load cases is the combination of a 

UDL (12.5 kN/m) and a moving point load (200 kN).  The UDL on the top of the bridge 

deck is to simulate the service load while the moving point load acting consecutively from 

left to right across the bridge (at nine equally spaced locations) is to simulate the traffic load.  
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Load case 10, at the mid-span and on the top of the deck, is a unit virtual load for the 

displacement control. 

 

3.2.1. Arch bridge 

 

 The dimension of the initial design domain for the entire bridge is 210 m × 21 m, a 

symmetrical half of which is presented in Fig. 1 under the UDL condition, whereas Fig. 2 

shows the full domain (with 180 × 18 four-node square elements) under the combined 

loading.  The bridge deck and the abutments are assumed to be non-design domains and are 

represented by the shaded elements.  The entire arch bridge, of concrete, has uniform 

thickness of 8 m in cross-section.  The thickness input is required when self-weight of a 

structure is considered which has been reported by Chen [25].  To provide adequate support 

both vertically and horizontally at the springings of the arch, the bottom of the left and right 

regions of the design domain are fixed to the ground.  Note in Fig. 1(a) that load case 1 

contains the UDL of 100 kN/m on the top of the deck and a fictitious load of 0.0001 kN at 

the extreme support locations.  The application of such fictitious load is to generate a point 

load file that is required by the optimisation program.  The prescribed mid-span 

displacement limit for both loading conditions is 0.1 m.  The optimisation process is 

performed using the compression-dominant design algorithm and the PId,c formula (given in 

Eq. (13)) is used for the selection of the optimum topology. 

 

Figs. 3(a) and (b) show, respectively, the optimisation histories of the arch bridge under 

UDL and the combined loading.  They are represented by the performance index (PId,c) and 

the volume ratio (Vd,i/Vd,o) against the iteration number.  As can be seen in the figures, the 

PId,c values show a tendency to increase.  At the first iteration, PId,c is equal to 1 when no 

elements are removed.  By gradually removing the lowly stressed elements from the initial 

design domain, the stress levels of the remaining elements become more uniform.  Note that 

the PId,c curves exhibit sudden jumps at some stages.  This is due to a large reduction in the 

stress level.  The volume of the remaining material decreases gradually with the increase in 

PId,c values. 

 

 The maximum PId,c values are reached at iterations 66 and 122, respectively, for the 

two loading conditions where the corresponding volume reductions are 60% and 71%.  The 

optimization history suggests that a least weight and more uniformly stressed design has 
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been achieved.  The corresponding optimum topologies that are generated at the maximum 

PId,c values are presented in Fig. 4.  For both loading conditions, a prominent arch rib ⎯ a 

load-bearing component in compression is generated.  This confirms the natural strength of 

the arch bridge where its total weight is carried outward along the curve of the arch.  Also 

formed in both topologies are two additional inclined members at each side of the arch rib.  

Such small components are there to transfer the applied loads to the load-carrying part of the 

bridge.  In general, the optimum topologies well resemble that of the actual arch bridge (see 

Ref. [26]). 

 

3.2.2. Tied arch bridge 

 

The initial design domain for the entire bridge, of dimension 330 m × 55 m, is 

discretized into 138 × 23 square elements for the combined loading condition, as shown in 

Fig. 5(a) under the first nine load cases.  Load case 10 is the unit virtual load at the mid-span 

location on top of the deck.  Again half the design domain is analysed when the bridge is 

under UDL.  As can be seen in Fig. 5(a), the hangers are assumed to be equally spaced; all 

the hangers and the bridge deck are assumed to be non-design domains.  To simulate the 

abutments that can provide axial thrust to the arch rib, the two ends of the bridge deck are 

fixed.  The thickness of the concrete deck is 14 m.  The non-design hangers and the design 

domain for arch region have steel material properties and their element thicknesses are 3.1 

m.  The prescribed mid-span displacement limit is 0.15 m.  The compression-dominant 

design algorithm is adopted and the optimum topology can be identified by comparing PId,c 

during the optimisation process. 

 

To improve the final design, the refined mesh scheme is introduced.  It involves the 

optimisation of a regular mesh followed by that of a refined mesh.  The regular mesh scheme 

is based on the initial design domain with fine mesh (Fig. 5(a)).  When the initial design 

domain evolves to an intermediate stage where a stress-oriented domain starts to form, the 

original regular mesh is further refined.  Subsequently, the design of a refined mesh 

commences and the optimisation process continues. 

 

 For the tied arch bridge under combined loading condition, the suitable mesh for 

refinement is selected based on the observation of the PId,c curve presented in Fig. 6.  It can 
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be seen that the PId,c curve exhibits a sudden jump at iteration 97.  At the corresponding 

iteration, or the intermediate stage when a possible area of arch starts to form, the regular 

mesh is backed up and each of its elements is subdivided into 4 smaller elements, thereby 

generating a refined mesh as shown in Fig. 5(b).  The optimisation process based on the 

refined mesh is hence continued.  This is also reflected in the optimisation history plots (Fig. 

