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An Investigation of the Modified Direction Feature for Cursive 
Character Recognition 

 

Abstract - This paper describes and analyses the performance of a novel feature extraction 

technique for the recognition of segmented/cursive characters that may be used in the 

context of a segmentation-based handwritten word recognition system. The Modified 

Direction Feature (MDF) extraction technique builds upon the Direction Feature (DF) 

technique proposed previously that extracts direction information from the structure of 

character contours. This principal was extended so that the direction information is 

integrated with a technique for detecting transitions between background and foreground 

pixels in the character image. 

 

In order to improve on the DF extraction technique, a number of modifications were 

undertaken. With a view to describe the character contour more effectively, a re-design of 

the direction number determination technique was performed. Also, an additional global 

feature was introduced to improve the recognition accuracy for those characters that were 

most frequently confused with patterns of similar appearance. MDF was tested using a 

neural network-based classifier and compared to the DF and Transition Feature (TF) 

extraction techniques. MDF outperformed both DF and TF techniques using a benchmark 

dataset and compared favourably with the top results in the literature. A recognition 

accuracy of above 89% is reported on characters from the CEDAR dataset. 

 
Key Words: Handwritten Character Recognition, Pattern Recognition, Image Processing and 

Computer Vision, Neural Networks.

  



1. INTRODUCTION 

 
Handwriting recognition is a technology that allows machines to reliably recognize handwritten 

material written by humans. The concept can be divided into 2 main areas – on-line and off-line 

handwriting recognition. An off-line handwriting recognition technique is an approach that 

interprets characters, words and/or cursive scripts that have been written on a common surface 

(i.e. paper) [1]. On-line handwriting recognition refers to automatically recognizing handwritten 

characters/words using real-time information such as pressure and the order of strokes made by a 

writer usually employing a stylus and pressure sensitive tablet [2]. 

 

The main approaches that exist for off-line cursive word recognition may be divided into 

segmentation-based and holistic ones. In general, the former approach uses a strategy based on the 

recognition of individual characters or patterns whereas the latter deals with the recognition of the 

word image as a whole [2]. To this day, research into the recognition of cursive handwriting still 

continues to be concerted. This sustained motivation may be attributed in part to the challenging 

nature of the problem as well as the countless number of commercial areas that it may be applied 

to [3]. Applications that have received particular attention in recent times include postal address 

recognition [4], [5], bank cheque processing [6], [7], and form processing [8].  

 

In the segmentation-based strategy for handwritten word recognition, the objective is to over-

segment the word a sufficient number of times to ensure that all appropriate letter boundaries have 

been dissected. To determine the best segmentations, a set of hypotheses are tested by merging 

segments of the image and invoking a classifier to score the combinations. Most techniques 

employ an optimization algorithm making use of some sort of lexicon-driven, dynamic 

  



programming technique and possibly incorporating contextual knowledge. The basic approach 

described above was proposed simultaneously by a number of researchers [5], [9]-[12]. 

 

A crucial component of the segmentation-based strategy is the development of a classification 

system for scoring individual characters and character combinations. The literature is replete with 

high accuracy recognition systems for separated handwritten numerals [13]-[15].  However, 

although recent techniques show promising results [16], the same measure of success has not been 

attained for segmented or cursive characters [11], [17]-[24]. There are three main problems faced 

when dealing with segmented, handwritten character recognition: the first relates to the ambiguity 

of the character without the context of the entire word, for example, an “l” may look similar to an 

“i”. The second problem relates to the illegibility of certain characters due to the nature of cursive 

writing, i.e. ornamentation, distorted character shape etc. [25]. Finally, the process of 

segmentation may itself introduce some anomalies depending on the algorithm used. Certain 

algorithms may not locate the segmentation path or anchorage point accurately and may 

sometimes dissect adjacent character components [26]. 

