
Model Optimization and Parameter Estimation
with Nimrod/O

David Abramson1, Tom Peachey1, and Andrew Lewis2

1 Caulfield School of Information Technology, Monash University, Melbourne,
Australia

2 Division of Information Services, Griffith University, Brisbane, Australia

Abstract. Optimization problems where the evaluation step is com-
putationally intensive are becoming increasingly common in both en-
gineering design and model parameter estimation. We describe a tool,
Nimrod/O, that expedites the solution of such problems by performing
evaluations concurrently, utilizing a range of platforms from worksta-
tions to widely distributed parallel machines. Nimrod/O offers a range
of optimization algorithms adapted to take advantage of parallel batches
of evaluations. We describe a selection of case studies where Nimrod/O
has been successfully applied, showing the parallelism achieved by this
approach.

1 Introduction

Research in optimization concentrates on search methods; the objective function
is usually only mentioned with regard to how its properties affect the validity
and efficiency of the algorithm. A published algorithm will typically (see for
example [20]) contain lines of the form

evaluate y = f(x1, x2, . . . , xn)
giving the impression that the step is minor. However for a substantial class of
optimization problems the execution time of the algorithm is dominated by this
evaluation step.

One such set of problems involve industrial design. Increasingly, in the design
of engineering machines and structures, the prototyping stage is being replaced
by computer modelling. This is normally cheaper, allows exploration of a wider
range of scenarios and the possibility of optimization of the design. Consider for
example a design problem in mechanical engineering, that of choosing the shape
of a component that meets the functional specifications and is also optimal in
the sense of giving maximal fatigue life [16]. Computation of the fatigue life
involves a finite element analysis of the stress field followed by computation
of perturbations produced by a range of hypothetical pre-existing cracks and
calculation of the growth rate of these cracks under a given load regime.

Another class of optimization problems occurs in scientific modelling where
one wishes to determine the values of underlying parameters that have given
rise to observed results. This inverse problem may be considered an optimiza-
tion problem, searching through the plausible parameter space to minimize the

discrepancy between the predicted and observed results. Inverse computational
problems of this type are becoming common throughout many branches of sci-
ence; some examples are described in a later section.

Such computational models typically take minutes or hours on a fast machine
and an optimization requires that the model is executed many times. Hence it
becomes attractive where possible to perform batches of these evaluations con-
currently, sending the jobs to separate processors. Large clusters of processors
are now commonly available for such work [1]. This paper describes a tool, Nim-
rod/O, that implements a variety of optimization algorithms, performing objec-
tive evaluations in concurrent batches on clusters of processors or the resources
of the world computational grid.

2 The Nimrod Family of Tools

Parametric studies are explorations of the results of computational models for
combinations of input parameters. Nimrod/G, [6, 4, 9], was designed to assist en-
gineers and scientists in performing such studies using concurrent execution on a
cluster of processors or the global grid. The user typically specifies a set of values
for each parameter and the tasks required for a computation. Nimrod/G then
generates the appropriate parameter combinations, arranges for the executions
of these jobs and transfer of files to and from the cluster nodes, informing the
user of progress with a graphical interface. Such an experiment may take days
so failure of cluster nodes is a common problem; Nimrod/G reschedules jobs
from a failed node. The number of concurrent jobs is limited only by the size of
the cluster. Thus the user may achieve high concurrency without modifying the
executables.

Nimrod/O [19] is a tool that provides a range of optimization algorithms and
leverages Nimrod/G to perform batches of concurrent evaluations. Hence it is
an efficient tool for the types of optimization problems mentioned earlier. Below
we describe the operation of Nimrod/O and discuss some of the projects where
it has been used. Note that Nimrod/O is not unique in offering distributed opti-
mization. OPTIMUS Parallel [2], a commercial product, was developed at about
the same time. However the focus there is narrower than that of Nimrod/O, with
an emphasis on Design of Experiments and Response Surface Methods.