6) where the dash line indicates the transition from the regular to the refined mesh schemes, 

and the dash-dot line marks the iteration when the optimum design is achieved under the 

refined mesh scheme.  It can be seen in Fig. 6 that the PId,c peaks at iteration 167 which 

indicates that the optimum topology is produced.  Fig. 7 shows the optimum topologies of 

the bridge under the two loading conditions.  The slight difference between the two 

topologies shown in Figs. 7(a) and 7(b) is believed to be affected by the closely spaced 

hangers.  In view of this, the positions and the amount of hangers may be varied to examine 

their influence on the optimum topologies. 

 

 In comparison with the optimum topologies generated with a regular mesh (see Ref. 

[25]), the current design with the proposed refined mesh scheme produces a reduced depth of 

arch and a much smoother outline.  In addition, more under-utilised material is removed i.e. 

with 73% volume reduction for the combined loading condition.  This produces more 

economical topologies.  In terms of the computational cost, the initial domain under 

combined loading has a regular mesh of 3174 elements.  At the selected intermediate stage, 

each element of the regular mesh is further divided into 4 smaller elements, thereby 

generating a refined mesh of 7264 elements.  The computational effort for this exercise is 

much less as compared to using a refined mesh of 12696 elements from the very beginning 

of the optimisation process. 

 

3.2.3. Cable-stayed bridge 

 

The dimension of the initial design domain for the cable-stayed bridge is 640 m × 160 

m.  The regular mesh for the combined loading, containing 116 × 29 square elements, is 

shown in Fig. 8(a) under the first nine load cases.  The unit virtual load (i.e. Load case 10) is 

applied on top of the deck at the mid-span.  The two ends of the deck as well as the bottom 

of the towers are assumed fixed.  In cable-stayed bridges, the superstructure is suspended by 

cables attached directly to the towers, which together with the end supports carry the entire 

load of the bridge.  The concrete deck acts as a part of the support system, functioning as a 
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horizontal compression member.  The towers may be of concrete material as well.  The 

cables work solely in tension hence steel is normally used.  The element thickness of the 

non-design deck and of the towers is 20 m and that of the design domain for cables is 1 m.  

The prescribed mid-span displacement limit is 0.1 m.  The tension-dominant design 

algorithm is used and the PId,t formula as given Eq. (12) is monitored to determine the 

optimum topology. 

 

Under the combined loading condition, the regular mesh of 3364 elements is optimized 

until an intermediate iteration when the formation of cables begins.  Subsequently, each 

element of the regular mesh is further divided into 4 smaller elements, thereby generating a 

refined mesh with 4104 elements, as shown in Fig. 8(b).  The selection of the intermediate 

stage is indicated in Fig. 9 where PId,t jumps at iteration 97 with the regular mesh scheme.  

The refined mesh is further optimized until iteration 242 when PId,t reaches the maximum.  

This also corresponds to a remarkable volume reduction, or 91%.  For the two loading 

conditions, the optimum topologies (obtained at maximum PId,t) are shown in Fig. 10.  Both 

topologies feature two rather thin cables for the outer spans connecting, at the towers, 

another two in the navigational span.  The proposed scheme is far superior to the previous 

analysis with a regular mesh in that the new design bears a strong resemblance to the real 

cable-stayed bridges.  Furthermore, equally satisfactory outcomes are produced without 

incurring substantially higher computational effort.  Note that for a complete analysis, 13456 

elements have to be involved at the first iteration (compared to 4104 elements used in the 

refined mesh scheme). 

 

3.2.4. Suspension bridge 

 

 The suspension bridge under consideration has straight back stays and a central span of 

1428 m.  The overall design area is 2520 m × 300 m and is discretized into 3004 square 

elements under the combined loading, as illustrated in Fig. 11(a).  Load case 10, a unit virtual 

load, is again located on top of the deck at the mid-span.  The towers and the deck, of steel and 

with 35.5 m thickness, are taken to be non-design domains.  All vertical steel hangers, of 1 m 

thick in cross-section, are also assumed non-designable.  The focus of this exercise is to 

produce an optimum cable profile in the central span region.  As such, the back stays are 

defined as the known conditions and hence they are also non-designable.  In addition, to 

ensure the continuity of the main cable, eighteen elements just above the deck at the mid-span 
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region are made non-design domains; they, together with the back stays and the design domain 

for the main cable, have steel material properties and their element thicknesses are 2 m. 