 

In order to address the problems discussed above, researchers have explored two main 

approaches: (1) determining features best suited for recognition and (2) investigation of different 

classification schemes [20]. Yamada and Nakano investigated a standard technique for feature 

extraction based on direction histograms in character images [17]. They used a multi-template 

strategy with clustering for the recognition of segmented characters from words in the CEDAR 

database [27].  Kimura et a/. [18] investigated a similar feature extraction technique calculating 

local histograms based on chain code information in segmented handwritten characters. They used 

  



statistical and neural classifiers for the recognition of segmented CEDAR characters. Gader et al. 

have proposed a feature extraction technique utilizing transition information for recognizing 

segmented characters [11]. Their technique was based on the calculation and location of 

transitions from background to foreground pixels in the vertical and horizontal directions. The 

authors used neural networks trained with the back-propagation algorithm for recognizing 

characters obtained from US postal words. Other studies by Camastra and Vinciarelli [21], [23] 

have proposed feature extraction techniques generating local and global features. The local 

features obtained from sub-images of the character included foreground pixel density information 

and direction information. The global features that were used included the fraction of the 

character appearing below the word baseline and the character’s width/height ratio. The authors 

used learning vector quantization (LVQ) [21] and a combination of neural gas and LVQ 

classifiers [23] for the recognition of segmented characters from the CEDAR database. Another 

recent study into cursive character recognition by Blumenstein et al. [25] has proposed a local 

feature extraction technique, which retrieves direction information from character contours. Their 

proposed technique replaces the foreground pixels from a character contour with appropriate 

numerical direction values. Then the image is evenly divided into a number of windows, and 

features are locally extracted from each window. 

 

1.1. Contributions of the Proposed Research 

In this research, a novel feature extraction technique is presented for extracting structural features 

from cursive handwritten characters. This Modified Direction Feature (MDF) extraction technique 

combines local feature vector and global structural information and provides integrated features to 

a neural network for training and testing. The proposed approach first employs an existing 

  



character outline tracing technique, which traces the contour of a given character image. Then, the 

directions of line segments comprising the characters are detected and the foreground pixels are 

replaced with appropriate direction values. Finally, features of the characters, based on the 

location of background to foreground pixel transitions, are extracted and neural training and 

classification is performed. 

 

Following on from earlier work presented in [28], the current paper extends this research through 

the following novel contributions. A revised and extended version of MDF is proposed including 

(a) novel enhancements to the direction value detection technique, (b) a new and enhanced version 

of the algorithm for distinguishing individual line segments and direction normalisation, (c) a 

detailed algorithm for calculation of location and direction transitions (LTs and DTs respectively), 

(d) an algorithm for re-sampling the raw LT and DT values for MDF extraction and (e) the 

proposal of a global feature (ratio) added to the MDF feature vector.  

 
In addition to this, extended experimental results are presented using two individual character 

data sets, a combined data set and a comparison of MDF and MDF-Ratio. Finally, a new/more 

detailed analysis of all experimental results is presented including (a) an investigation of 

incorrectly recognised characters using MDF and MDF-Ratio, (b) an extended comparison of 

results using MDF and those feature extractors proposed by other researchers in the literature (c) 

a statistical comparison of results between MDF and MDF-Ratio. 

The remainder of this paper is broken down into four sections: Section 2 describes the principle of 

the proposed feature extraction technique. Section 3 provides experimental results. Analysis and 

discussions take place in Section 4, and finally Section 5 presents conclusions and future work. 

 

  



2. Research Methodology 
 
2.1. System Overview 

The modified direction feature extraction technique combines the advantages of both the 

traditional direction feature extraction and transition feature extraction techniques [28]. Part of the 

direction feature extraction technique was used to provide stroke direction information, and the 

transition feature extraction technique was also used to provide structural information of a 

character. The local averaging method was used to avoid local stroke shifts.  

 

There are a number of steps in the whole process of obtaining an MDF vector from character 

images. The first step is to pre-process the input character image. For cursive handwritten 

characters, most of them are slanted, skewed and full of noise. Therefore, there is a need to pre-

process the images so that more accurate features can be extracted. In general, the image pre-

processing stage includes skew, slant detection and correction, noise removal and underline 

removal. 

