
Reducing Bandwidth Requirements of Consistency Maintenance Algorithms
in Distributed Network Games

Kyung Seob Moon, Vallipuram Muthukkumarasamy, and Anne Thuy-Anh Nguyen
 School of Information and Communication Technology, Griffith University, Australia

Gold Coast Campus, PMB 50, GCMC Queensland 9726, Australia
{k.moon, v.muthu, a.nguyen}@griffith.edu.au

Abstract

The architecture of network games is generally of
two main types: Client/Server (C/S) and Peer to Peer
(P2P). Distributed network games use the P2P
architecture mainly to reduce network latency. This
architecture may be based on graph or tree structures.
Given an identical amount of data to be transferred,
the bandwidth requirement in a tree-based P2P
network game is not the same as that of a graph-based
game. In a graph-based P2P network game, the
bandwidth requirement of each player is a linear
function of the number of players. In a tree-based
game, by contrast, it is a quadratic function of the
number of child nodes. This implies that, due to
limited bandwidth, some nodes may suffer from being
overwhelmed by the arrival of a large number of
packets, leading to a packet-drop. In turn, the packet-
drop would trigger packet retransmission; this may
result in a repetitive cycle of packet retransmission
and packet-drop. Such packet-drop problems may
cause severe network latency. In this paper we
examine methods to reduce the bandwidth
requirements of tree-based P2P network games, with a
view to improving system performance.

1. Introduction

In 2004 online gaming subscription revenue was
estimated to be more than US $1.09 billion in the
Asia/Pacific region (excluding Japan), roughly 30%
more than in 2003. This figure is expected to double
by 2009 [1]. The popularity of online games arises
from the variety of play strategies which are not
available when human users play with an AI controlled
computer. For example, the shareware computer game
Doom proved a major success on the game market at
least in part because of its early support of not only the
human vs. computer mode but also various human vs.

human modes such as co-operative and death-match
modes [2].

Among the available network architectures, the C/S

architecture is preferable for Massively Multiplayer
Online Role-Playing Games (MMORPG), due to ease
of billing, authentification, consistency maintenance,
and so on. Generic C/S architecture based games
employ a tree structure where the server is placed on
the root node and all clients are immediately attached
to the server as child nodes. The C/S architecture
aggravates network latency, due to additional data
transfer caused by server-side authorizations for the
commands issued from clients. Distributed network
games utilize the P2P network architecture mainly to
reduce network latency. Each player’s states are
maintained by the player and the result of the player’s
command or the command itself is transmitted to other
players. As a trade-off, maintaining consistency is one
of the most pressing problems in distributed network
games. By contrast, the C/S architecture does not
suffer from any inconsistency problems because the
states of all players are maintained in the server only
[3].

The consistency maintenance algorithms can be

divided into two categories according to the methods
of handling the inconsistency. The first type is called a
conservative algorithm which prevents inconsistency
from the beginning by making sure that the commands
to proceed are safe to execute. If not, then execution is
delayed until safety is assured. The second category is
called optimistic algorithms whereby players’
commands are processed without the safety assurance.
When an inconsistency is detected, the process rolls
back to the time of inconsistency to solve the problem
by re-arranging and executing ordered commands in a
timely fashion. Therefore optimistic algorithms
perform better than conservative ones in terms of game

execution speed, but the rollback process, when it
becomes necessary, can cause irritation and
unacceptable confusion to players. Overall, the
optimistic approaches may not be suitable for network
games, especially if such rollbacks are likely to be
frequent or severe.

To overcome the network latency problem in the

conservative approach, we proposed a tree-based P2P
network system which attempts to find optimal paths
for each player in the network [4]. We shall utilize
packet transmission schemes which reduce network
latency by increasing network bandwidth requirements
[5]. But to minimize the increase in bandwidth, a
packet aggregation method is proposed which exploits
the advantages of tree structures as opposed to graph
structures.

Two conservative algorithms are used to test the

efficiency of the aggregation method in a tree
structure. The first is the Lockstep algorithm, and the
second is called Locked Bucket-Synchronization
algorithm (LBSA) which will be explained in Section
2, together with various consistency maintenance
algorithms. A theoretical analysis of tree structures and
the aggregation algorithm is presented in Section 3.
Experimental details and results are described in
Section 4. Further analysis and discussion are
presented in Section 5, and the main conclusions are
given in Section 6.

