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ABSTRACT

In this paper, we present a novel genetic algorithm and
least square (GALS) based hybrid learning approach for
the training of an artificial neural network (ANN). The
approach combines evolutionary algorithms with matrix
solution methods such as Gram-Schmidt, SVD, etc., to
adjust weights for hidden and output layers. Our hybrid
method (GALS) incorporates the evolutionary algorithm
(EA) in the first layer and the least square method (LS) in
the second layer of the ANN. In the proposed approach, a
two-layer network is considered, the hidden layer weights
are evolved using an evolutionary algorithm and the
output layer weights are calculated using a linear least
square method. When a certain number of generation or
error goal in terms of RMS error is reached, the training
is stopped. We start training with a small number of
hidden neurons and then the number is increased
gradually in an incremental process. The proposed
algorithm was implemented and many experiments were
conducted on benchmark data sets such as XOR, 10-bit
odd parity, handwritten segmented characters
recognition, breast cancer diagnosis and heart disease
data. The experimental results showed very promising
results when compared with other existing evolutionary
and error back propagation (EBP) algorithm in
classification rate and time complexity.
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I INTRODUCTION

One of the most popular weight-updating rules or
learning  (training)  algorithms is Error Back
Propagation (EBP). However, most of the EBP based
neural learning algorithms strictly depends on the
architecture of the ANN and there are many problems
associated with the currently existing algorithms based
on EBP and its variations [1-4]. Some of the problems
with existing EBP type learning algorithms for ANNs
can be summarized as below:

» The convergence tends to be extremely slow,
sometimes it takes many days or weeks even on
supercomputer.

» The solution is not guaranteed even after many
days or weeks because of local minima & paralysis
problems.
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> Learning parameters such as number of hidden
nodes, iterations, etc. must be guessed heuristically
or by a trial and error method.

» Convergence to the global minimum is not
guaranteed.

There were a number of hybrid techniques [5-20]
proposed to improve EBP type learning algorithms by
using least square methods (LSM), evolutionary
algorithms (EA), etc. EA & LSM based learning
provide an alternative way to train an ANN. The
learning algorithms using EA is based on primary work
in genetic algorithms by Holand, Rechenberg,
Schwefel and Fogel during the 1970s{1]. Much of the
research has focused on the training of feed forward
networks [Fogel, Fogel, and Porto, 1990; Whitley,
Starkweather, and Bogart, 1990][1-2]. Miller et al,
reported that EA is a better candidate than other
standard neural network techniques, because of the
nature of the error surface[1].

The main aim of the research presented in this paper
was to investigate a novel hybrid learning approach
and conduct a comparative study between the existing
learning algorithms that uses EA for evolving the
weights for the MLP, with the proposed hybrid
learning that uses the combination of EA and a least
square method.

II ORGANISATION OF THE PAPER

In section 3 we present in detail our evolutionary
learning algorithm. In section 4 we discuss the
experimental results and finally in section 5, the
conclusion is given.

III PROPOSED LEARNING ALGORITHM

We consider two layers feed-forward neural network
architecture. The evolutionary algorithm is applied for
the first layer weight and the least square method is
applied to find the weights for the output layer. The
evolutionary algorithm that is incorporated for the
hidden layer is the key for the convergence property of
the proposed algorithm. In our original GALS, we
study the results using the standard genetic algorithm
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operations. We, then modify the standard GALS using
the concept of evolutionary algorithm, where only
mutation operation is considered. GALS is described
below in detail using steps 1-7:

Step 1

Initialize the input range: All the inputs are mapped
into a range of the open interval (0,1). The method of
normalization is based on calculating the mean and
standard deviation for each element column and use
these to perform additional scaling if required.

Step 2

Start with a small number of hidden neurons: We start
the training process using a small number of hidden
neurons and a step incremental process.

Step 3

Initialize all the weights for the hidden layer: We
initialize all the hidden layer weights using a uniform
distribution of a closed interval range of [-1, +1]. The
genotype encoding also depends on the type of the EA
to be used.