 

Then, the boundary of each character needs to be retrieved. This is important to narrow the scope 

of the information input to the feature extractor and subsequently to the classifier. This step, 

amongst others, purports to reduce classification time and to facilitate the extraction of significant 

features. Next, replacement of foreground pixels with direction values needs to take place on the 

boundary of the image to enable stroke direction determination. This high-level process is 

illustrated in Figure 1. 

  



 
Figure 1. System Overview 

 
 
2.2. Modified Direction Feature (MDF) Extraction 

The previous section briefly described the methodology of the MDF technique. This section 

explains the details of each component of the MDF extraction technique. Section a) illustrates 

the process of obtaining direction values. Section b) explains how MDF features are calculated 

and finally, the calculation of an additional global feature – "ratio feature" is introduced in 

Section c).  

 

2.2.1. Obtaining Direction Values 

The process of obtaining direction values in the MDF technique is different from that of the 

Direction Feature (DF) extraction technique [25] in many respects. The following sub-sections 

depict the detail of detecting direction values from foreground pixels using the MDF technique. 

 

2.2.1.1. Assumptions 

For the direction value detection algorithm used in this research, there are two assumptions made 

relating to the image that is to be processed. First, this image is assumed to be binary and second, 

the image has been pre-processed so that only the boundary of the image remains. 

 

  



2.2.1.2. Direction Values 

The new array of direction values (updated from DF) are i) 2 for vertical direction, ii) 3 for right 

diagonal direction, iii) 4 for horizontal direction, iv) 5 for left diagonal direction and v) 8 for 

starting point (see Figure 2). This starting point is the number used in the intermediate process and 

when processing of the image is completed, all starting point values are normalised; therefore, the 

direction value 8 is not shown in Figure 2.  

 
Figure 2. Direction Values used for MDF 

 
2.2.1.3. Finding Starting Points 

The modified algorithm for obtaining direction values searches for a certain black pixel to start 

the image processing procedure; these pixels are called starting points. The starting point is 

defined as the first black pixel found at the bottom-most and left-most location in a given 

character image. In this direction detection algorithm, a new starting point is sought whenever an 

end of a connected line segment (stroke) is encountered. See Figure 3. 

             
Figure 3. Seeking Starting Points 

 
Also, in this algorithm, all starting point pixels are temporarily replaced by the value "8". After 

the normalisation stage (described below), each starting point is normalised by the predominant 

direction value in the line segment it belongs to.  

  



2.2.1.4. Distinguishing Individual Line Segments 

The rules for distinguishing individual line segments used in this algorithm are similar to the rules 

used in the DF extraction technique. Essentially, the algorithm collects each foreground pixel and 

based on the previous direction, it converts the foreground pixel to an appropriate direction value 

whilst at the same time checking for line segment conditions. Various rules serve as line segment 

conditions. If one of the conditions is met, then a line segment is found. The rules used for 

distinguishing line segments by the direction value detection algorithm in this research are: 

• A corner condition is found OR 

• During line segment detection, when a change in direction occurs more than three times OR 

• A change in direction AND the previous direction has been continuously the same 

AND the length of the previous direction is greater than three pixels 

 

In order to save confusion, it is important to clarify what the corner conditions are. During 

traversal along the boundary of a given character image, if there is a sudden change in direction 

and such a change forms a particular angle, then a corner is said to be found. As previously 

described, if a corner condition is met, a line segment (stroke) is found and the search for a new 

line will begin. 

 

There are 8 corner conditions in total; among these there are 4 vertical corner types. The first type 

is defined when the previous direction is an upward right direction and the current direction is 

facing upward left (See Figure 4a). The second type is when the previous direction is upward left 

and the current is the upward right direction (See Figure 4b). The third type is when the previous 

  



direction is down-right and the current direction is down-left (See Figure 4c). The fourth type is 

when the previous direction is down-left and the current direction is down-right (See Figure 4d). 