The Nimrod Portal [3] provides a friendly interface to the Nimrod toolset. It
uses drop down menus to design and run an experiment and to select compu-
tational resources. Such resources may be added or removed as the experiment
proceeds.

3 Nimrod/O

Nimrod/O requires a simple text “schedule” file that specifies the optimization
task and the optimization method(s) to use. Several different algorithms and
different instances of the same algorithm (varying the algorithm settings or the

starting points) may be performed concurrently. But each evaluation task is fun-
nelled through a cache to prevent duplication of jobs. If the cache cannot find the
result in its database then the job is scheduled on the computational resources
available. Since the Nimrod/O cache is persistent, when an aborted experiment
is restarted the cache can provide results of all jobs completed earlier and hence
a rapid recapitulation of the earlier work. Nimrod/O also allows separate users
to share a cache so a useful database of completed jobs may be developed.

Often the objective functions produced by computational models produce
multiple local optima. Further, the noise produced by discretization of the con-
tinuum may be significant and this gives a rough landscape adding further local
optima as artifacts. The ability to run multiple optimizations from different
starting points often reveals these multiple optima and may indicate which is
global. As they are run concurrently this may be achieved without affecting the
elapsed time.

The schedule file specifies the optimization in a declarative fashion. It is how-
ever simpler than standard optimization specification languages such as GAMS
or AMPL as the definition of the objective function is assumed to be hidden
within an executable program. An imperative section gives the commands needed
to compute that objective.

An example schedule is shown in Figure 1. The first section of this specifies
the parameters, their type (floats, integers or text) and ranges. Text parameter
are used for categorical data; a separate optimization is performed for each com-
bination of text values. For float parameters the “granularity” may be specified
to control the rounding of values that is applied before they are sent for evalua-
tion of the objective. The coarser granularity will improve the chances of a cache
match with previous jobs, possibly at the expense of a less accurate optimum.
Integer parameters are treated as floats with a granularity of 1.

parameter x float range from 1 to 15 method simplex

parameter y float range from 0.5 to 1.5 starts 5

parameter z float range from 0.5 to 1.0 starting points random

parameter w text select anyof "stt" "dynm" tolerance 0.01

endstarts

constraint x >= y + 2.0^z endmethod

constraint {x > sin(pi*y)} or {x < 10}

method bfgs

task main starts 5

copy * node:. starting points random

node:substitute skeleton model.inp tolerance 0.01

node:execute ./model.exe model.inp line steps 8

copy node:obj.dat output.$jobname endstarts

endtask endmethod

Fig. 1. A sample configuration file

The next section of the schedule specifies the “tasks” needed to evaluate
the objective, normally to run a computational model. This includes the dis-
tribution of requisite files to the computational processors (the nodes), perhaps
substitution of parameter values in input files, the execution of the evaluation
programs and the return of the objective value. In this case the file skeleton
has strings $x, $y, $z and $w replaced by their current values to form an input
file model.inp for the computation. The executable model.exe performs the
modelling producing a numerical result in the file obj.dat which is then copied
back to the root node.

Finally the schedule gives the optimization method or methods to use. The
example shown uses two methods, downhill simplex and BFGS. Note that sev-
eral “starts” are specified, five simplex, five BFGS. This gives ten separate op-
timizations all of which will run concurrently if sufficient computing nodes are
available.

4 Nimrod/O Algorithms

Nimrod/O is designed to solve optimization problems in engineering design and
scientific modelling that typically involve a search space that is the cross product
of several continuous parameters. Thus the problems are rarely of the combina-
torial nature frequently encountered in operations research. Rather they require
hill-climbing methods. The optimization algorithms offered by Nimrod/O reflect
this requirement.

The algorithms provided fall into three categories. The first type samples the
whole search space. It includes an exhaustive search with a given granularity for
each numerical parameter. There is also a “subdivision search”. This evaluates
the space on a coarse grid then iterates, each iteration using a finer grid around
the best point revealed by the previous iteration.