2. Related work

The Lockstep algorithm [6] is one of the simplest
solutions for consistency maintenance in the P2P
structure. Each peer waits for other peers’ packets of
the current frame, makes its next move, sends packets
and waits again. The drawback of this approach is that
it can cause slowdown for game play if network
latency is longer than the frame interval. For example,
if the game’s FPS (Frames per Second) is 25 then each
frame takes about 40ms to load. In case the network
latency is longer than 40ms then players will have to
wait until they get other players’ packets.

The Frequent State Regeneration [7] approach

eliminates the slowdown-effect of the Lockstep
algorithm by frequently transmitting the status of
objects in game sessions. Generally, an unreliable
protocol such as User Datagram Protocol (UDP) is
used with this approach to alleviate the heavy overhead
of using a reliable protocol such as Transmission
Control Protocol (TCP). However, sending the status

of objects frequently to all players requires high
bandwidth and this requirement limits the maximum
number of players for network games.

The Bucket Synchronization algorithm [8] and

Local Lag [9] introduce artificial delays so as to
synchronize a node’s own frame with other nodes’
frame by taking advantage of imperfect human visual
perception. This approach is analogous to the buffering
method of streaming audio. Even though the playout
delay is extended, it still requires inconsistency
resolution algorithms when network latency is longer
than the extended playout delay. The playout delay is
the time difference between when players’ commands
are generated and when they are executed and
appeared on the players’ screen. The approaches used
in Laurent et al [8] may not require high bandwidth
due to their adoption of multicasting in their solutions,
but currently multicasting is disabled in most routes in
the Internet except experimental networks such as M-
Bone. While this approach uses Dead Reckoning
algorithms to solve the inconsistency, the algorithm
can not provide global event ordering due to its
limitations.

Due to the shortcomings of consistency

maintenance mechanisms in the bucket-
synchronization algorithm (BSA), we proposed the
LBSA [5]. The major difference between the BSA and
the LBSA is the mechanism to handle inconsistency
when it happens. In the case of inconsistency, the BSA
simply ignores it or a convergence process begins
when the threshold of state difference between players
is exceeded. The LBSA adopts the method of the
Lockstep algorithm which is a send-and-wait
mechanism. In the LBSA, the process waits until the
current frame’s corresponding bucket is filled with
packets of all players. When the delayed packet arrives,
it is stored in the corresponding bucket and the
player’s game process moves forward again. To
prevent a dead-lock situation [10], each player sends
packets at every frame even if there is no command to
transmit [5].

Dead Reckoning [11] algorithms interpolate and/or

extrapolate missing and/or incoming information to
reduce bandwidth requirement and latency. When the
difference between actual and predicted object states
exceeds a threshold, then convergence must occur.
This convergence is not a global event re-ordering but
simply an inaccuracies correction. The Local
Perception Filter approach [12] also utilizes the
limitation of human eye perception by altering the
speed of objects in network games, to hide network

latency. The Time Warp algorithm [13] has been
introduced to solve inconsistency and/or network
latency problems by adapting optimistic approaches.
However, the taxing overhead of the rollover process
is unavoidable.

3. Tree-based distributed network games

Distributed network games can be organized using
graph or tree structures. Generally, a complete graph
structure is preferable to a tree structure due to the
simplicity of implementation. We assume that the
graph structure is a connected graph throughout this
paper unless otherwise stated. The tree structure is a
converted form of graph structure by arranging each
node in the view of a root node. The root node is a
player and it establishes links (in other terms, edges or
arcs) to other nodes directly or indirectly depending on
network variables such as latency and/or bandwidth.

3.1. Graph vs. tree

On one hand, each node has direct links to other
nodes and transmits its own status n-1 times (n is the
number of nodes in the game sessions) in mesh
structure. Therefore, assuming we must send each
frame information during the game sessions, for
example, we employ conservative consistency
maintenance algorithms during the game sessions, the
number of total packets for one frame can be obtained
by the formula n(n-1).

On the other hand, there are also indirect links in

the tree structure. Therefore, packets need to be
relayed, which means players transmit not only their
own packets but also other players’ packets. The total
number of packets to be transmitted for each frame is
identical to each other. However, the transmitted
number of packets per node is the same for each node
in graph structure but it is not the same in tree
structure.