 
Figure 4. Vertical Corner Conditions 

 

There are 4 other horizontal corner types, the first type is when the previous direction is facing the 

up-right direction and the current direction is facing down-right (See Figure 5a). The second type 

is when the previous direction is down-right and the current direction is up-right (See Figure 5b). 

The third type is when the previous direction was going upward left and the current direction is 

pointing in the downward left direction (See Figure 5c). The last type is when the previous 

direction was facing down-left and the current direction is pointing up-left (See Figure 5d). 

 
Figure 5. Horizontal Corner Conditions  

 

2.2.1.5. Direction Value Normalisation 

There are three steps to normalising a line segment. The first step is to find the most frequently 

occurring direction value in a line segment. The second step is to use the most occurring value to 

replace the values of the other pixels in the current line segment, except the starting point. The last 

step is to normalise the starting point pixel. In other words, the value of each starting point will be 

converted from 8 to the normalised value of the line segment that the starting point belongs to.  

 

  



Figure 6 illustrates the complete process of direction detection and line segment normalisation. As 

can be seen, an image of lowercase “a” in its boundary format is shown in Figure 6a. This image 

is then fed into the new direction detection algorithm. Figure 6b shows the intermediate stage of 

image processing. One can see from Figure 6b that the location of each starting point and the 

direction values for all other foreground pixels has been identified. And in Figure 6c, all line 

segments in the image have been normalised. 

                
    (a)    (b)               (c) 

Figure 6. Direction Normalisation in a Given Image 
 
2.2.2. Obtaining the Modified Direction Feature 

The proposed MDF technique builds upon the DF and TF techniques described in previous 

sections [28]. The main difference is in the way the feature vector is created. For TF, feature 

vector creation is based on the calculation of transition features from background to foreground 

pixels in the vertical and horizontal directions. However, in MDF, aside from calculating the 

Location of Transitions (LTs), the Direction Transition (DT) values at a particular location are 

also recorded. Therefore, for each transition, a pair of values such as [LT, DT] is stored. 

 

To calculate LT values, it is necessary to scan each row in the image from left-to-right and right-

to-left. Likewise, each column in the image must be scanned from top-to-bottom and bottom-to-

top. As in the standard transition feature extraction technique [11], the LT values in each direction 

are computed as a fraction of the distance traversed across the image. Therefore, as an example, if 

the transitions were being computed from left-to-right, a transition found close to the left would be 

  



assigned a high value compared to a transition computed further to the right (See Figure 7a). A 

maximum value (MAX) was defined to be the largest number of transitions that may be recorded 

in each direction. Conversely, if there were less than MAX transitions recorded (n for example), 

then the remaining MAX - n transitions would be assigned values of 0 (to aid in the formation of 

uniform vectors).  

 

Once a transition in a particular direction is found, along with storing an LT value, the direction 

value (DT) at that position is also stored. The DT value is calculated by dividing the direction 

value (at that location) by a predetermined number, in this case: 10. The value 10 was selected 

based on the maximum numerical values used to describe line segments in the DF technique [25] 

to facilitate the calculation of floating-point values between 0 and 1 (See Figure 7). 
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Figure 7. Calculation and Creation of MDF 
 

  



Therefore, following the completion of the above, four vectors would be present for each set of 

feature values (eight vectors in total). For each of the LT and DT values, two vectors would have 

dimensions MAX × NC (where NC represents the Number of Columns (width) of the character) 

and the remaining two would be MAX × NR (where NR represents the Number of Rows (height) 

of the character).  

 

A further re-sampling of the above vectors was necessary to ensure that the NC/NR dimensions 

were normalized in size. This was achieved through local averaging. The target size upon re-

scaling was set to a value of 5, which is consistent with that used for the TF technique [11]. 