The second class are some traditional downhill search methods and recent
variants: the direct search method of Hooke and Jeeves, the simplex method
of Nelder and Mead, and some variants, the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) quasi-Newton method, and simulated annealing. Finally there are popu-
lation based methods. EPSOC is an evolutionary programming algorithm using
the ideas of self-organised criticality [13]. Nimrod/O interfaces with external
genetic algorithm implementations GENEsYs and gamut.

The design of Nimrod/O allows for co-scheduling with external optimiza-
tion routines. Using library functions supplied an external program can forward
batches of jobs to Nimrod/O and hence take advantage of distributed computa-
tion, caching and constraint evaluation facilities.

Traditionally, search algorithm efficiency has been judged on the number
of function evaluations required. In the Nimrod/O scenario execution time is
dominated by function evaluations but these are processed in concurrent batches.
Assuming there are sufficient computational resources to handle the largest batch
then the number of batches becomes the critical factor in execution time. In

implementing the optimization algorithms we have modified standard algorithms
where this gives a reduced total number of batches.

For example with the traditional simplex search each iteration evaluates the
objective at four points on a line. Nimrod/O offers the alternative of a line search
to find the best point along that line. It also offers variants which search along
several lines. Although these modifications require more evaluations, experiments
suggest, [14], that batch counts are reduced and convergence expedited.

Batches of evaluations may also be augmented with jobs that may (or may
not) be required at a later stage in the algorithm. This is known as “speculative
computing”, [10]. The Nimrod/O simulated annealing implementation can an-
ticipate the step after next, adding tasks that may be needed then. Again this
increases the total evaluations but reduces the execution time, [15]. Note that
concurrent batch processing also favours the population based methods as the
members of a large population may all be assessed concurrently.

5 Nimrod/O Case Studies

Nimrod/O has been successfully applied to a wide variety of optimization prob-
lems. A sample is discussed here. Data relating to the parallelism achieved in
these experiments are combined at the end of this section.
Air Quality Modelling (AQM)
The model used predicted the concentration of ozone in an airshed, given con-
centrations of precursor chemicals together with meteorological data for the city
modelled. The task [12, 5, 7] was to minimize the ozone concentration within a
range of values for N and R, the concentrations of oxides of nitrogen and reactive
organics respectively. Since ozone concentration is not a monotonic function of
the input concentrations, the minimum does not necessarily correspond to least
N and R.
Electromagnetic Modelling (EM)
The design of a test rig for mobile telephone antennas included a ferrite bead
to reduce distortion of the radiation pattern [5, 7]. The finite-difference time-
domain technique was used to solve Maxwell’s equations for the design. The aim
was to determine the dimensions and properties of the bead that minimized the
losses due to testing.
Airfoil
Flow around an airfoil was modelled, [8], using the computational fluid dynamics
package FLUENT. Input parameters were the thickness, camber and angle of
attack of the airfoil; the aim was to maximize the ratio of lift to drag.
Quantum Chemistry (QC)
Hybrid quantum mechanics-molecular mechanics use quantum computations for
small “active” regions of a molecule and classical methods for the rest. A major
problem is correct coupling of the two models. This work, [21], uses the recently
developed method of inserting a “pseudobond” at the junction between the mod-
els. The method was applied to an ethane molecule using a “pseudopotential”

of the form U(r) = A1 exp(−B1r
2) + A2 exp(−B2r

2). The task was to deter-
mine parameters A1, A2, B1 and B2 to minimize a least squares measure of the
difference between the model properties and those of real ethane.
Plate Fatigue Life (PFL)
This work [16], modelled the fatigue life of plates containing an access hole, as
occurs for example in stiffeners in airplane wings. This required finite element
computation of the stress field and the Paris model of the growth of pre-existing
cracks. The aim was to determine the hole profile under certain constraints that
optimized this fatigue life.
Transformation Norm of an Integral Transform (TNIT)
The norm of the Generalized Stieltjes Transform is a long unsolved problem in
mathematical analysis. A model was used to compute the ratio of the output
norm to the input norm for a 2 parameter family of input functions and Nim-
rod/O optimized this ratio [18]. A novel aspect of this project was that multiple
optimizations were performed for a parameter sweep of two further parameters;
so multiple instances of Nimrod/O were launched by Nimrod/G.