1 Standard GALS

A sample genotype from the population pool for an n
input, h hidden and m output neuron can be written as
IWan---Wl,.Wanz---Wzn---W;,lw;.z---Wh,,

Where, range(w) initially is set between the closed

interval [-1 +1]

Iani Modified GALS
A sample genotype from the population pool for an n
input, h hidden and m output neuron can be written as

[0 ol W M5 W3l Wy Wi Wil 1,

Where, range(w) initially is set between the closed
interval [-1 +1]

4 are the variance vectors, each values of y is
initialized by a Gaussian distribution of mean 0 and
standard deviation 1.

Step 4:
Compute the weights for the output layer using least
square method:

We compute the weights for the output layer using the
least square method where the output of the hidden

layer is computed as f(-) for the weighted sum of its
input, where f is a sigmoid function.

The output of each of the hidden neuron can be
calculated using the equations:

- f(z:, w1, )}
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Where 1= 1,2,...,h, I is the mapped input and
l+exp™

Where x is the output of the hidden neuron before the
activation function.
After obtaining the corresponding weight gene from
the genotype, as we use sigmoid activation function for
the output also, we need to do the linearization, using
the formula
netb, = —log(l—net—’)

net,

4
Where i=1,2,...,m, netb is the output of the output
neuron before the activation, and net is the output of
the output neuron after the activation
We then require to solve the over determined equation
hid * weight = netb
Where hid is the output matrix from the hidden layer
neurons and weight is the weight matrix output
neurons. We use least square method, which is based
on the QR factorization technique to solve the equation
for the weight matrix using the gr function

[Q, R] = gr(hid)

The function gr returns the orthogonal triangular
decomposition of the hid matrix. It produces an upper
triangular matrix R of the same dimension as Aid and a
unitary matrix Q so that hid = Q*R. The mathematical
details of the algorithm are as follows:

We can solve Ax=b by calculating the QR factorization
of A and solving first Qy=b (hence y = Q'b) and then
Rx=y (a triangular system).

Let
ue R" \{0}
T
H=1-2"_
]

is called a Householder transformation or a
Householder reflection. Since Hu = -u, Hv = v if u'v =
0, this transformation reflects any vector x € R" in the
(n-1) dimensional hyper plane spanned by the vectors
orthogonal to u. Each such matrix H is symmetric and
orthogonal. The later follows because reflection leaves
the Euclidian distance invariant, or by direct
calculation
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Let a € R™ be the first nonzero column of A. We wish
to choose u € R™ and, in addition, we normalize u so

that 2u”a = |u|* (and a # 0)

Therefore w; = a;,i = 2,...,m and the normalisation
implies that

m
2 _ .2 2 _
2u,a, +22a,. =u; +Za. =>
i=2 i

u? —2u,a, +a} —ia,.z =0=>
i=1
u, =a * ”a"

It is usual to let the sign be the same as the sign of a,,
since ”u" <<1 might lead to a division by a tiny

number, hence to numerical difficulties. For large m
we do not execute explicit matrix multiplication.
Instead, to calculate

wa’ | u(u” 4)

2 - 2
| |

We first evaluate w' = u"A, subsequently forming

I1-2

2
uw’
2
Jd
Supposing that the Householder transformation has

been applied k-1 times, so that the first k-1 columns of
the resultant matrix A have an upper triangular form.

A—

We process columns A in sequence, in each stage pre
multiplying a current A by the requisite Householder
transformation. The end result is an upper triangular
matrix R. To determine Q, we set Q = I initially, and
for each successive reflection, we replace £ by
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T

I—2 uu _
|+

2
= Q—Wu(uTQ)

As in the case of given rotation, by the end of the
computation, Q = Q'. However if we require just
vector ¢ = Q'b, rather than matrix Q, then we can set
initially ¢ = b and in each stage we replace ¢ by

uu” e 2ulc "
iz |

o

If A is dense, it is in general more convenient to use
Householder reflections. Given rotations come into
their own, however when A has many leading zeros in
its rows. In an extreme case, if an n X n matrix A
consists of zeros underneath the first sub diagonal, they
can be rotated away in just n-1 rotations at the cost of
0(n’) operations.