Therefore, for a particular LT or DT value vector, windows of appropriate dimensions were 

calculated by determining an appropriate divisor of NC/NR, and the average of the LT/DT values 

contained in each window were stored in a re-sampled 5 × 3 matrix (as shown in Figure 7, for 

vectors obtained from a left-to-right direction traversal). This was repeated for each of the 

remaining transition value vectors so that a final 120 or 160 element feature vector could be 

formed using the following formula (Figure 8): 

 

Total MDF features = Feature Pair  * Number of Transitions  * Number of Directions  * Re-sampled Matrix size

   Figure 8. Calculation of the Total Number of MDF Features 
 
where: 
Feature Pair [LT,DT] = 2, 
Number of Transitions = 3 or 4,  
Number of Directions = 4 and  
Re-sampled Matrix Size = 5 
 
The complete algorithm for the calculation of location transitions and direction transitions can 

be viewed in the format of pseudo-code and is shown below: 

  



For each direction of traversal 
 For i = 0 to number of lines 
  For j = 0 to number of transitions 
   IF traversal is from left to right THEN 
    LT = 1 – v / character width 
   ELSE IF traversal is from top to bottom THEN 
    LT = 1 – v / character height 
   ELSE IF traversal is from right to left THEN 
    LT = v / character width 
   ELSE IF traversal is from bottom to top THEN 
    LT = v / character height 
   END IF 
 
   DT(v) = dv / 10 
   Record [LT, DT(v)] as a feature pair in feature vectors 
  END For 
 END For 
END For 

 

In the algorithm above, a line of traversal refers to a row or a column, let LT be the value of the 

transition value and DT(v) be the value of the direction feature at the position where a transition 

occurs. When a background to foreground pixel transition occurs, the exact location of the 

transition is represented by v, and the direction number at the position of transition is denoted by 

dv. 

 

As mentioned earlier, after obtaining the raw feature vectors in 4 directions, a further re-

sampling (local averaging) of the above vectors was necessary so that the NC/NR dimensions 

were normalized in size. The complete algorithm of performing such a local averaging task is 

shown below in the format of pseudo-code: 

  



For each dimension of the feature matrix 
 IF it is an NC dimension THEN 
  L = number of columns 
 ELSE  
  L = number of rows 
 END IF 
 G = L / re-sampling size 
 For i = 0 to L 
  For j = 0 to number of transitions 
   Let m = i 
   Let n = i + G 
   aveLT = (LTm + LTm+1 + … + LTn-1) / G 
   aveDT = (DTm + DTm+1 + … + DTn-1) / G 
   record [aveLT, aveDT] as a feature pair in the re-sampled feature matrix 
  END For 
  Set i = n 
 END For 
END For  

In the algorithm above, L is used to denote the length of either a row or a column. The re-sampled 

matrix size in this research is set to 5. G represents the number of elements (intervals) needed to 

perform local averaging. Variables m and n represent the starting and ending positions for local 

averaging. Finally, aveLT and aveDT represent the averaged LT and DT values. 

 

2.2.3. Adding Ratio Feature  

Based on the analysis undertaken in the preliminary investigation of the MDF technique, an extra 

feature was deemed to be necessary. As may be seen in section IV, confusion occurs very 

frequently when encountering alphabet letters ‘l’ and ‘i’. It has been observed that in general, 

lower case ‘i’ has a shorter and wider shape compared to the lower case ‘l’, conversely, the letter 

‘l’ has a taller and narrower shape compared to ‘i’. Therefore, the authors were interested in 

seeing the significance of introducing a width to height ratio to the list of features. In the 

following sub-section, the feature itself and the description of the calculation procedure are 

discussed. 

  



  



2.2.3.1. The Ratio Feature 

The extra feature that was deemed necessary and was added to the feature vector was the 

character width to height ratio. Since this extra feature of width to height ratio was added, an extra 

assumption was required. This assumption stated that character images could not be resized. The 

reason for this was because if all training character images were resized to a uniform size in the 

pre-processing stage, then the ratio value would be the same for all characters and therefore would 

not influence the recognition rate.   

