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ABSTRACT 18 

The hypothesis that marine plankton ecosystems may effectively regulate climate by 19 

the production of dimethylsulphide (DMS) has attracted substantial research effort 20 

over recent years. This hypothesis suggests that DMS produced by marine ecosystems 21 

can affect cloud properties and hence the averaged irradiance experienced by the 22 

phytoplankton that produce DMS’s precursor dimethylsulphoniopropionate (DMSP). 23 

This paper describes the use of a simple model to examine the effects of such a 24 

biogenic feedback on the ecosystem that initiates it. We compare the responses to 25 

perturbation of a simple marine nitrogen – phytoplankton – zooplankton (NPZ) 26 

ecosystem model with and without biogenic feedback. Our analysis of this heuristic 27 

model reveals that the addition of the feedback can increase the model’s resilience to 28 

perturbation and hence stabilise the model ecosystem. This result suggests the 29 

hypothesis that DMS may play a role in stabilising marine plankton ecosystem 30 

dynamics through its effect on the atmosphere. 31 

 32 

INDEX TERMS:  0315, 0439, 0444, 0466  33 

 34 

KEYWORDS: DMS, climate change, CLAW, biofeedback, NPZ model. 35 

 36 

INTRODUCTION 37 

The prospect of human-induced climate change has stimulated research into several 38 

biological processes that might affect climate. One such process that has attracted a 39 

substantial research effort is the so-called CLAW hypothesis [Charlson, et al., 1987]. 40 
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This hypothesis suggests that marine plankton ecosystems may effectively regulate 41 

climate by a feedback associated with the production of dimethylsulphide (DMS). 42 

Charlson et al. [1987] observed that some of the DMS produced by marine 43 

ecosystems is transferred from the ocean to the atmosphere where it is the major 44 

source of cloud condensing nuclei (CCN) over the remote oceans. The aerosols 45 

resulting from biogenic DMS emissions can have a direct effect on the solar radiative 46 

forcing experienced by the Earth through scattering, absorption and reflection and can 47 

also lead to increased cloud formation; the CLAW hypothesis proposes that these 48 

mechanisms could regulate climate. Charlson et al [1987] argued that an increase in 49 

global temperature would lead to increased biogenic DMS emissions from the ocean 50 

and result in an increase in scattering, cloud cover and cloud albedo that would 51 

increase the proportion of the incoming solar radiation reflected back into space (thus 52 

changing the global albedo), and thereby cooling the planet. 53 

 54 

DMS is an ecosystem product. Many species of marine phytoplankton synthesise 55 

dimethylsulphoniopropionate (DMSP), the precursor to DMS. However, most DMSP 56 

that is converted to DMS is done so by ecosystem processes that occur outside the 57 

phytoplankton cell [Simo, 2001]. In addition to the climatic role postulated for DMS 58 

by the CLAW hypothesis, DMSP is a compatible solute that can protect cells from the 59 

osmotic effects of seawater and the effects of freezing, may deter predation by 60 

zooplankton, may act as an antioxidant, and has also been proposed to assist in the 61 

long range dispersal of marine phytoplankton [Hamilton and Lenton, 1998; Kiene, et 62 

al., 2000; Sunda, et al., 2002; Wolfe, et al., 1997]. 63 

 64 
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The objective of this paper is to examine the implications of the climate regulation 65 

process proposed by Charlson et al. [1987] for the dynamics of the ecosystems that 66 

produce it. To do this we develop a simple plankton model that incorporates the DMS 67 

feedback mechanism and compare its dynamics to the same ecosystem model without 68 

the feedback. The plankton model is composed of nutrient (N), phytoplankton (P) and 69 

zooplankton (Z), and is one of a class of NPZ models that have proved powerful 70 

heuristic tools in biological oceanography [Franks, 2002]. The feedback processes 71 

quantified by Charlson et al. [1987] (a changed light environment arising from a 72 

modified albedo due to DMS production, where the changed light environment then 73 

influences the phytoplankton growth rate) were incorporated into the NPZ model to 74 

build a biogenic feedback model that was not intrinsically constrained to any specific 75 

oceanic environment. The structure of this model is shown in Figure 1. Our whole-of-76 

system modelling approach is similar to that of Lawrence [1993], who used a similar 77 

model to assess the impact of the feedback on climate. Our approach and intention is 78 

substantially different: we close the feedback cycle on the ecosystem, and examine the 79 

implications of the feedback for the ecosystems that generate it. 80 

 81 

Comparisons between simulations of the NPZ model with and without feedback were 82 

undertaken to elucidate the influence of the feedbacks for the ecosystem. The 83 

simulations revealed that the presence of the feedback generally enhanced the stability 84 

of the ecosystem by making it more resilient to perturbation. Resilience is a form of 85 

stability that may be analytically evaluated for many simple ecosystem models. The 86 

resilience of model ecosystems is defined as the negative of the dominant eigenvalue 87 

of the linearised system about the steady state [DeAngelis, 1980], and is inversely 88 
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related to the time the model ecosystem will take to return to its equilibrium state after 89 

a perturbation. 90 

 91 

A sensitivity analysis of the model with instantaneous feedback (the reason we 92 

examine instantaneous feedback is discussed) indicated that such feedback always 93 

stabilised the system, that is no parameter values or combination of parameter values 94 

used in the sensitivity analysis caused the system to become less stable than the 95 

equivalent system without the feedback. We note that the feedback system is more 96 

sensitive to the magnitude and direction of zooplankton perturbations than to 97 

phytoplankton perturbations. We also note the sensitive dependence of the feedback 98 

effect on time lags in the feedback process, and the influence of the biometric rate 99 

parameters on these effects. These parameters are also important determinants of the 100 

resilience of the ecosystem model 101 

 102 

THE ECOSYSTEM MODEL 103 

 104 

We first describe the basic NPZ-DMS model without feedback, summarised in 105 

equations (1) - (5), and the methods used in this analysis. We then develop the 106 

feedback model (equation (34) and equations (35) - (37)). 107 

 108 
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The NPZ-DMS model 109 

A simple model of a planktonic ecosystem that produces DMS is used as the starting 110 

point for this analysis. The model is a simplification of the GMSK model proposed by 111 

Gabric et al. [1993], in which a DMS - DMSP model was coupled to the plankton 112 

ecosystem model of Moloney et al. [1986]. This model is shown in Figure 1, where it 113 

comprises all the model components in the ocean. The ecosystem model has been 114 

simplified to a nutrient – phytoplankton - zooplankton (NPZ) model, a valuable tool in 115 

biological oceanography [Franks, 2002], for this analysis and coupled to the DMS 116 

equations of Gabric et al. [1993]. A schematic of the resulting simple NPZ-DMS 117 

model comprises the model components shown as solid lines in the ocean in Figure 1. 118 

 119 

The NPZ-DMS model is defined by the following equations: 120 

 121 

 
  

dN
dt

= k5Z + k3k4 PZ − k1

N
N + k2

⎛

⎝⎜
⎞

⎠⎟
P , (1) 122 

 
  

dP
dt

= k1

N
N + k2

!