3. 2. Packet relay

Packet relay does not happen in graph structure,
which means each node sends its own packets only and
the number of packets per frame is a linear function of
the total number of nodes. Graph structure is a special
case of tree structure which has no indirect links
between nodes; this means that the number of non-
immediate child nodes is zero and, therefore, there is
no packet replay between nodes.

The total number of packets per frame can be
divided into two categories, such as the number of
transmitted and received packets per frame. The
number of received packets per frame (NRPF) in mesh
and tree structure is identical because the packets are
from each node. The number of transmitted packets per
frame (NTPF) is, however, different for different
nodes in tree structure due to packet relay. Assuming
there is no direct link between immediate child nodes
in the tree structure of node A, the NTPF for node A
can be calculated using Eq. (1). This equation can be
expressed with the number of total nodes n and the
number of immediate child nodes, yielding Eq. (2).

NTPF(A) = 2 (1α β α)+ − (1)

NTPF(A) = (1)n 1α − + (2)
n: the total number of nodes
α : the number of immediate child nodes
β : the number of non-immediate child nodes.

As can be seen from the above equations, NTPF(A)

is a quadratic function of α , the number of immediate
child nodes (ICN) in the worst case where ICNs do not
have direct links between them. If ICN is 1 then
NTPF(A) is 1 according to the equations and it means
high reduction rate of bandwidth requirement for the
node. However, the node which has direct links to all
other nodes should transmit packets times.
This fact implies that bandwidth requirement of the
node and overhead balancing are important factors to
consider when establishing tree structure P2P systems.

2(1)n −

3. 3. Packet aggregation

When packet-relay happens, the relay-node
immediately sends the packet to reduce network
latency. Also, the node needs to send its own packets
to the destination. Assuming we use conservative
consistency algorithms, there will be no additional
delay if the node waits for relay-packets and aggregate
all packets including its own packets for sending to
each destination. This approach can reduce bandwidth
requirement of the node by decreasing NTPF of the
node. When a packet is sent, it is transmitted with
additional information which is called packet header.
This packet aggregation method can reduce the
number of packet headers, therefore it reduces the
bandwidth requirement of the node.

The best case of packet aggregation is that a

shortest path exists which goes through all nodes. For

example, if there are 3 nodes then A-B-C route is
shorter than A-C. In this case, node B will be a super
node that connects all other nodes. In the best case, the
number of total packets per frame in tree structure with
aggregation method can be obtained using the
expression 2(n-1) where n is the number of nodes. In
the worst case, it will be n(n-1) and this is the case of
mesh structure and there is no packet aggregation at
all. We can write an expression to indicate the average
value by adding the above two expressions and
dividing them by 2. Eq. (3) shows the detail.

(n(n-1) + 2(n-1)) / 2 = ((n-1)(n+2))/2 (3)

The number of packets per frame in tree structure is

always smaller than in mesh structure when n is greater
than 3, as can be seen in Eq. 3. (We omit the proof due
to space limitations.) Generally, P2P requires more
than three nodes. Therefore, we can guarantee that the
packet aggregation method reduces bandwidth
requirement in tree structure relative to relay-only
method in any case. The number of packets per frame
is a linear function of the number of nodes in the best
case and it is a quadratic function in the worst case.

3. 4. Retransmission

Retransmission is unavoidable when packet drop or
errors occur, especially when frequent packet
regeneration scheme is not used. The decision for
retransmissions is based on acknowledgement timeout
and acknowledgement numbers from opponent nodes.
The retransmission procedure is exactly the same as
sending packets the first time, except that the
retransmission will occur at the parent node of the
node that requests the missing packets.

3. 5. Acknowledgement

Generally, network latency between players in the
Internet is neither symmetric nor fixed. However, for
clarity of efficiency analysis of consistency
maintenance algorithms, we assume that network
latency is fixed in the network simulator. Therefore,
acknowledgement time calculation is based on RTT
(round-trip time) measurement. In real life situations,
RTT between players is not constant during game
sessions in the Internet but in this experiment we just
use the exact time of RTT for clearer analysis of the
algorithm efficiency. Each player sends frame packets
at regular intervals but acknowledgement packets are
sent immediately when other players’ packets arrive.
This tree based P2P system can prevent

acknowledgement implosion problem [3] because each
node manages its own child or children.