 

2.2.3.2. The Problem of Obtaining Width to Height Ratio 

The easiest approach for acquiring the ratio feature is by performing a division of the character 

width and height directly. However, there is a problem with this approach. The problem comes 

from both the image size and the neural network classifier.  

 

On one hand, the Multi-layer Perceptron (MLP) classifier used in this research accepts 

predominantly feature values ranging between 0 and 1, if the feature values are outside of this 

boundary, undesirable results may occur. On the other hand, it was assumed previously, that the 

image must not be resized. So the value of width to height ratio can be much greater than 1.0.  For 

example, if the character image is very long in terms of width and short in terms of height, i.e. 150 

pixels wide and 15 pixels high, the ratio value will be 10 and this is not acceptable since it is 

greater than 1; therefore, this way of getting the ratio value is not feasible and other methods of 

calculating the ratio value have been investigated.  

 

  



2.2.3.3. The Solution to the Problem 

The solution to this problem is to use the angle ratio to represent the width to height ratio. The 

idea is to view a character image as a rectangle. Then, the rectangle is divided diagonally, 

resulting in two symmetrical right triangles (See Figure 9). 

             
Figure 9. Dividing a Character Image Symmetrically 

 
In fact, only one triangle is needed, and in this research, the top triangle was chosen to calculate 

the ratio. As illustrated in Figure 10, firstly, the angle α is calculated by using the arc tan 

function. Once the character width and height are input to the formula, the angle α  is obtained in 

radians. The ratio is then calculated by dividing the α value by half of pi. 
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Figure 10. Calculation of the Ratio Value 

 
The advantage of retrieving the ratio value in this way is that no matter how wide and short or tall 

and thin the images are, ratio values ranging between 0 – 1 are always ensured.  The wider and 

shorter the image is, the closer the ratio is to 1. Also, the taller and thinner the image is, the closer 

the ratio value is to 0. But 0 and 1 will never be achieved since there is always a proportion 

between width and height. Although this value is not directly calculated by dividing the width and 

height values, it does however use the ratio between the width and height. So it is a true alternate 

  



representation of a character width and height ratio. This version of the MDF technique, 

incorporating the ratio feature, is called MDF-Ratio (MDF-R).  

 
3. EXPERIMENTAL RESULTS 
 
The word images used for experiments were obtained from the CEDAR benchmark dataset [27]. 

The first character data set used is called the CEDAR Automatically Segmented (CAS) data set. 

The second data set was comprised of pre-segmented Binary Alphanumeric Characters (BAC) 

and therefore called the BAC data set. More details on the creation of CAS and the nature of 

BAC may be found in [1]. The classifier used in this research was a feed forward, Multi-layer 

Perceptron (MLP) trained with the Error Backpropagation (EBP) algorithm. The dataset and 

experimental environment was identical throughout all phases of experimentation. 

 

3.1. Individual Data Set Experiments 

The first sets of results are displayed in tabular form for each sub-set of experiments. Table 1 

displays the experimental results using the CAS dataset. Separate experiments were conducted for 

lower case and upper case character patterns. A total of 18655 lower case and 7175 upper case 

character patterns were generated for training. A further 2240 lower case and 939 upper case 

patterns were used for testing. Table 1 presents the top result for the TF, DF and MDF extraction 

techniques using the MLP. For comparison purposes, all feature extraction techniques were tested 

on boundary representations of resized characters from the CAS dataset. 