"#
$

%&
P ' k3PZ , (2) 123 

 
  
dZ
dt

= k3 1! k4( ) PZ ! k5Z , (3) 124 

 
  

dDMSP
dt

= m1γ P+ m2γ Z − m3DMSP− m4DMSP, (4) 125 

 
  
dDMS

dt
= ! m5P + m3DMSP " m6 DMS " m7 DMS . (5) 126 
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 127 

Equations (1) - (3) represent the ecosystem component of the model. These equations 128 

are written in a currency of nitrogen (where N, P and Z represent the concentrations of 129 

dissolved inorganic nutrient, phytoplankton and zooplankton respectively in units of 130 

atomic nitrogen). These equations conserve mass so that  N + P + Z = NT  always, 131 

where  NT  is the total nutrient in the system. Equations (4) and (5) represent the DMS 132 

production generated by the ecosystem and are written in a currency of sulphur 133 

(where DMSP and DMS represent the concentrations of dimethylsulphoniopropionate 134 

and dimethylsulphide respectively in units of atomic sulphur) and these equations do 135 

not conserve mass. The k and m parameters represent the attributes of biota in the 136 

ecosystem model and the rates of chemical reactions and physical processes in the 137 

DMS model. The parameter !  in equations (4) and (5) represents the sulphur : 138 

nitrogen ratio of marine plankton. The parameter set used by Gabric et al. [1999], 139 

derived from measured values reported in the literature, was selected as a starting 140 

point for this analysis (Table 1, G99). The equations derived by Gabric et al [1993] 141 

were used as the basis for developing a feedback process to incorporate in the NPZ 142 

model to create the biofeedback model. This is described below in The Feedback 143 

Model. 144 

 145 

NPZ model resilience 146 

The nitrogen-based components of the NPZ-DMS model may be isolated to form an 147 

ecosystem (NPZ) model. This model has four critical (equilibrium) points defined by 148 

dN
dt

=
dP
dt

=
dZ
dt

= 0  of which one is ecologically infeasible and two are unstable and 149 
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not relevant to this analysis (see Cropp and Norbury [2007] for details). The fourth 150 

point is an asymptotically stable node located at: 151 

 152 

 
  

P* =
k5

k3 1! k4( )
,  (6) 153 

 
  
Z * =

k1

k3

N *

N * + k2

⎛

⎝
⎜

⎞

⎠
⎟ ,  (7) 154 

 

  

N* =
1
2

− k2 + P* +
k1

k3

− NT

⎛

⎝⎜
⎞

⎠⎟
± k2 + P* +

k1

k3

− NT

⎛

⎝⎜
⎞

⎠⎟

2

− 4k2 P* − NT( )
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

.  (8) 155 

 156 

The eigenvalues of the linearised NPZ model about this point are: 157 

 158 

 

  

λ = −
k1P

*

2
k2

N * + k2( )2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1± 1− N * + k2( ) 1+
N * + k2( )2

k1k2 P*

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

4k4 N *

k2 P*

⎛

⎝
⎜

⎞

⎠
⎟

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

.  (9) 159 

 160 

For the parameter values used in this study (and for most reasonable values) this point 161 

is an asymptotically stable spiral node, indicating that when the model is perturbed 162 

from this steady state it will oscillate in “boom-and-bust” cycles of decreasing 163 

amplitude until it regains equilibrium. The amplitude and rate of decay of these cycles 164 
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is determined by the magnitude of the real part of the eigenvalue of this point, the 165 

basis of DeAngelis’ [1980] resilience measure: 166 

 167 

 

  

Res =
k1

2

k2

N* + k2( )2

!

"

#
#

$

%

&
&

k5

k3 1' k4( )
!

"
#

$

%
&.  (10) 168 

 169 

This resilience metric is inversely proportional to the time required for the model to 170 

return to equilibrium after a perturbation and we will use this metric to describe the 171 

stability of the model. 172 

 173 

High resilience means that a system will rapidly return to its steady state after a 174 

perturbation. Johnson [1990] studied isolated Arctic lake ecosystems and proposed the 175 

hypothesis that ecosystems adapt to acquire attributes that endow the system with 176 

high resilience. Cropp and Gabric [2002] simulated the adaptation of a simple 177 

plankton ecosystem model under thermodynamic constraints and modified Johnson’s 178 

hypothesis to propose that ecosystems adapted to states of maximum resilience within 179 

genetic and environmental constraints. Laws [2003] reported that the concept of 180 

maximum resiliency was a useful heuristic for fitting ecosystem models to observed 181 

plankton data in many regions of the global oceans.  182 

 183 

 184 
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THE FEEDBACK MODEL 185 

The feedback model is based on the simplified GMSK model and is comprised of the 186 

NPZ model described above coupled to a model of the sulphur and atmospheric 187 

processes. The feedback model is also shown in Figure 1, and comprises all the model 188 

components drawn with solid lines in both the ocean and the atmosphere. 189 

 190 

A DMS sub-model may be extracted from the sulphur-based components of the NPZ-191 

DMS model (equations (4) - (5)) for analysis. A steady state of the DMS sub-model 192 

may be obtained where the aqueous DMS concentration is defined in terms of P, Z 193 

and some parameters: 194 

 195 

 
  

DMS* = γ
P m1m3 + m5m3 + m5m4( ) + m2m3Z

m3 + m4( ) m6 + m7( )
⎛

⎝
⎜

⎞

⎠
⎟ . (11) 196 

 197 

This steady state is always an asymptotically stable node, and for measured parameter 198 

values the eigenvalues of this point are large and negative, indicating that the steady 199 

state is a strong attractor and the DMS model is highly resilient. This means that the 200 

system will return to its steady state very rapidly after any perturbation, and that the 201 

steady state values are a therefore a good description of the system. Analytic 202 

expressions describing P(t) and Z(t) are not derivable, but it is clear that the DMS 203 

model is essentially slaved to the NPZ model, and the state of the ecosystem model 204 

will determine the state of the DMS model. These properties of the NPZ-DMS model 205 
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allow the effects of the system’s feedback on its own environment to be included in a 206 

simple ecosystem biofeedback model. The derivation of this model is now described. 207 

 208 

DMS sea-air transfer 209 

The flux of DMS from the ocean to the atmosphere (
 
DMSflux ) may be modeled as a 210 

linear function of the aqueous concentration of DMS (
 
DMSaq ) and the DMS piston 211 

velocity ( ktr ) [Liss and Merlivat, 1986]: 212 

 213 

  
DMS flux = ktr DMSaq . (12) 214 

 215 

Although this flux occurs only at the ocean surface, when applied in a zero-216 

dimensional (i.e. depth-averaged over the mixed layer) model as in this analysis, the 217 

loss of DMSaq is also averaged over the depth of the mixed layer (MLD): 218 

 219 

 
 
DMSflux =

ktr

MLD

⎛

⎝⎜
⎞

⎠⎟
DMSaq

. (13) 220 

 221 

The DMS piston velocity parameterises the rate at which DMS is transferred from the 222 

ocean to the atmosphere, and the empirically derived estimate of Nightingale et al. 223 

[2000] was used in this analysis: 224 
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 225 

 
  
ktr = 0.005 5.88u10

2 +1.49u10( )Sc! 1
2 , (14) 226 

 227 

where ktr (day-1) is for a notional 48 metre deep mixed layer,   u10 is the 10 metre wind 228 

speed (ms-1) and Sc is the dimensionless Schmidt number. The Schmidt number is 229 

temperature dependent, and the experimentally derived relationship of Saltzman et al. 230 

[1993] was used: 231 

 232 

   Sc = 2764 ! 147.12SST + 3.726SST 2 ! 0.038SST 3 , (15) 233 

 234 

where SST is the sea surface temperature (0C). The sea surface temperature has little 235 

influence on the piston velocity, which is mostly controlled by the wind speed. A 236 

global average wind speed of 8.2 ms-1 (derived from two years of SeaWinds 12 hourly 237 

measurements) and a global average sea surface temperature of 16.70C (derived from 238 

15 years of Advanced Very High Resolution Radiometer (AVHRR) data) were used 239 

for this analysis, giving a representative DMS piston velocity of ktr = 2.88 md-1. This 240 

is consistent with the estimates of Simo and Dachs [2002] who used a non-linear 241 

correction to zonal monthly climatological wind speeds and obtained global estimates 242 

of piston velocity between 1 and 4 md-1. 243 

 244 
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A relationship between P, Z and DMS flux from the ocean to the atmosphere can be 245 

derived by substituting equation (11) into equation (12): 246 

 247 

 

  

DMS flux = ktrγ
m1m3 + m3m5 + m4m5( )
m3 + m4( ) m6 + m7( ) P +

m2m3

m3 + m4( ) m6 + m7( ) Z
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= k6P + k7Z

, (16) 248 

 249 

where
  

k6 =
! ktr m1m3 + m3m5 + m4m5( )

m3 + m4( ) m6 + m7( )
, and

  

k7 =
! ktr m2m3

m3 + m4( ) m6 + m7( )
 where k6 and k7 250 

have units of mgS m mgN-1 day-1 and DMSflux has units of mgS m-2 day-1. 251 

 252 

DMS flux and cloud condensation nuclei 253 

Pandis et al. [1994] estimated a long-term average cloud condensation nuclei (CCN) - 254 