4. Experimental results

4.1. Experimental data set

In general, most P2P network-based games support
eight players due to network constraints such as
latency and bandwidth. Therefore, we created the
simulator initially with a generated data set of eight
players, and randomly selected network latency with
values between 5 and 100 ms. Table 1 shows
maximum and average latency between each node.
Maximum latency, a key factor which affects the
overall game speed, for the eight -player experimental
data set is 77. We will expand further on the meaning
of maximum latency in the next section.

Table 1: Latency values between eight players
(Max Latency: 77, Average Latency: 40.46)
 0 1 2 3 4 5 6 7

Max: 76 64 77 76 77 77 77 70
Avg.: 41 43 44.43 31.57 34.57 44 46.57 38.57

4.2. Simulator architecture

Our tree-based P2P network simulator is implemented
in C++ with STL and consists of three main classes,
namely, (1) Player, (2) Simulator and (3) Statistics.
The player class utilizes three data structure types:
Queue for an input buffer, Priority Queue for a re-
sending buffer, and Circular Array for a game buffer,
in order to store other players’ packets, to re-send
dropped packets, and to gather frame data respectively.
The simulator class is responsible for packet
forwarding among players by providing MainBuffer,
packet dropping by applying packet drop rate, and
passing simulation results to the Statistics class which
records the data into files for later analysis. The Player
class is in charge of packet relay, sending
acknowledgement, frame packet generation and
resending when packet drop is detected [3].

4. 3. Comparison between algorithms

Two consistency maintenance algorithms, Lockstep
(LS) and Locked Bucket-Synchronization algorithm
(LBS), are implemented for this experiment. The
experiment duration is 60 seconds and frame interval is
100 ms because the maximum network latency is set as
100 ms between players. Playout delay for LBS is 200

ms and two network structures are used, namely graph
and tree.

Table 2, Figure 1 and 2 show experimental results
based on LS and LBS algorithms under graph structure.
The first row in the table shows the optimal results of
the game session which has no packet drop at all.
Therefore, FPS (Frame per Second) value is 10 and
this value is same as the optimal value. In optimal
situation, the formula for the total number of packets
per frame is expressed as where n is the

number of players. A factor of 2 is included because
we also count acknowledgement packets even though
their size is smaller than the size of frame packets.
Therefore, the value for the Average Packets per
Frame for eight-player game sessions is 112 as shown
in the table. Figure 3 and 4 display the results of
experiments using the two algorithms under tree
structure.

(1) 2n n − ×

Table 2: Experimental results of Lockstep
algorithm on graph structure

Drop
Rate (%)

Total
Packets FPS

Avg. Packets
per Frame

0 67066 10.00 111.78
1 51612 7.58 113.43
2 47517 6.88 115.05
5 39398 5.47 120.12
10 35410 4.52 130.66

Figure 3: The changes of FPS according to packet
drop rate on tree structure

Figure 1: The changes of FPS according to packet
drop rate on graph structure

5. Analysis and discussion

Figure 4: The changes of average number of

packets per frame according to packet drop rate
on tree structure

Figure 2: The changes of average number of

packets per frame according to packet drop rate
on graph structure

As shown in Figure 1, LBS algorithm performs

better than LS on packet drop rate, in terms of game
execution speed measured by FPS. LS algorithm
achieved around 45% of optimal value and LBS
algorithm achieved about 76% on 10% packet drop
rate. The average numbers of packets per frame under
graph structure are almost identical for both algorithms

as displayed in Figure 2. This implies that LBS
algorithm performs better than LS algorithm in terms
of game execution speed without increasing bandwidth
requirement for players.

To reduce network latency and bandwidth
requirement, tree-based P2P system is introduced and
the experimental results are shown in Figure 3 and 4.
The FPS values are almost optimal (about 97%) when
LBS algorithm is employed on tree structure even with
10% packet drop rate as shown in Figure 3. The
numbers of packets per frame for each algorithm on
tree structure are almost identical. However, when
aggregation method is utilized, the number of packets
per frame is dramatically reduced from 112 to 60 on
0% of packet drop rate. The number of packets per
frame for eight-player game sessions is 63 when
packet aggregation is available in average case
according to Eq. (3). The number becomes 112 in the
worst case as clearly shown in Figure 4.

6. Conclusions

This research we proposed a packet aggregation
method for tree structure in P2P multiplayer distributed
network games with the aim of reducing network
latency and bandwidth requirements. The tree structure
finds the shortest path for each player, in order to
reduce network latency, and the packet aggregation
method waits until all packets bound for one
destination arrive, then aggregates the packets and
transmits the aggregated packet.