 

  



Table 1. Character recognition rates with an MLP network trained using boundary information from 
resized characters on the CAS dataset 

Test Set Recognition Rate [%] 
 TF DF MDF (120) 

Lowercase 67.81 69.73 70.26 
Uppercase 79.23 77.32 80.72 

 
 

The second set of results is displayed in tabular form for each sub-set of remaining individual data 

set experiments. Table 2 displays the experimental results using the BAC dataset. Experiments 

were conducted for a combination of lower case and upper case character patterns. It was noticed 

by Singh [19] that for some characters, their upper case shapes are similar to their lower case 

equivalents. Therefore, by combining the upper and lower case characters, some characters may be 

merged into one category or class. For example, the shape of the upper case letter ‘O’ and the 

lower case letter ‘o’ are extremely similar especially in the context of cursive handwriting.  The 

order of the 36 outputs used in this research is shown in Figure 11 below.  

 
Figure 11. 36 Categories of Outputs 

 
A total of 19145 lower case and upper case character patterns were prepared for training. A further 

2183 lower case and upper case patterns were used for testing. Table 2 presents the top results for 

the TF, DF and MDF extraction techniques using the MLP trained with EBP. For comparison 

purposes, all feature extraction techniques were tested on boundary representations of non-resized 

characters from the BAC dataset. 

Table 2. Character recognition rates with an MLP network trained using boundary information from non-
resized characters on the BAC dataset 

Test Set Recognition Rate [%]  TF DF MDF(120) 
Combined 36 
outputs 82.82 83.65 89.01 

 

  



3.2. Combined Data Set Experiments 

A combined dataset were created for further experiments. This dataset consisted of training and 

testing characters from both CAS and BAC datasets mentioned above. There are three reasons 

why the BAC and CAS datasets were combined. The first reason was that by combining these two 

datasets, a much larger training and testing database would result and theoretically more training 

examples could be provided to the neural network for superior learning. The second reason was 

that the BAC dataset was known as an easy or ‘clean’ dataset, and the CAS dataset was known as 

a difficult dataset even for humans to recognise. Again in theory, the presentation of character 

patterns of mixed difficulty was hypothesised to provide the neural network with a more effective 

data set for training. The final reason was that by combining the BAC and CAS datasets, it was 

easier and more meaningful to compare the results of this research with the recognition rates of 

other researchers in the literature that used larger datasets. 

 

After combining the datasets, a total of 34243 training characters and 3372 testing characters were 

generated.  For the CAS dataset, there were many ‘garbage’ or non-character images, which were 

used for training the classifiers as reject patterns. In order to create a dataset with 36 outputs, the 

reject characters needed to be removed from both the CAS training dataset and the CAS testing 

dataset.  

 

Based on the fact that MDF provided a higher recognition rate than the TF and DF extraction 

techniques in Section 3.1, further experiments were conducted using a combined data set to 

ascertain the significance of adding a ratio feature (MDF-R) to MDF. Experiments were conducted 

with identical neural classifier settings in order to compare the performance between MDF and 

  



MDF-R in terms of recognition rate. A random sub-set of the experimental results conducted, 

using the combined data set, is shown in Table 3.  

Table 3. Character recognition rates with an MLP trained using boundary information from non-resized 
characters on the combined dataset employing MDF and MDF-R techniques 

 

Neural Classifier Settings Recognition Rate [%] 

Num. Hidden Units Num. Iterations Num. Features Num. Outputs MDF MDF-R 

50 3500 120 36 80.34 80.6 
65 4500 120 36 81.97 82.3 
80 6000 120 36 83.16 82.74 

110 9000 120 36 83.16 83.07 
120 10000 120 36 83.45 84.16 
135 11500 120 36 83.78 84.25 
138 9000 120 36 83.87 84.19 
140 10000 120 36 83.78 84.13 
150 11000 120 36 83.69 84.16 
160 11500 120 36 83.9 84.46 
170 14500 120 36 83.51 84.34 
180 14000 120 36 84.37 84.49 
180 14500 120 36 84.57 84.58 
180 15000 120 36 84.4 84.46 
190 16000 120 36 83.78 84.05 

4. ANALYSIS AND DISCUSSION OF RESULTS 

An analysis was conducted after the completion of each set of experiments. The analysis 

following the individual data set experiments (Section 3.1) was used as a general direction for 

subsequent experiments in this research. In this section, the analysis of each experiment set is 

summarised in the following sub-sections.  