DMS flux relationship over the remote ocean from the steady state of a model of the 255 

principal gas-, aerosol- and aqueous-phase processes in the marine atmospheric 256 

boundary layer. They predicted that when DMS emission flux is smaller than 1.3 257 

µmoles m-2 d-1 the CCN concentration is essentially constant at 20 particles cm-3. In a 258 

second DMS flux regime, extending between 1.3 and 2.3 µmoles m-2 d-1 only a few 259 

particles become CCN each day. A third region corresponds to DMS emission fluxes 260 

larger than 2.3 µmoles m-2 d-1. The CCN concentration in this regime is a linear 261 

function of the DMS flux: 262 

 263 
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CCN = 22.7DMSflux ! 15.0 , (17) 264 

 265 

where DMS emission flux is in µmoles m-2 d-1 and CCN is in particles cm-3. Simo and 266 

Dachs [2002] estimated a conservative global mean annual flux of DMS from the 267 

ocean to the atmosphere of 6.8 µmoles m-2 d-1 ("  = 2.49 µmoles m-2 d-1) suggesting 268 

that equation (17) is appropriate for a globally representative model. Converting this 269 

relationship to represent DMS in mg S m-2 d-1 using 1 µmol S m-2 d-1 = 0.032 mgS m-2 270 

d-1 gives approximately: 271 

 272 

 
  
CCN = 710DMSflux −15. (18) 273 

 274 

When applied using Simo and Dachs’ [2002] global mean DMS flux estimate 275 

equation (18) produces a CCN estimate of 140 particles cm-3, comparable to CCN 276 

observations of 50-250 particles cm-3 reported for the Northeast Atlantic Ocean by 277 

Hegg [1994]. Substituting equation (16) into equation (18) then gives: 278 

 279 

 
  

CCN = 710 k6 P + k7Z( ) −15

= k8 k6 P + k7Z( ) − k9

. (19) 280 

 281 

where   k8 = 710 and  k9 = 15 . 282 
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 283 

Cloud condensation nuclei and cloud droplets 284 

Several authors have derived relationships between CCN and cloud droplet number 285 

concentration (NC) (see Gondwe [2004] for a summary). The empirically measured 286 

relationships reported in the literature take several forms, although they all describe 287 

similar (hyperbolic-like) relationships. In keeping with our heuristic approach, we 288 

have used the simple non-linear relationship between cloud droplet number (NC) and 289 

the number of CCN measured by Saxena and Menon [1999] over the south-eastern 290 

United States: 291 

 292 

 
  

NC = 183ln CCN( ) − 334

= k10 ln CCN( ) − k11

, (20) 293 

 294 

where k10 = 183 and k11 = 334. This relationship is similar (differing only slightly in 295 

the coefficients) to the relationship between CCN and the sub-cloud aerosol number 296 

concentration measured over the North Atlantic Ocean by Gultepe and Isaac [1996]. It 297 

also produces estimates of NC similar to the theoretical derivation of Chuang and 298 

Penner [1995] (when applied with the associated relationship between CCN and 299 

sulphate aerosol mass concentration given by Saxena and Menon [1999]) suggesting 300 

equation (20) is a robust parameterisation. Substituting equation (19) into equation 301 

(20) gives an estimate of the number of cloud droplets that will result from DMS 302 

ventilated into the atmosphere from the ecosystem: 303 

 304 
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NC = k10 ln k8 k6P + k7Z( ) ! k9

"# $%! k11
. (21) 305 

 306 

Cloud droplets, albedo and irradiance 307 

Relationships between changes in cloud droplet number and changes in cloud top 308 

albedo (α ), assuming constant atmospheric liquid content, have been provided by 309 

several authors [Han, et al., 1998]. These are all similar linear relationships, varying 310 

only in the slope, and the most recent, given by Schwartz and Slingo [1996], and valid 311 

for albedos between 0.28 and 0.72, is used here: 312 

 313 

 

  

! " # 0.075
! N
N0

$

%&
'

()

# 0.075
NC * N0

N0

$

%&
'

()

, (22) 314 

 315 

where N0 is the reference cloud droplet number density and #N is the change in cloud 316 

droplet concentration from the reference. The change in cloud top albedo due to 317 

change in the flux of DMS from the ocean to the atmosphere can then be 318 

approximated by substituting equation (21) into equation (22): 319 

 320 
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Δα = 0.075
k10 ln k8 k6P+ k7Z( ) − k9

⎡⎣ ⎤⎦ − k11 − N0

N0

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

= k12

k10 ln k8 k6P+ k7Z( ) − k9
⎡⎣ ⎤⎦ − k11 − N0

N0

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

, (23) 321 

 322 

where  k12 = 0.075. 323 

 324 

If it is assumed that the reference number of droplets (N0) is equated with the steady 325 

state of the ecosystem (i.e. the reference number of droplets includes a contribution 326 

from the ecosystem at steady state), then N0 can be described in terms of the steady 327 

state values of the NPZ model: 328 

 329 

 
  
N0

* = k10 ln k8 k6 P* + k7Z *( ) − k9
⎡
⎣

⎤
⎦ − k11 , (24) 330 

 331 

where   P
*  and   Z

*  are defined by equations (6) and (7) respectively. The change in 332 

cloud top albedo attributable to a change in DMS production by the ecosystem is then 333 

given by: 334 

 335 

 
  
! " =

k12

N0
* k10 ln k8 k6P + k7Z( ) # k9

$% &' # k11 # N0
*{ } . (25) 336 

 337 
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Irradiance and photosynthesis 338 

The depth of mixing in the upper ocean influences the average irradiance experienced 339 

by phytoplankton. This also varies latitudinally, seasonally and daily with values of 340 

30m typical of equatorial regions, and 100m typical of high latitudes. The average 341 

mixed layer irradiance at any latitude may be approximated by: 342 

 343 

 
  
I A =

Iθ
MLD

e−kL z dz
0

MLD

∫ =
Iθ

MLD
1− e−kL MLD

kL

⎛

⎝
⎜

⎞

⎠
⎟ , (26) 344 

 345 

where   I A is the average irradiance over the mixed layer, 346 

  
  
Iθ = I E cos θ( )  is the incident surface irradiance at latitude θ, 347 

   IE  is the incident surface irradiance at the equator, 348 

  MLD  is the depth of the mixed layer, 349 

  z  is depth in the water column in metres, and 350 

kL  is the seawater light extinction coefficient (typically 0.04 m-1 for 351 

ocean water). 352 

 353 

Zonneveld [1998] derived a photosynthesis-irradiance (PI) curve of the general form: 354 

 355 
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Pphoto =

aIP

bIP
2 + IP + c

, (27) 356 

 357 

where Pphoto denotes photosynthesis, IP denotes irradiance measured as the average 358 

number of photons per area per time, a represents the maximum rate quantum yield 359 

per photosynthetic unit, b represents the ratio of the cell absorption cross-section to 360 

the specific recovery rate of damaged d-protein, and c represents the excitation 361 

requirements of the cell. Zonneveld observed that other researchers had derived 362 

relationships of the same general form from different premises. 363 

 364 

Phytoplankton acclimate to the average light intensity in which they grow [Zonneveld, 365 

1998], and it is therefore reasonable to assume that phytoplankton throughout the 366 

global oceans are adapted to their local irradiance. The average irradiance experienced 367 

by endemic phytoplankton at any latitude on the globe (IA) may then be scaled by 368 

their saturating irradiance (IS, at which phytoplankton photosynthesis is a maximum), 369 

and the effect of variations in irradiance on phytoplankton growth at any latitude may 370 

then be approximated by: 371 

 372 

 
  
Pphoto =

aI
bI 2 + I + c

, (28) 373 

 374 

where 
 
I =

I A

IS

. The maximum value of equation (28) occurs when: 375 
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 376 

 
 
I = c

b
, (29) 377 

 378 

and the maximum value of 
 
Pphoto  is now by definition achieved when  I = 1, which 379 

from equation (29) stipulates that  c = b . The PI relationship may be applied to a 380 

particular phytoplankton species by scaling it to be a function between 0 and 1 that 381 

operates on the maximum phytoplankton growth rate (k1) of the phytoplankton 382 

species. This condition specifies that
  
Pphoto I = 1( ) = 1, and therefore equation (28) 383 

stipulates that   a = 1+ 2b . The photosynthesis-irradiance relationship may then be 384 

written as a general non-dimensional operator on the maximum phytoplankton growth 385 

rate: 386 

 387 

 
  
R =

1+ 2b( ) I
bI 2 + I + b

, (30) 388 

 389 

where b is now a photo-inhibition parameter that controls the shape of the PI curve 390 

(Figure 2) and is likely to be species dependent. Note that R is relatively insensitive to 391 

b once  b > 1 . As b tends towards infinity R tends to
  

2I

I 2 +1
, so when b= ∞ ,   R= 0.385  392 

at   I = 5 , not appreciably different to its value when for example b = 10, when R = 393 

0.396. 394 
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 395 

The R curves in Figure 2 represent a dimensionless operator on the maximum 396 

phytoplankton growth rate, and equation (2) in the ecosystem model becomes: 397 

 398 

 
  

dP
dt

= k1R
N

N + k2

!