 

 In practice, the superstructure of suspension bridges is suspended with secondary 

vertical hangers from the main cables, which ride across the towers and share the load with 

the massive anchorages at each end of the bridge.  To closely simulate the real situation, the 

two ends of the deck as well as the anchorage bases are assumed to be roller support, and the 

bottoms of the towers are fixed.  In addition, three nodes on the top of the tower are also 

restrained to reflect the higher stiffness of the tower as compared to that of the main cable.  

The anchorage is simulated by an inclined anchorage force (of 4500 kN) which is transferred 

through the back stays to the main cable.  The prescribed mid-span displacement limit is 0.2 

m.  The tension-dominant design algorithm is used and the PId,t is examined to determine the 

optimum topology. 

 

 The refined mesh scheme is also used in this optimisation process.  The refined mesh 

(Fig. 11(b)), under the combined loading, is formed when the PId,t under the regular mesh 

scheme experiences a sudden jump (in this case at iteration 39).  This can be seen in the 

optimisation history presented in Fig. 12.  With the proposed refined mesh scheme, the 

optimum topologies (Fig. 13) are achieved at iterations 169 and 164, respectively, for the 

two loading conditions, and the corresponding volume reductions are 77% and 75%.  Similar 

topologies are noted for both loading conditions where a main cable is formed together with 

some extra inclined members in the central span.  Such topology cannot be predetermined 

without the optimisation process.  The topology is not unlike some of the existing bridges in 

the world, for example, the Brooklyn Bridge in New York (see Ref. [26]) where a combined 

system containing both suspension and stay cables is constructed.  Furthermore, a much 

better design is achieved with the proposed scheme in terms of both topologies and 

computational time (see Ref. [25]). 

 

4. Optimisation of cable supported bridges with frequency constraints 

 

The optimum design of bridge structures with multiple constraints is of great 

importance, particularly for cable supported bridges.  The deformation, the static and 

dynamic stabilities are the design factors necessary to be considered in such bridges.  As a 

pilot study for dynamic stability consideration, the cable-stayed and suspension bridges 
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optimised with the stress and displacement constraints are further investigated with 

frequency constraint.  Cable supported bridges are studied because they are more sensitive to 

vibration than arch type bridges.  In the analysis, the frequency optimisation with "nibbling" 

technique is performed with the aim of increasing the fundamental frequency of the bridge.  

Note that only the topologies generated under the combined UDL and moving loads are 

investigated with the frequency constraint. 

 

4.1. Cable-stayed bridge 

 

For the cable-stayed bridge under the combined loading, the optimum topology has 

been achieved with both stress and displacement constraints (see Fig. 10(b)).  Before 

commencing the frequency optimisation, each element in Fig. 10(b) is further divided into 2 

× 2 smaller elements.  This generates an even finer mesh which now becomes the initial 

domain.  This is given in Fig. 14(a) which also shows the fundamental frequency ω1 of 

0.69038 Hz.  The frequency optimisation with "nibbling" technique is then performed in an 

attempt to increase ω1 by altering the perimeter of the topology in Fig. 14(a).  The final 

optimum topology satisfying the frequency constraint is presented in Fig. 14(b) which 

confirms that the inner cables become more slender.  This is not unlike the real situation 

where the inner cables are generally thinner than the outer ones.  The optimisation history 

illustrated in Fig. 15 indicates that ω1 is increased by 0.32% from 0.69038 Hz to 0.69262 Hz.  

The corresponding volume reduction is 9.07%, which suggests a further improved design. 

 

4.2. Suspension bridge 

 

For the suspension bridge, each element (of regular mesh) in the optimum topology 

produced with the stress and displacement constraints is subdivided into 3 × 3 smaller 

elements.  This results in a denser mesh as the initial domain for frequency optimisation.  

The denser mesh is shown in Fig. 16(a) and its ω1 is found to be 0.21000 Hz.  The resulting 

optimum topology with frequency constraint is displayed in Fig. 16(b), while Fig. 17 details 

the corresponding optimization history.  The increase in ω1 is 34.40% with a further volume 

reduction of 1.52%, which indicates an improvement of the design. 
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5. Concluding remarks 

 

 The principal stress based ESO method is employed to optimise various types of 

bridges.  The arch, tied arch, cable-stayed and suspension bridges are selected because of 

their distinct structural forms.  Basically they are an assembly of major or dominant tension 

and/or compression components.  The method, in conjunction with the displacement 

sensitivity number, can be employed to effectively produce tension- and compression-

dominant topologies while maintaining the overall structural performance.  The research 

outcome indicates that when the compression-dominant design algorithm is adopted in the 

optimisation process, an arch or a tied arch bridge emerges.  If, on the other hand, the 

tension-dominant design algorithm is used, a cable-stayed or a suspension bridge evolves.    

The use of the appropriate optimisation algorithm has produced most efficient design 

topology in terms of uniform stress and least weight for given bridge structures with certain 

span, loading and support conditions. 