I1-2

The solution matrix can be found from the R matrix
using one step iterative process as

R
X =
RT /[(hid™ * netb)

the error € can be calculated as

r =netb—hid *x

R
e=———————
RT /(hidT *r)

The final value of solution for weight matrix can be
then found as

weight = x+e

Step 5

Apply  evolutionary algorithm: We create an
intermediate population from the current population
using a selection operator. We use roulette wheel
selection. The method creates a region of a wheel
based on the fitness of a population string. All the
population strings occupy the space in the wheel based
on their rank in fitness. A uniform random number is
then generated within a closed interval of [0,1]. The
value of the random number is used as a pointer and
the particular population string that occupies the
number is selected for the offspring generation. Once
the intermediate population strings are generated, we
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randomly choose two parents from the pool of the
intermediate population, and apply the genetic
operators (crossover, mutation) to generate the
offspring with some predefined probability patterns.
We use fixed probability value for the genetic
operators. Some preliminary results have shown that a
crossover rate of [0.7, 0.8] and mutation rate of [0.1-
0.2] provides the best results. We continue this process
till such time the number of offspring population
becomes same as the parent population.

Once the new population has been created, we find the
fitness for all the population based on the weights of
the hidden weights (obtained from the population
string) and the output layer weights (obtained from the
least square method). We also normalize the fitness
value to force the population string to maintain a pre-
selected range of fitness.

In case of standard GALS, we call the function to
calculate the weights of the output layer, based on a
constant population string of the hidden layer. Once a
fixed population string was determined, we could then
call the least square method. In case of modified
GALS, we define two different fitness functions. One
fitness function was called initially after randomizing
the population for the hidden layers, and then giving
the best population index finding the fitness for all the
population and then cailing the least square method for
all of them.

IHLLIL1 Intermediate population generation
netQOutput = f(hid * weight)
Where f is the sigmoid function

2 (netOutput  — net )*
RMSError = \|-=!

n*h
POpRMSError, = norm(RMSError,)
norm function normalized the fitness of the individual,

so the fitness of each individual population is forced to
be within certain range. :

HILLIL2 Offspring generation for standard GALS
Generate a random number x from a Gaussian
distribution of mean 0 and standard deviation 1.

If (x < crossOverRate)
Select two parents from the intermediate
population
ApplyCrossOver

End If

Generate another random number y from the same
distribution
If (y < mutationRate)
ApplyMutation
End If
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The crossover method that is used for this algorithm is
known as linear interpolation with two points
technique. Let’s consider two genes

ww,.w,

and
I

W W, W,

Two points are selected randomly, lets assume pointl
and point2, where pointl<point2, and pointi>1,
point2<h

The two childs after the crossover operation will be

A28 iy Mo Yo it Wt T2

33 7 3 3 3
3 3
and
“('"'M “i'*'zé M{Jdnl"'%dnl Mdnl*l'i'védnm 2”;’7&::2—1 -H'ézdnﬁ-l
3 3 3 3 3
Wng 1 Wi W+
3 S

For mutation, a small random value between 0.1 and
0.2, is added to all the weights. Let us assume a parent
string

wW,..w,

After mutation the child string becomes
wte|lw,+€|.|w,+E

Where ¢ is a small random number [0.1 0.2], generated
using a uniform distribution.

Offspring generation for modified GALS

Each individual population gene (Wi, ni), =1, 2, ...,
I creates a single offspring (Wi, ni') by : for j = 1, 2,
.oy

/() =i ()exp(¥N(0,1) + TNj(0, 1))

W{() = WiG) +n/G) Nj(0,1)

Where W(j), W{(j), ni(), and /() denote the jth
component of the vectors Wi, wi , Mi» and T]i/,
respectively. N(0,1) denotes a normally distributed
one-dimensional random number with mean and
variance of 0 and 1 respectively. Nj(0,1) denotes that
the random number is generated a new for each value

-1
of j. The parameter T and 7 are set to ( 24/n ) and

(v2n)'