"#
$

%&
P ' k3PZ , (31) 399 

 400 

and the appropriate modification is also made to equation (1): 401 

 402 

 
  

dN
dt

= k5Z + k3k4PZ − k1R
N

N + k2

⎛

⎝⎜
⎞

⎠⎟
P . (32) 403 

 404 

The usual condition when the climate is unperturbed (by anthropogenic or biogenic 405 

activities) has   I = 1 (as we have previously assumed 
 
I =

I A

IS

 in equation (28)). Any 406 

perturbations to this steady state due to ecosystem feedbacks such as described by 407 

equation (23) will affect the irradiance experienced by the phytoplankton, and can be 408 

modelled by replacing the irradiance in equation (30) with the term  1 ! " # , 409 

representing the change in irradiance due to changes in albedo: 410 

 411 



  Cropp, Norbury and Braddock 

 22 

 

  

R =
1+ 2b( ) 1− Δα( )

b 1− Δα( )2
+ 1− Δα( ) + b

. (33) 412 

 413 

This feedback effect may be written in terms of P and Z by substituting for ! "  from 414 

equation (25) giving an expression describing the effect on a marine planktonic 415 

ecosystem of its production of DMS: 416 

 417 

  

R =
1+ 2k13( ) 1−

k12

N0

k10 ln k8 k6 P + k7Z( ) − k9
⎡⎣ ⎤⎦ − k11 − N0{ }⎛

⎝⎜
⎞

⎠⎟

k13 1−
k12

N0

k10 ln k8 k6 P + k7Z( ) − k9
⎡⎣ ⎤⎦ − k11 − N0{ }⎛

⎝⎜
⎞

⎠⎟

2

+ 1−
k12

N0

k10 ln k8 k6 P + k7Z( ) − k9
⎡⎣ ⎤⎦ − k11 − N0{ }⎛

⎝⎜
⎞

⎠⎟
+ k13

, (34) 418 

 419 

where k13 has been substituted for b. 420 

 421 

The feedback model 422 

A global biogeochemical feedback model incorporating the effects of DMS produced 423 

by marine ecosystems on climate and irradiance, and therefore their own environment, 424 

can now be written by incorporating equation (34) into the NPZ model (equations (1) 425 

- (3)): 426 

 427 

 
  

dN
dt

= k5Z + k3k4 PZ ! Rk1

N
N + k2

"

#$
%

&'
P , (35) 428 
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dP
dt

= Rk1

N
N + k2

!

"#
$

%&
P ' k3PZ , (36) 429 

 
  
dZ
dt

= k3 1− k4( )PZ − k5Z , (37) 430 

 431 

where R is given by equation (34). The values of the additional parameters (k6 – k13) 432 

used for the feedback model simulations are listed in Table 2. The nature of the 433 

scaling described in the model formulation ensures that the steady states of the simple 434 

and feedback models are identical (i.e. at steady state R = 1). 435 

 436 

The time-lagged feedback model 437 

The time-lagged feedback model was developed by including a time lag ($) in the 438 

feedback term:  439 

 440 

  

R=
1+ 2k13( ) 1−

k12

N0

k10 ln k8 k6P t − τ( ) + k7Z t − τ( )( ) − k9
⎡
⎣

⎤
⎦ − k11 − N0{ }⎛

⎝⎜
⎞

⎠⎟

k13 1−
k12

N0

k10 ln k8 k6P t − τ( ) + k7Z t − τ( )( ) − k9
⎡
⎣

⎤
⎦ − k11 − N0{ }⎛

⎝⎜
⎞

⎠⎟

2

+ 1−
k12

N0

k10 ln k8 k6P t − τ( ) + k7Z t − τ( )( ) − k9
⎡
⎣

⎤
⎦ − k11 − N0{ }⎛

⎝⎜
⎞

⎠⎟
+ k13

, (38) 441 

 442 

so that phytoplankton growing at time t( )  experience light conditions determined by 443 

DMS emissions generated by the P and Z populations at some earlier time t ! "( ) . 444 

 445 
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METHODS 446 

 447 

NPZ-DMS model validation 448 

Often the only model validation available for ecosystem models is to test whether a 449 

model can reproduce observed data [Franks, 2002], and the NPZ-DMS model 450 

(equations (1) - (5)) used in this analysis was evaluated against this criteria in a study 451 

region in the Southern Ocean off the eastern Antarctic coast (60-65° S, 125-140° E). 452 

The model was formulated as a seasonally-forced, depth-averaged model for the 453 

validation, where the state variables were averaged over the depth of the surface 454 

ocean mixed layer and the model was forced with climatologies of environmental 455 

data. The forcings comprised ocean mixed layer depth (MLD), sea surface 456 

temperature (SST), photosynthetically active radiation (PAR) and sea surface wind 457 

speed (WIN), and were sourced from the World Oceanographic Atlas, and from the 458 

Pathfinder, SeaWiFS and SeaWinds satellite sensors respectively. Time series of the 459 

forcings are shown in Figure 3. 460 

 461 

Annual climatologies of ocean surface chlorophyll and DMS concentrations for the 462 

study region were developed from SeaWiFS satellite data and the Kettle et al [1999] 463 

database respectively. Model P values in mg N m-3 were converted to mg Chl a m-3 464 

assuming a Redfield C:N ratio of 5.7 (by weight) and a typical carbon : chlorophyll 465 

ratio of 50 [Walsh, et al., 2001] for the comparison. A genetic algorithm, an efficient 466 

non-linear optimisation technique that does not require any derivative information 467 

[Holland, 1975; Mitchell, 1997], was used to fit the model to observed data by 468 



  Cropp, Norbury and Braddock 

 25 

minimising the squared error between the model predictions and the observed data. A 469 

parameter set was derived for the forced NPZ model so that the P population 470 

reproduced the surface ocean chlorophyll concentrations climatology. The NPZ-DMS 471 

model was then fitted to the DMS climatology 472 

 473 

Seasonal forcing is implemented in the depth-averaged form of the NPZ-DMS model 474 

by replacing   k1  in equations (1) and (2) with   k1
' , where: 475 

 476 

 
  
k

1

' = RL RT k1 , (39) 477 

 478 

where RT is the temperature limitation of the phytoplankton growth rate and RL is the 479 

light limitation of the phytoplankton growth rate. The light limitation factor RL is used 480 

to explicitly represent the measured seasonal forcing of light in driving chlorophyll and 481 

hence DMS dynamics for the model validation (where it must reproduce seasonal 482 

variations in chlorophyll and DMS). In contrast the light factor R (equation (34)) 483 

represents the feedback light limitation due to changes in albedo, and is free of seasonal 484 

effects in an unforced model. 485 

 486 

Laboratory studies of phytoplankton have revealed a dependence of phytoplankton 487 

growth rates on temperature [Eppley, 1972; Goldman and Carter, 1974]. The 488 

temperature dependence of phytoplankton growth used in the model validation was 489 

estimated by Eppley [1972] to be: 490 
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 491 

   RT = e0.063 T −Tmax( ) , (40) 492 

 493 

where T is the ambient temperature (0C) and Tmax is the maximum annual temperature. 494 

RT was forced with the climatology of SST (Figure 3a) for the validation. 495 

 496 

As noted previously, the average irradiance in the ocean mixed layer (IA) can be 497 

approximated by equation (26). For the purposes of the model validation, a form of 498 

light limitation on the phytoplankton growth rate proposed by Walsh et al. [2001] was 499 

used: 500 

 501 

 
  
RL =

I A

I S

e
1!