5.1 Parallelism

For a single Nimrod/O optimization, if all evaluations required the same execu-
tion time then the ratio of the number of evaluations to the number of batches
would give the parallelism attained. (When execution times vary then this over-
estimates the parallelism as discussed in [17], since the execution time for a
batch is that of the longest job.) The case studies described above used multi-
ple optimizations, thus increasing the effective parallelism. We assume sufficient
computational resources to run all optimizations concurrently. In that situation
the number of batches in the longest optimization is the main determinant of the
total experiment time. Figure 2 gives n, the number of optimizations, b and e,
the number of batches and of evaluations for the longest optimization, B and E,
the total batches and evaluations for all optimizations. Then the ratios e/b and
E/B estimate the concurrency for a single optimization provided by batch eval-
uation. E/b estimates the concurrency for the combined optimizations provided
by both batching and concurrent optimizations.

6 Conclusion

Optimization problems where evaluation of the objective function is computa-
tionally intensive are increasingly common. Nimrod/O is a tool that can expe-
dite such problems by providing concurrent execution of batches of evaluations
and concurrent multiple searches. It uses either a cluster of processors or the
resources of the world computational grid; concurrency is limited only by the
number of processors available. Nimrod/O offers a range of standard search al-
gorithms and some novel ones, and is easily extensible to new algorithms. Since
the total execution time is determined by the number of batches rather than the
number of evaluations modifications to some traditional search algorithms are
advantageous and have been incorporated into Nimrod/O.

Experiment Method n b e B E e/b E/B E/b

AQM BFGS 1 10 46 10 46 4.6 4.6 4.6
EM BFGS 10 17 95 102 581 5.6 5.7 34.2

Simplex 10 16 42 106 286 2.6 2.7 17.9
Simplex-L 10 21 146 124 859 7.0 6.9 40.9
Simplex-L1 10 16 144 104 843 9.0 8.1 52.7

RSCS 10 9 54 61 371 6.0 6.1 41.2
RSCS-L 10 17 127 116 858 7.5 7.4 50.5
RSCS-L1 10 12 121 89 818 10.1 9.2 68.2
EPSOC 10 20 892 200 8616 44.6 43.1 430.8
EPSOC 10 20 1117 200 10601 55.9 53.0 530.1

Airfoil Simplex 10 40 160 241 908 4.0 3.8 22.7
Simplex-L 10 70 1037 463 6753 14.8 14.6 96.5
Simplex-L1 10 28 385 183 2657 13.8 14.5 94.9

RSCS 10 53 525 173 1717 9.9 9.9 32.4
RSCS-L 10 71 1042 369 5385 14.7 14.6 75.8
RSCS-L1 10 34 530 219 3301 15.6 15.1 97.1
EPSOC 10 20 1260 200 12472 63.0 62.4 623.6

QC BFGS 63 300 1450 3121 14650 4.8 4.7 48.8
PFL simplex 9 26 88 132 505 3.4 3.8 19.4
TNIT simplex 209 93 305 3048 10602 3.3 3.5 114.0

Fig. 2. Parallelism achieved by some experiments

References

1. http://www.top500.org/lists/, accessed 3 August 2005.
2. http://www.lmsintl.com/, accessed 3 August 2005.
3. http://www.csse.monash.edu.au/~nimrod/nimrodportal/, accessed 3 August

2005.
4. Abramson D. et al. The Nimrod computational workbench: A case study in desktop

metacomputing. In Australian Computer Science Conference (ACSC 97), pages
17 – 26, Macquarie University, Sydney Feb 1997.