We also examined the effects of the aggregation
method on two conservative consistency maintenance
algorithms, Lockstep and Locked Bucket
Synchronization. To compare the efficiency of the
aggregation method, experiments were conducted
using the network simulator described in Section 3,
with the network setting of 8 player nodes.

The LBS algorithm with aggregation method
performs better than any other combination in terms of
game frame rate and bandwidth requirement. However,
LBS algorithm prolongs playout-delay which also
affects game playability and this may be critical to
some genres of network games. Therefore, in
continuing research, we will further examine the
effects of the playout-delay on distributed network
games. Also, to analyze the efficiency of the packet
aggregation method, we will apply the method to game
sessions of varying numbers of players.

References

[1] Heng, S. Y., Online Gaming Subscription Revenue
Surpassed US$1 Billion in 2004 and Will More Than
Double by 2009. IDC – Press Release, Available:
http://www.idc.com/getdoc.jsp?containerId=pr2005_08_04_
110417 [04 Aug 2005], 2005
[2] Doom World, Doomworld -- The definitive source for
Doom news, information and development. Available:
http://doomworld.com/ [15 December 2003], 2003
[3] Moon, K. S., Muthukkumarasamy, V., Nguyen A. T.,
and Kim, H. S., Maintaining Consistency in Distributed
Network Games. In Proceedings of the 13th IEEE
international conference on networks jointly held with the 7th
IEEE Malaysia international conference on communications,
Kuala Lumpur, Malaysia, pp. 374-379, 2005
[4] Moon, K. S., Muthukkumarasamy, V., and Nguyen
A. T., Efficiently Maintaining Consistency Using Tree-
Based P2P Network System in Distributed Network Games.
The Edutainment 2006, International Conference on E-
learning and Games, Hangzhou, China, 2006
[5] Moon, K. S., Muthukkumarasamy, V., and Nguyen
A. T., Reducing Bandwidth Requirements on Consistency
Maintenance Algorithms in Distributed Network Games.
IADIS International Conference, Applied Computing 2006,
San Sebastian, Spain, 2006
[6] Baughman, N. E. and Levine, B. N., Cheat-proof playout
for centralized and distributed online games. In Proceedings
of IEEE Infocom, Anchorage Alaska, USA, vol. 1, pp. 22-26,
2001
[7] Singhal, S., and Zyda, M., Networked Virtual
Environments: Design and Implementation, Addison Wesley,
ACM Press, July 1999.
[8] Laurent, G., and Diot, C., Design and evaluation of
MiMaze a multi-player game on the Internet, In Proceedings
of Multimedia Computing and Systems IEEE International
Conference, p233-236, 28 June-1 July 1998.
[9] Vogel, J., and Mauve, M., Network Games: Consistency
control for distributed interactive media, In Proceedings of
the ninth ACM international conference on Multimedia,
October 2001.
[10] Wolfson, O., The overhead of locking (and commit)
protocols in distributed databases, ACM Transactions on
Database Systems (TODS), v.12 n.3, p.453-471, Sept. 1987
[11] Singhal, S., Effective remote modelling in large-scale
distributed simulation and visualization environments. PhD
dissertation. Department of Computer Science, Stanford
University, Palo Alto, August 1996.
[12] Sharkey, P. M., Ryan, M. D. and Roberts, D. J., A Local
Perception Filter for Distributed Virtual Environments, IEEE
Virtual Reality Annual International Symposium (VRAIS 98),
Atlanta, GA, 14-16 Mar., 1998.
[13] Jefferson, D. R., Virtual Time, ACM Transactions on
Programming Languages and Systems, 7(3):404-425, July
1985.

http://www.idc.com/getdoc.jsp?containerId=pr2005_08_04_110417
http://www.idc.com/getdoc.jsp?containerId=pr2005_08_04_110417
http://doomworld.com/

	1. Introduction
	2. Related work
	3. Tree-based distributed network games
	3.1. Graph vs. tree
	3. 2. Packet relay
	3. 3. Packet aggregation
	3. 4. Retransmission
	3. 5. Acknowledgement
	4. Experimental results
	4.1. Experimental data set
	4.2. Simulator architecture
	4. 3. Comparison between algorithms

	5. Analysis and discussion
	6. Conclusions
	References