I A
IS

"
#$

%
&' , (41) 502 

 503 

where IS  the phytoplankton saturating irradiance (assumed to be 35 W m-2  for this 504 

analysis ([Walsh, et al., 2001], and references cited therein). RL was forced with the 505 

climatologies of MLD and PAR (Figure 3 b and c) for the validation. 506 

 507 

The DMS model (equations (4) - (5)) was modified for the validation exercise by 508 

including a term parameterising the transfer of DMS from the ocean to the atmosphere 509 

identical to that used in the feedback model (equations (12) - (15)). However, the DMS 510 
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sea-air transfer velocity (ktr) was forced by the climatologies of SST and WIN (Figure 3 511 

a and d) for the validation exercise. 512 

 513 

Perturbation analysis 514 

 515 

The eigenvalues of the NPZ model are easily derived and informative, however, the 516 

eigenvalues of the biofeedback model are not. The effect of including the feedback on 517 

the model dynamics was therefore evaluated by numerically calculating the time 518 

required for each model took to return to steady state after a perturbation. The return 519 

time of a system provides a useful measure of its resilience as defined by DeAngelis 520 

[1980], to which it is inversely proportional. 521 

 522 

The models are reactive in the sense of Neubert and Caswell [1997] in that they 523 

respond to almost all perturbations by initially amplifying the magnitude of the 524 

perturbation, after which the perturbation exponentially decays as the model returns to 525 

its steady state. A simple metric measuring the closeness of the model trajectory to 526 

steady state was not therefore possible, and the time required for the whole of the 527 

model’s trajectory to be confined within a circle of 0.05% of the area of the model’s 528 

state space was therefore used. The accuracy of this metric is determined by the 529 

period of oscillation of the system and is approximately controlled by the imaginary 530 

part of the linearised non-feedback system’s eigenvalue given by: 531 

 532 
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Err ≈ ±
2π

Im λ( ) = ±4π k1

k2

N * + k2( )2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

P*
⎡

⎣

⎢
⎢
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⎤

⎦

⎥
⎥
⎥

2

− 4P* k3k4Z
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N *
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⎝
⎜

⎞

⎠
⎟
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⎣
⎢
⎢

⎤

⎦
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⎥

k3 − k1

k2
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⎝

⎜
⎜

⎞

⎠

⎟
⎟

P*
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−2
. (42) 533 

 534 

Return time surfaces were calculated for each of the models to demonstrate the effect 535 

of the inclusion of the feedback process on the model resilience. These surfaces were 536 

generated by perturbing each model 400 times using combinations of perturbations of 537 

-90 to +100 % (in steps of 10%) of the steady state values of P and Z (equations (6) 538 

and (7) respectively). The models were integrated forward in time using the perturbed 539 

steady state values as initial conditions for the integration. Return time surfaces were 540 

generated for each model and normalised by the largest return time of the non-541 

feedback model. A difference surface describing the effect of the feedback was also 542 

calculated. Although the return time surfaces appear quite smooth, the accuracy 543 

constraints of the metric used to build them meant that the difference surface was not 544 

smooth. The difference surface was therefore smoothed for display; however, the 545 

smoothing did not change the fundamental characteristics of the surface. 546 

 547 

Sensitivity analysis 548 

A sensitivity analysis of the biofeedback model was undertaken to ascertain the most 549 

important parameters and processes in the model and to evaluate its behaviour. The 550 

New Morris Method, an efficient second order screening method,[Campolongo and 551 

Braddock, 1999; Cropp and Braddock, 2002] was used for the sensitivity analysis. 552 

The sensitivity analysis measured the difference in return time surfaces of the models. 553 

This analysis quantified the sensitivity of the feedback effect to the model parameters, 554 
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and is an important part of the analysis because, as was evident in the development of 555 

the feedback model, the empirical relationships used have poorly known parameter 556 

values. Two sensitivity metrics were calculated; the sum of the differences between 557 

the return times of the models for each perturbation: 558 

 559 

 
  
F = RN : i, j ! RF : i, j( )

j=1

20

"
i=1

20

" , (43) 560 

 561 

where RN: i, j is the return time for the NPZ model from perturbation (i, j) and RF: i, j is 562 

the equivalent return time of the feedback model, and the normalised equivalent: 563 

 564 

 
  
FN =

RN : i, j − RF : i, j

RN : i, j

⎛

⎝
⎜

⎞

⎠
⎟

j=1

20

∑
i=1

20

∑ . (44) 565 

 566 

The sensitivity analysis was implemented to examine the influence of the twenty-two 567 

parameters of the feedback model ( k1 − k5 , k8 − k13, m1 − m7  and γ , see Tables 1 and 568 

2) and was implemented using parameter ranges of ±25% of the values listed in 569 

Tables 1 (G99) and 2. The analysis made 48,400 comparisons of return time surfaces 570 

and required 3.87 x 107 model evaluations. 571 

 572 
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Time lag analysis 573 

The inclusion of the feedback time lag analysis recognises that a delay between a 574 

phytoplankton bloom and increased DMS concentration in the water has been 575 

observed [Turner, et al., 2004; Turner, et al., 1996] and that time lags between the 576 

transfer of DMS to the atmosphere and modification of irradiance are likely to be 577 

significant. As none of the relationships used to build the feedback model are reported 578 

with associated time scales, the feedback model by default includes the assumption 579 

that the atmospheric processes of the feedback occur instantaneously. Clearly this 580 

assumption is untenable, and hence we have also examined the effect of time lags in 581 

the feedback process on our simulation results.  582 

 583 

The effect of time lags in the feedback processes was examined by modifying the 584 

feedback model to include a time lag into the feedback R that operates on the P 585 

growth term (see feedback model description above). However, there is little 586 

conclusive evidence indicating the magnitude of the time lags involved in these 587 

processes [Ayers and Gillett, 2000]. In situ correlations of ocean-atmosphere DMS 588 

flux, atmospheric DMS concentration and condensation nuclei [Andreae, et al., 1995] 589 

have suggested that some pathways may be as short as six hours [Lin and Chameides, 590 

1993]. In the absence of definitive evidence to the contrary, a reasonable first 591 

approximation is to commence the time lags at zero and increase them until 592 

interesting model behaviour appears exhausted. 593 

 594 



  Cropp, Norbury and Braddock 

 31 

A numerical analysis of the difference between the return time surfaces of the NPZ 595 

model and the time–lagged feedback model was conducted for time lags between 0 596 

and 15 days. The perturbation metric selected ensured that the model was integrated 597 

for approximately 1,500 days, about a hundred times longer than the largest time lag, 598 

ensuring the discontinuities related to the initial conditions did not affect the return 599 

times. Return time surfaces were calculated for 60 time lags between 0.25 and 15 days 600 

in increments of 0.25 days. These return time surfaces were each subtracted from the 601 

return time surface of the NPZ model and the resulting difference surface was 602 

summed to give a scalar metric of the feedback effect for each time lag. This metric 603 

was scaled by the sum of the return time surface of the equivalent NPZ model to 604 

provide a proportional measure of the feedback effect. This enabled comparison of the 605 

feedback effects between different parameterisations as they have very different 606 

magnitude return time surfaces. 607 

 608 

The ecosystem model contains three rate parameters: the phytoplankton maximum 609 

growth rate (k1), the rate of zooplankton grazing on phytoplankton (k3) and the rate of 610 

zooplankton mortality (k5). Previous sensitivity analysis of the major determinants of 611 

DMS flux to the atmosphere [Cropp, et al., 2004] have identified the importance of k1 612 

and k3. These results are confirmed by the importance of these parameters to the 613 

feedback effect examined in this research (see below), which also identified k5 as an 614 

important determinant of the magnitude of the feedback effect. The time lag analysis 615 

was therefore conducted for the basic parameter set and also for parameter sets with 616 

doubled k1, doubled k3 or doubled k5. 617 

 618 
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RESULTS 619 

 620 

NPZ-DMS model validation 621 

The P concentration predicted by the depth-averaged NPZ model for the best-fit 622 

parameter set derived by the genetic algorithm is shown in Figure 4 (a) with the 623 