 

Two performance index formulas are developed to determine the optimum topologies 

for each of the bridge types.  To improve the details of the final design, a refined mesh 

scheme is proposed.  The numerical results reveal that the proposed scheme has led to 

economy in solution time without resorting to the complete analysis of a finer mesh.  The 

frequency optimisation with "nibbling" technique is also performed to increase the 

fundamental frequency of cable supported bridges as well as to improve details of the 

topologies already generated with the stress and displacement constraints. 

 

 With various design constraints, the optimum topologies of bridge structures are 

produced that make the best utilisation of the available materials.  The incorporation of 

stress, displacement and frequency constraints for cable supported bridges also attempts to 

address practical topology design problems associated with static and dynamic 

considerations.  In addition, the optimum topologies, having minimum volume (weight) and 

maximum structural performance, bear strong resemblance to the real bridge structures.  The 

applicability, simplicity and effectiveness of the principal stress based ESO method are 

validated through its satisfactory application in the optimum design of various types of 

bridges.  The capability of the method will be further extended to consider buckling 

constraint to deal with the slenderness and geometric instability conditions, in particular for 

compression-dominant design optimisation.  In addition, at its preliminary development 
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stage, the current study deals with two-dimensional behaviour of bridge type structures.  The 

extension of the proposed method to three-dimensional situations certainly merits further 

investigation.  Furthermore, a variation of span length, overall height, loading and support 

conditions, as well as the positions and amount of hangers will be investigated to examine 

their influence on the optimum topologies.  The outcome of such investigation will certainly 

help provide more information for preliminary design of bridge type structures. 

 

 It should also be mentioned that further work has been carried out to incorporate 

frequency constraint in a repeated cycle of topology and shape optimisations (see Ref. [29]) 

where increasing fundamental frequency together with imposing stress and displacement 

constraints are capable of producing a topology with more rational distribution of available 

materials. 

 

 The potential advancements of the sophisticated bridge topology optimisation are 

manifold.  Through the optimum topology design, the designer can discover completely new 

and innovative bridges.  The optimisation techniques can also be used to benchmark existing 

bridges as well as to design and build new bridges.  Given specific geography of bridge 

location, construction requirements and available materials, the design engineers, with the 

aid of topology optimisation techniques, are able to produce more efficient, economical and 

feasible designs. 
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List of figure captions 

 

Fig. 1. Initial design domain for arch bridge under UDL: (a) Load case 1; (b) Load case 

2 

Fig. 2. Initial design domain for arch bridge under combined UDL and moving loads: 

(a) Load cases 1 to 9; (b) Load case 10 

Fig. 3. Optimization history of arch bridge: (a) UDL; (b) Combined UDL and moving 

loads 

Fig. 4. Optimum topologies of arch bridge: (a) UDL; (b) Combined UDL and moving 

loads 

Fig. 5. Design domain for tied arch bridge under combined UDL and moving loads: (a) 

Initial; (b) Refined 

Fig. 6. Optimization history of tied arch bridge under combined UDL and moving loads: 

(a) Performance index; (b) Volume variation 

Fig. 7. Optimum topologies of tied arch bridge with refined mesh scheme: (a) UDL; (b) 

Combined UDL and moving loads 

Fig. 8. Design domain for cable-stayed bridge under combined UDL and moving loads: 

(a) Initial; (b) Refined 

Fig. 9. Optimization history of cable-stayed bridge under combined UDL and moving 

loads: (a) Performance index; (b) Volume variation 

Fig. 10. Optimum topologies of cable-stayed bridge with refined mesh scheme: (a) UDL; 

(b) Combined UDL and moving loads 

Fig. 11. Design domain for suspension bridge under combined UDL and moving loads: 

(a) Initial; (b) Refined 

Fig. 12. Optimization history of suspension bridge under combined UDL and moving 

loads: (a) Performance index; (b) Volume variation 

Fig. 13. Optimum topologies of suspension bridge with refined mesh scheme (a) UDL; 

(b) Combined UDL and moving loads 

Fig. 14. Frequency optimization of cable-stayed bridge: (a) Initial domain (ω1 = 0.69038 

Hz); (b) Final optimum topology (ω1 = 0.69262 Hz) 

Fig. 15. Optimization history of cable-stayed bridge with frequency constraint 

Fig. 16. Frequency optimization of suspension bridge: (a) Initial domain (ω1 = 0.21000 

Hz); (b) Final optimum topology (ω1 = 0.28223 Hz) 
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Fig. 17. Optimization history of suspension bridge with frequency constraint 
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(b) Volume variation 
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(b) Volume variation 
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(b) Combined UDL and moving loads 
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(b) Volume variation 
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(a) Initial domain (ω1 = 0.21000 Hz) 
 

 
 

(b) Final optimum topology (ω1 = 0.28223 Hz) 
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