5. Abramson D. A., A. Lewis, and T. Peachey. Nimrod/O: a tool for automatic design
optimisation using parallel and distributed systems. In Proceedings of the 4th
International Conference on Algorithms and Architectures for Parallel Processing
(ICA3PP 2000), pages 497–508, Singapore, 2000. World Scientific Publishing Co.

6. Abramson D., J. Giddy, and L. Kotler. High performance parametric modeling
with Nimrod/G: Killer application for the global grid? In International Parallel
and Distributed Processing Symposium (IPDPS), May 2000.

7. Abramson D. A., A. Lewis, and T. Peachey. Case studies in automatic design
optimisation using the P-BFGS algorithm. In A Tentner, editor, Proceedings of
the High Performance Computing Symposium - HPC 2001, pages 22 – 26, Seattle,
April 2001. The International Society for Modeling and Simulation.

8. Abramson D. A., A. Lewis, T. Peachey, and C. Fletcher. An automatic design
optimization tool and its application to computational fluid dynamics. In Super-
computing, Denver, November 2001.

9. Abramson D., R. Buuya, and J. Giddy. A computational economy for grid comput-
ing and its implementation in the Nimrod-G resource broker. Future Generation
Computer Systems, 18(8), Oct 2002.

10. Burton F.W. Speculative computation, parallelism and functional programming.
IEEE Transactions on Computers, C, 34:1190–1193, 1985.

11. Chong E.K.P. and S.H. Żak. An Introduction to Optimization. Wiley, 1996.
12. Lewis A., D. A. Abramson, and R. Simpson. Parallel non-linear optimization:

towards the design of a decision support system for air quality management. In
IEEE Supercomputing 1997, pages 1 – 13, California, 1997.

13. Lewis A., D. Abramson, and T. Peachey. An evolutionary programming algorithm
for automatic engineering design. In Parallel Processing and Applied Mathematics:
5th International Conference (PPAM 2003), Czestochowa, Poland, 2003.

14. Lewis A., D. A. Abramson, and T. Peachey. RSCS: A parallel simplex algorithm
for the Nimrod/O optimization toolset. In Proceedings of the Third International
Symposium on Parallel and Distributed Computing (ISPDC 2004), pages 71–78,
Cork, Ireland, 2004. IEEE Computer Society.

15. Peachey T. C., D. Abramson, and A. Lewis. Heuristics for parallel simulated
annealing by speculation. Technical report, Monash University, 2001.

16. Peachey T., D. A. Abramson, A. Lewis, D. Kurniawan, and R. Jones. Optimization
using Nimrod/O and its application to robust mechanical design. In Proceedings of
the 5th International Conference on Parallel Processing and Applied Mathematics
[PPAM 2003], volume 3019 of Lecture Notes in Computer Science, pages 730–737.
Springer-Verlag, 2003.

17. Peachey T. C., D. Abramson, and A. Lewis. Parallel Line Search. Springer, to
appear.

18. Peachey T. C. and C. M. Enticott. Determination of the best constant in an
inequality of Hardy, Littlewood and Polya. Experimental Mathematics, to appear.

19. Peachey T. C. The Nimrod/O Users’ Manual v2.6. Monash University,
http://www.csse.monash.edu.au/~nimrod/nimrodg/no.html, 2005.

20. Press W.H. et al. Numerical Recipes in C. Cambridge, second edition, 1993.
21. Sudholt W. et al. Applying grid computing to the parameter sweep of a group

difference pseudopotential. In M Bubak et al., editor, Proceedings of the 4th In-
ternational Conference on Computa tional Science [ICCS 2004], volume 3036 of
Lecture Notes in Computer Science,. Springer-Verlag, 2004.