SeaWiFS chlorophyll data. Similarly, the best fit to the interpolated DMS data derived 624 

by Kettle et al (1999) is shown in Figure 4 (b). (The environmental forcings used in 625 

the simulation are shown in Figure 3.) The parameter values used to generate the 626 

predictions in Figure 4 are listed in Table 1 (GA). The model produces a prediction 627 

that matches the observed data well, suggesting that the NPZ model is a valid 628 

representation of the generic plankton seasonal dynamics in the region of the Southern 629 

Ocean off the east Antarctic coast, and similarly that the DMS model is a valid 630 

representation of the seasonal DMS dynamics in this region. 631 

 632 

Return time surfaces 633 

The return time surface for the simple NPZ model without biogenic feedback on its 634 

environment is shown in Figure 5. This reveals that the model is more sensitive to 635 

perturbations in Z than to perturbations in P, in fact perturbations in P have almost no 636 

effect on the return time of the system if Z has suffered a large perturbation in either 637 

direction. This return time surface is characteristic of the NPZ model and is robust to 638 

substantial (but not all) parameter variations 639 

 640 
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The return time surface for the feedback model is shown in Figure 6. This return time 641 

surface is very similar to the surface for the NPZ model without biogenic feedback, 642 

the principal difference being that the feedback model returns to equilibrium more 643 

rapidly than the non-feedback model. 644 

 645 

The surface representing the difference in return times to equilibrium for each of the 646 

models is shown in Figure 7. This surface clearly demonstrates that the inclusion of 647 

the biogenic feedback on its environment has endowed the NPZ model with increased 648 

resilience. The time the system requires to recover its equilibrium state after 649 

perturbations of any magnitude in any direction is substantially reduced by the 650 

inclusion of the feedback process. Similarly to the models’ return time surfaces, the 651 

magnitude of the P perturbation does not have a substantial effect on the difference 652 

between the two return time surfaces. The magnitude by which the resilience is 653 

enhanced by the feedback process appears to be largely determined by the Z 654 

perturbation. For each Z perturbation, the P perturbations appear to have little 655 

influence on the return time of the system. 656 

 657 

This increased resilience is an interesting result as the feedback (R) is formulated so 658 

that at steady state R = 1 (its maximum possible value) and the resilience of the 659 

feedback model is identical to that of the non-feedback model. Therefore including 660 

the feedback into the model cannot increase the resilience (as defined by equation (10)661 

) of the model. The effect of the feedback when the P and Z populations are greater 662 

than their steady state values, the effect of the feedback is intuitive – it serves to 663 

reduce the irradiance the P receive and slows their growth rate, helping them to 664 
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decline back to the steady state value. The effect on the system when the P and Z 665 

populations are smaller than their steady state values is not so intuitive – the P growth 666 

rate is again slowed, but it is not clear how this helps them to achieve their steady 667 

state values more rapidly. 668 

 669 

Sensitivity analysis 670 

All of the 48,400 comparisons of un-lagged return time surfaces indicated that the 671 

biofeedback model returned to steady state more rapidly than the non-feedback 672 

model, that is that the addition of the biogenic feedback always reduced the time taken 673 

for the system to recover from perturbation. This result indicates that the stabilising 674 

effect of adding the instantaneous feedback to the ecosystem model is robust to 675 

substantial parameter variations of both ecosystem and atmospheric processes. 676 

 677 

The sensitivity analysis indicated that the model return times after perturbation were 678 

sensitive to both biological parameters describing the ecosystem and physical 679 

parameters describing the atmospheric processes. Both the raw and normalised 680 

metrics used to measure the sensitivities (equations (43) and (44)) revealed almost the 681 

same sensitivities to the parameters. Only one of these, the raw sensitivities, are 682 

therefore presented, with Figure 8 describing the first order effects and Figure 9 the 683 

second order or two-parameter interaction effects. Two of the most influential 684 

parameters were k10 and k11, describing the cloud droplet to CCN relationship 685 

(equation (20)), followed by k3, the Z grazing rate, k1, the P growth rate, and k5, the Z 686 
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mortality rate. It is apparent from equation (10) that these ecosystem rate parameters 687 

also have significant impacts on the model resilience. 688 

 689 

Combinations of these parameters were also important in the two-factor effects shown 690 

in Figure 9. While the two most influential parameter interactions, k10 ,k11  and k1,k3  691 

are atmospheric and biological pairs respectively, the next most important pair k3,k10  692 

and several other important pairs involving k1, k5, k11 and k12 reveal that interactions 693 

between the marine ecological processes and the atmospheric physical and chemical 694 

processes are important determinants of the magnitude of the feedback effect. 695 

 696 

The three important results from the sensitivity analysis are therefore that the 697 

consequences of the feedback for the ecosystem depend on both biological and 698 

atmospheric properties, that an instantaneous feedback always acts to stabilise the 699 

ecosystem dynamics, and that it is critically important to the determination of the 700 

actual magnitude of this feedback process that both the atmospheric and biological 701 

components of the process noted above are better quantified by field measurements. 702 

 703 

Time lag analysis 704 

The time lag analysis reveals that the magnitude and direction of the feedback effect 705 

is dependent on the time lag between the ecosystem dynamics and the change in 706 

irradiance experienced by the phytoplankton as a result of the atmospheric feedback 707 

(Figure 10). The solid line in Figure 10 shows the effect of feedback time lags on the 708 

return time of the feedback model for the basic parameter set. This reveals that the 709 
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initial stabilising effect (by which is meant that the resilience the system is increased) 710 

of the feedback, where it reduces the return time of the model by about 6%, rapidly 711 

declines once a lag of two days is introduced into the feedback. The feedback has no 712 

effect on the resilience of the model if the feedback is lagged by three days, and for 713 

lags of three to six days, the feedback destabilises (reduces the resilience of) the 714 

model, increasing the return time by up to about 6%. 715 

 716 

Time lags of six to ten days once again increase the resilience of the feedback model 717 

(by up to about 2%). This recovery of the stabilising effect of the feedback, with a 718 

maximum in the second stabilising region at a time lag of about seven days is 719 

especially interesting given that ocean in situ ecosystem-scale experiments that 720 

stimulated phytoplankton blooms measured a peak in DMS aqueous concentrations 721 

about a week after the bloom [Turner, et al., 1996]. Time lags greater than ten days 722 

again result in destabilisation of the feedback model. It should be noted, however, that 723 

while the lagged feedback sometimes makes this model less resilient, causing it to 724 

take up to 10% longer to reach steady state than the non-feedback model (Figure 10), 725 

it never reduces the resilience to zero (i.e. the system always returns to the steady 726 

state). For the realistic (i.e. based on measured values) parameter values used (Tables 727 

1 and 2) both models are always stable – only the resilience, and hence the time taken 728 

to return to steady state after a perturbation, is affected by the feedback. 729 

 730 

The time lag analysis also reveals the influence that the properties of the biota in the 731 

ecosystem can have on the feedback process. The simulation with k1 doubled (Figure 732 

10, dotted line) reveals that the increased phytoplankton growth rate both greatly 733 
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reduces the time lags for which the feedback model is initially more resilient (two 734 

days rather than three) and also reduces the magnitude of the stabilising or 735 

destabilising effects (a 4% reduction in return time). Similarly the recovery of the 736 

stabilising effect occurs earlier (around four days), but lasts for only two days and 737 

produces only a 1% reduction in return time. 738 

  739 

The simulation with doubled zooplankton grazing (k3) reveals quite the opposite effect 740 

(Figure 10, dashed line). In this case the increase in resilience for lags of up to three 741 

days is substantially increased with return times being up to 12.5% shorter than the 742 

non-feedback model. The region of reduced resilience is smaller and the stabilising 743 

effect is recovered much sooner at about 4 days. This variant also recovers resilience 744 

to a greater extent than the base parameter feedback model, with reductions in return 745 

time of up to 6%. The reduction in resilience that subsequently occurs is again very 746 

similar to the base parameter feedback model. The distinctive feature of the increased 747 

zooplankton grazing model is that its region of reduced resilience in Figure 10 is 748 

much smaller (in magnitude and duration) compared to both other parameter options. 749 