TABLE 2 RESULTS FOR MODIFIED GALS®

Step 6 Data Popu- | Hidden | Time Class Error
. . set lation | Neuron
Check the error goal: If any population string from the T Tost
populatiqn pool meets the error goal criterion, we stop XOR 0 3 250se0s | 1(25%) X
the algorithm. Otherwise, goto step 7. data
2 262 secs 0 (0%) X
set 20
Step 7 ) 10 62 mins | 300(29.3%) X
Increment the number of hidden neurons: Add one lgd]:t 10 20 Gamins | 290(28.3%) X
more neuron in the hidden layer and goto step 3. parity
ate 10 71 mins | 287(28%) X
set 20 20 72mins | 286(27.9%) X
v EXPERIMENTAL RESULTS AND 10 40mins | 135(45%) 23(46%)
ANALYSIS 10 20 41 mins | 130(43.3%) 21(42%)
We have implemented the proposed algorithm in 30 43mins | 126(42%) 22(44%)
MATLAB and C. We have tested the proposed 10 WBmins | 131(d3.6%) | 24(38%)
algorithm on many benchmark data sets such as XOR, Hand '
10 bits odd parity, handwritten characters, breast :"u‘: 20 Simins | 125(41.6%) |  21(42%)
cancer and heart disease. We compare the GALS cha%— 20 30 53 mins | 121(40.3%) 19(38%)
results with other approaches like existing EBP and acter -
X 20 54 mins | 121(32.2% 107(35.7%
GA based algorithms. data 622% @57
set 30 55mins | 110(27.5%) | 100(33.4%)
TABLE | __ RESULTS FOR EBP' 10 62mins | 117(29.2%) | 104(34.7%)
Data Set Class Error Time’ 20 20 65Smins | 11027.5%) | 97(32.4%
Train Test 30 66 mins | 103(25.7%) | 91(30.4%)
10 41 mins | 68(27.2%) | 23(42.3%)
XOR data set 1(25%) X 10 mins Heart i
dis- | 10 20 | 43mins | 65(26.0%) | 22(41.5%)
10 bit odd parity | 360 (35.15%) X 63 mins ‘:;:; 30 45mins | 63(25.2%) | 20(37.7%)
data set
se set’ 10 47mins | 65(260%) | 21(39.6%)
Handwriting data | 110 (36.6%) 26 (52%) | 61 mins 20 20 48 mins | 64(25.6%) | 19(35.8%)
" .
5 30 | SOmins | 61(244%) | 18(33.9%)
Breast cancer data | 146 (36.5%) | 134 (44.8%) | 57 mins 10 52'mins | 13032.5%) | 118(39%)
set 10 20 | S4mins | 121(322%) | 107(35.7%)
Heart discase data | 100 (40%) 27(50.9%) | 52 mins CB;‘;; 30 55mins | 110(27.5%) | 100(33.4%)
set data _ 10 62mins | 117(292%) | 104(34.7%)
set
20 20 65mins | 110(27.5%) | 97(32.4%)
30 66 mins | 103(25.7%) | 91(30.43%)

3 Results are only given for modified GALS, which was
better than the standard GALS.

* For handwriting data set the number of training
pattern was 300 and testing 50. Number of input data
column was 100 and output column 29 (26 characters

0-7803-7282-4/02/$10.00 ©2002 IEEE

! In case of EBP the number of epochs were varied from 500
to 3000, the maximum number of hidden neurons were 10,
learning rate 0.2 and momentum 0.7

% The time complexity of EBP was calculated after
adding all the runs to find the best solution, which
included changing the learning parameters and number
of hidden neurons.
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and 3 rubbish characters).

3 For heart disease data set the number of training
pattern was 250 and testing 53. Number of input data
column was 14 and output column 1.

® For breast cancer data set the number of training
pattern was 400 and testing was 299. The number of
input column was 10 and output 1.
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A\ CONCLUSION AND FURTHER
RESEARCH

The proposed evolutionary neural learning algorithm
showed some promising results in terms of the

classification rate and time complexity when compared

with the existing EA and EBP based techniques to train
an ANN. As shown in Tables 1 and 2, the proposed
evolutionary learning algorithm GALS performed
better in terms of classification error and took less
training time than EBP. Also the experiments showed
that the probability of getting guaranteed solution is
much higher for GALS than the existing EA and EBP
based techniques. There are many scopes to improve
the proposed learning algorithm for both the hidden
and output layers. In our future research, the automatic
selection of hidden neurons as described in section III,
will be implemented and investigated.
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