 750 

An increase in the rate of zooplankton mortality (k5) also reduces the stabilising effect 751 

of the feedback, reducing its initial increase in resilience to about 2%, but providing 752 

the largest reduction in resilience of over 7.5% at about day three. This variant also 753 

reduces the duration of the initial stabilising feedback to less than 2 days. The 754 

feedback again produces increased resilience after a time lag of 5 days, and remains 755 

so up to about 8 days, but only marginally (less than 1% reduction in return time). 756 

However, subtle effects that operate for long periods of time may still be influential. 757 
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 758 

An interesting aspect of the response of the feedback effect to these parameter 759 

variations is that the feedback process provides the ecosystem with a mechanism to 760 

recover resilience if the attributes of the biota change to reduce it. Increases in the 761 

phytoplankton growth rate (k1) and the zooplankton mortality rate (k5) reduce the 762 

stabilising effect of the feedback, but it is apparent from equation (10) that they 763 

simultaneously must increase the resilience of the ecosystem. Similarly, increases in 764 

the zooplankton grazing rate (k3) reduce the resilience of the ecosystem, but increase 765 

the stabilising effect of the feedback. Of these two processes, the ecosystem resilience 766 

is the principal determinant of the response to perturbation; the feedback system with 767 

increased phytoplankton growth rate has shorter return times than the system with 768 

increased zooplankton grazing, even though the latter provides a much greater 769 

stabilising feedback effect. An interesting heuristic gained from this analysis is that 770 

the feedback process provides a “resilience insurance policy” in that changes in the 771 

properties of the ecosystem that tend to reduce its resilience are countered by an 772 

increase in resilience delivered by the feedback, and vice versa. 773 

 774 

DISCUSSION 775 

This research essentially generates a hypothesis that the DMS feedback process may 776 

serve to stabilise (that is, increase the resilience of) some ecosystems. The 777 

geographical extent to which this hypothesis may apply is as yet unclear, as the NPZ-778 

DMS model is not able to reproduce chlorophyll and DMS dynamics over the whole 779 

of the global oceans. The stability attributes of the NPZ and DMS models suggest that 780 

the model will be best able to reproduce observed dynamics in regions of the oceans 781 
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where the chlorophyll seasonal variation closely follows the physical forcings of 782 

irradiance, temperature and mixed layer depth, and the DMS concentration is closely 783 

coupled to the chlorophyll signal. This is generally the situation in high latitudes 784 

where the forcings are very strong and drive the plankton dynamics, but is not the 785 

case in many parts of the oceans. In the equatorial oceans, for example, chlorophyll is 786 

often out of phase with the physical forcings, and this model cannot reproduce the 787 

temporal chlorophyll dynamics in these regions. Similarly, the model cannot 788 

reproduce DMS dynamics if there is a substantial time lag between the chlorophyll 789 

maximum and the DMS maximum, for example the “summer paradox” observed at 790 

some mid and low latitude locations [Simo and Pedros-Alio, 1999]. 791 

 792 

These caveats constrain the spatial range where the model can competently reproduce 793 

measured data, but do not necessarily degrade the heuristic value of the model. Work 794 

in progress by the authors suggests that the dynamics of the NPZ model used in this 795 

analysis is a subset of a slightly more complicated NPZ model that can fit chlorophyll 796 

dynamics that are out of phase with their physical forcings. (The dynamics of this 797 

slightly more complicated model are such that at this stage it does not have the 798 

heuristic value of the model we have used.) Similarly, Vallina et al (in preparation) 799 

show that the DMS summer paradox may be explained by including an extra DMS 800 

source term, reflecting the exudation of DMS by phytoplankton under UV stress, that 801 

effectively loosens the coupling between the ecosystem and chemical models. 802 

 803 

Although there are no assumptions in the model that intrinsically limit its application 804 

to any part of the globe, the validation exercise suggests that inferences and 805 
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hypotheses drawn from this exercise may only be directly relevant to high latitude 806 

regions. Never-the-less, this research contributes a new dimension to the DMS 807 

hypothesis of Charlson et al [1987] in particular, and to the field of Earth System 808 

Science in general. Our results show that an instantaneous biogenic feedback on the 809 

planktonic ecosystem model’s irradiance environment can make the model more 810 

resilient to perturbation. The time that the system requires to return to its equilibrium 811 

state after any perturbation is therefore reduced by the addition of the instantaneous 812 

feedback. 813 

 814 

The stabilising effect of the feedback is largest for perturbations that reduce the Z 815 

population. This is an interesting result, as recent work on model NPZ ecosystems 816 

[Cropp and Norbury, 2007] suggests that extinction processes in climate change 817 

scenarios will progress sequentially commencing with the extinction of Z. The 818 

presence of the feedback mechanism in the model therefore provides the system with 819 

an additional safeguard against extinction: the smaller the Z population gets, the 820 

stronger the feedback restoring the system to its equilibrium state becomes. This 821 

suggests the heuristic that the stability properties engendered by the feedback act most 822 

strongly in the manner required to both save the species and to maintain the 823 

ecosystem in its original form. 824 

 825 

The sensitivity analysis revealed two important properties of the instantaneous 826 

feedback effect: that it always serves to increase the resilience of the model, and that 827 

it is a function of both the biological and physical-chemical factors involved in the 828 

process. Two important parameters controlling the magnitude of the feedback effect 829 
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are the slope (k10) and intercept (k11) values of the regression relating the number of 830 

cloud droplets in the atmosphere to the number of cloud condensing nuclei in the 831 

atmosphere. The second most influential parameter is the rate of zooplankton grazing 832 

on phytoplankton (k3). This parameter was identified by Cropp et al. [2004] as the 833 

most important determinant of annual integrated DMS flux to the atmosphere. 834 

 835 

The time lag analysis revealed that the magnitude of the feedback effect, and whether 836 

it increases or reduces the resilience of the system, depends on the time lags 837 

associated with the feedback processes. This analysis revealed that the feedback could 838 

make the system more sensitive to perturbation if the effect of the feedback took 839 

several days to impact on the ecosystem. However, the most interesting and perhaps 840 

important result of the time lag analysis is that for time lags of about 7-10 days the 841 

feedback effect again increases the resilience of the ecosystem; that is the feedback 842 

causes the ecosystem to return to its equilibrium state more rapidly than if the 843 

feedback was not present. The time lags that lead to this recovered stabilising effect 844 

correspond with time lags observed in in situ ocean ecosystem experiments between 845 

phytoplankton blooms and subsequent maximum aqueous DMS concentrations 846 

[Turner, et al., 2004; Turner, et al., 1996]. This analysis also identified an important 847 

modification to the results of the sensitivity analysis that also serves to further reflect 848 

the importance of k1, k3 and k5 on the stabilising effects of the feedback, and suggest 849 

that the timing and magnitude of the feedback effects will vary between ecosystems. 850 

 851 

The time-lagged feedback model we have used does not account for spatial factors, 852 

and the rapid advection rates in the atmosphere compared to the ocean suggest that 853 
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only in periods of calm weather would the atmospheric effects generated by a 854 

phytoplankton bloom affect the originating population. However, as the atmospheric 855 

processes involved in the feedback may be rapid [Hamilton and Lenton, 1998], for 856 

some pathways perhaps as short as six hours [Lin and Chameides, 1993], couplings 857 

on local and regional scales may be close.  858 

 859 

The influence of the feedback on the ecosystem model’s stability characteristics leads 860 

to the interesting hypothesis that the DMS feedback cycle may not be just an artefact 861 

of plankton biochemistry, but an intrinsic component of marine planktonic 862 

ecosystems. Such a hypothesis would suggest that marine phytoplankton gained a 863 

benefit from the production of DMSP as it initiated processes that stabilised the 864 

plankton ecosystem and consequently buffered the population from the effects of 865 

perturbations. Many authors, perhaps beginning with Dunbar [1960], have pointed to 866 

the susceptibility of populations to extinction due to stochastic events when at the 867 

nadir of extended “boom and bust” cycles that many low resilience systems 868 

experience after perturbation. 869 

 870 

Such a hypothesis would require the invocation of group selection, a concept 871 

extensively attacked in the 1970’s (see for example Dawkins [1976]). While it is not 872 

the intent of this research to debate the merits of group selection, we note that group 873 

selection is attracting new interest in Western evolutionary debate [Borello, 2005] and 874 

that ecosystem evolution is an accepted paradigm in Russian science [Lekiavichius, 875 

2003]. As noted by Loreau et al. [2004] “Species traits and their evolution are 876 
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ultimately constrained by ecosystem processes, just as ecosystem properties are 877 

constrained by the ecological and evolutionary history of interacting species.” 878 

 879 

Our results clearly show that the influence of the feedback is dependent on the time 880 

lags in the ocean and atmospheric processes, and on the characteristics of the 881 

ecosystem. Our theoretical analysis suggests that clarification of the time scales of the 882 

feedback processes, and better knowledge of all the parameters in the model, would 883 

be a very useful contribution to the whole DMS hypothesis. 884 

 885 

CONCLUSION 886 

This research has modelled a process whereby production of a precursor compound 887 

by individual phytoplankton, coupled with subsequent biological processing by co-888 

constituents of a plankton ecosystem, results in a product that modifies the properties 889 

of the atmosphere. The changes in albedo we have modelled subsequently influence 890 

the irradiance experienced by the phytoplankton that initiated the process. Our results 891 

demonstrate that this change in environment modifies the population dynamics of the 892 

phytoplankton and may make the ecosystem to which they belong more resilient to 893 

perturbation. Our results also suggest that the magnitude and timing of the feedback 894 

effects are highly dependent on the characteristics the ecosystems and the atmospheric 895 

processes involved. Although the feedback effect can reduce the resilience of the 896 

ecosystem when time lags are introduced, the feedback increases the resilience of the 897 

system at time lags similar to those observed in real ocean plankton ecosystems. 898 

 899 
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The coherence of these theoretical and observed relationships then raises the question 900 

of whether the phytoplankton – DMS – cloud relationship reflects a fortuitous artefact 901 

of phytoplankton metabolism or an evolved property that improves phytoplankton 902 

fitness by stabilising the dynamics of their ecosystem. Because the benefits derived by 903 

an individual phytoplankton from producing DMSP are accrued by the group, and 904 

perhaps even the ecosystem as a whole, the option that phytoplankton have evolved 905 

the ability to influence the properties of the atmosphere invokes group-level selection. 906 

Hamilton and Lenton [1998] have argued just such a case for these systems, although 907 

in support of a different hypothesis. The stabilising effects observed in this study, 908 

although subtle, would act over long time scales and may therefore have profound 909 

implications for the characteristics of the ecosystems that generate them. 910 

 911 

Our research indicates a pressing need for clarification of the time scales of the 912 

atmospheric processes involved in the DMS feedback. Although the feedback effects 913 

we have documented appear robust to substantial parameter variations the 914 

implications of the feedback process for marine plankton ecosystems may not be fully 915 

assessed, nor our hypothesis refined, until these details are elucidated. If the time lags 916 

observed in real systems do indeed correspond with the time lags that stabilise our 917 

model ecosystem, then such further research may yield rich results relating to 918 

fundamental properties of living systems. 919 

 920 
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 1068 

TABLES 1069 

Table 1: Parameters and values for the NPZ-DMS model. 1070 

VALUES 

PAR PROCESS UNITS 

G99 GA 

k1 Maximum rate of N uptake by P d-1 0.27 0.9918 

k2 Half-saturation constant for P uptake of N mgNm-3 12.6 19.1230 

k3 Z grazing rate (per individual) on P m3mgN-1d-1 0.02 0.0256 

k4 Proportion of N uptake excreted by Z - 0.3 0.0287 

k5 Z specific mortality rate d-1 0.050 0.3720 

m1 Rate of release of DMSP by P d-1 0.01 0.0076 

m2 Rate of DMSP excretion rate by Z d-1 0.01 0.3050 

m3 DMSP – DMS conversion rate d-1 0.5 0.9226 

m4 Rate of DMSP consumption by bacteria d-1 0.53 0.1201 

m5 Rate of release of DMS by P d-1 0.0085 0.0045 

m6 Rate of DMS consumption by bacteria d-1 0.29 0.2664 

m7 Maximum DMS photo-oxidation rate d-1 1.3 0.5752 

γ Phytoplankton S(DMSP):N ratio mg S/mg N 0.3 0.3580 

NT Total nutrient as dissolved inorganic nitrogen mgNm-3 50 3.0761 

G99 represents Gabric et al [1999]; GA represents derived by GA for model 1071 

validation in this paper. 1072 
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 1073 

 1074 

Table 2: Additional parameters derived for the biofeedback model. 1075 

PAR. PROCESS UNITS VALUE 

k6 P-DMS flux parameter mgS m mgN-1 d-1 0.0128 

k7 Z-DMS flux parameter mgS m mgN-1 d-1 0.0035 

k8 CCN-DMS flux ratio m2d mgS-1 710 

k9 CCN background level - 15 

k10 NC  - CCN ratio - 183 

k11 NC  - CCN regression constant - 334 

k12 Δα - NC ratio - 0.075 

k13 Phytoplankton PI curve parameter - 0 - % 

N0 Δα - NC  reference droplet number (N0) - - 

 1076 

1077 
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FIGURE LEGENDS 1077 

 1078 

Figure 1. Schematic diagram of the NPZ-DMS feedback model. Dotted lines indicate 1079 

the components of the original GMSK model that have been omitted for this analysis. 1080 

 1081 

Figure 2: Photosynthesis-irradiance curve described by equation (30). Solid line has b 1082 

= 0.10, dotted line is b = 1 and dashed line is b = 10. 1083 

 1084 

Figure 3. Forcing data for depth-averaged NPZ-DMS model validations: (a) sea 1085 

surface temperature (SST); (b) mixed layer depth (MLD), (c) photosynthetically 1086 

active radiation (PAR) and (d) sea surface wind speed (WIN) for the Southern Ocean 1087 

region 60-650S, 125-1400E. 1088 

 1089 

Figure 4. Best fits derived for depth-averaged NPZ-DMS model validations: (a) model 1090 

P (line) and SeaWiFS chlorophyll data (dots) and (b) model DMS (line) and Kettle et 1091 

al [1999] DMS data (dots). Data is for the same Southern Ocean region as Figure 3. 1092 

 1093 

Figure 5. Normalised return time surface for the NPZ-DMS model without feedback 1094 

showing the times the system takes to return to its equilibrium state after perturbation. 1095 

 1096 
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Figure 6. Normalised return time surface for the NPZ-DMS model with feedback 1097 

showing the times the system takes to return to its equilibrium state after perturbation. 1098 

 1099 

Figure 7. Normalised return time difference surface for the NPZ-DMS model with and 1100 

without biogenic feedback. This surface is calculated by subtracting the return time 1101 

surface of the NPZ-DMS model with feedback from the return time surface of the 1102 

NPZ-DMS model with no feedback. This surface has been smoothed for clarity of 1103 

presentation. 1104 

 1105 

Figure 8. Sensitivity of feedback effect to first order parameters identified by the New 1106 

Morris Method. Light region of bar is sensitivity to each parameter alone; dark region 1107 

is the influence of each parameter in association with all other parameters (i.e. 1108 

indicates the existence of second and higher order interaction effects). 1109 

 1110 

Figure 9. Sensitivity of feedback effect to second order parameter interactions 1111 

identified by the New Morris Method. Light region of bar is sensitivity to each 1112 

parameter pair alone; dark region is the influence of each parameter pair in association 1113 

with all other parameters (i.e. indicates the existence of third and higher order 1114 

interaction effects). 1115 

 1116 

Figure 10. The effect of time lags on the feedback for the return time of the NPZ-DMS 1117 

feedback model. The feedback effect is measured as the proportion by which sum of 1118 
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non-feedback model’s return time surface exceeds the sum of the feedback model’s 1119 

return time surface. The thick solid line is the feedback model with the default 1120 

parameter set, the dotted line is with the maximum phytoplankton growth rate (k1) 1121 

doubled, the dashed line is with the zooplankton grazing rate (k3) doubled and the thin 1122 

solid line is with the zooplankton mortality rate (k5) doubled. 1123 

 1124 