 

4.1 Analysis of Experiments 

The analysis of individual data set experiments (Section 3.1) was undertaken in three main ways, 

and each is described in a separate sub-section. Sub-section 4.1.1 analyses the performance of 

each feature extraction technique. Then, an investigation of incorrectly recognized characters is 

  



conducted in sub-section 4.1.2. Finally, sub-section 4.1.3 provides a comparison of the character 

recognition results with other researchers in the literature. 

 

4.1.1 Comparison Between Feature Extraction Techniques 

As shown in Table 1 and Table 2, the networks trained with the MDF provided a higher 

recognition rate than the DF and TF techniques in each case. In particular, the MLP network 

trained with the MDF (120 inputs) for the BAC dataset, demonstrated an increase of 

approximately 5% and 6% over the DF and TF techniques respectively. This increase may be 

attributed to the enhanced feature information obtained from both the LT and DT values. 

 

4.1.2 Investigation of Incorrectly Recognized Characters Employing MDF 

In this research, aside from testing the performance of the MDF technique compared with two 

other techniques, it was also important to perform an analysis of the characters that were 

incorrectly recognized to determine the distribution of errors provided by the MLP classifiers. 

 

Of great interest were the classification errors generated by the MDF technique using the 

combined data set, as it provided some of the top results in this research. For the network 

configuration obtaining one of the top recognition rates employing MDF, out of a total of 3372 

characters in the testing set, there were 520 characters that were not successfully recognized. 

Firstly, an investigation was performed recording which individual classes of characters provided 

the most errors for the network. It was found that characters ‘i’, ‘l’, ‘e’, and the character ‘a’ 

provided the most misclassifications out of the 36 possible outputs. Figure 12 illustrates this 

distribution. 
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Figure 12. Error Distribution for Incorrectly Recognized Characters 

 
The investigation continued to determine which of the remainder of the characters were mostly 

being confused with the top four incorrectly recognized classes. It was found that the character ‘i’ 

was mostly incorrectly recognized as the character ‘l’ (and vice-versa). The character ‘e’ was 

mainly confused with the character ‘i’, and ‘a’ was mostly confused with ‘o’. The following 

figures present the error distributions of each of the above characters (Figure 13). 
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Figure 13. Error Distribution of Mismatched Characters for (a) character 'l' (b) character 'e' (c) character 

'i' and (d) character 'a'. 
 

  



During the investigation, it was noted that due to the ambiguities of some character images, in 

certain instances, the neural network was unable to give a reliable confidence to determine a 

correct output at all. In other words, when the MLP encountered 'ambiguous' character features, it 

ranked many of the possible outputs at confidence values below 0.3. For the MLP test case using 

the combined dataset (mentioned above), there were 77 out of 520 such characters that were 

incorrectly recognized in this manner.  

 

Another interesting result of the investigation was that if the top two character confidences output 

by the MLP were used to determine the character recognition rate, the recognition error decreased 

from 520 incorrectly recognized characters to 300. Hence, when the top two confidences output by 

the MLP are taken into account, the character recognition rate reaches approximately 91%. 

 

4.1.3 Investigation of Incorrectly Recognized Characters Employing MDF-R 

A similar analysis on the classification errors generated by the MDF-R technique using the 

combined data set was also conducted. Although the overall distribution of the classification error 

did not change dramatically and the top 4 mis-classified characters remained the same as those 

obtained using MDF, there are some noticeable differences. The most noticeable improvement is 

that by adding the ratio feature value to the MDF vector, the mis-classification of the lower case 

letter ‘l’ decreased by approximately 21.5%. As can be seen from Figure 13(a), ‘l’ was most 

confused with lower case character ‘i’. However, after the ratio feature was employed, the mis-

classification from ‘l’ to ‘i’ decreased by almost 31%. In addition, the result of the analysis 

showed a similar figure on the number of mis-classifications between ‘i’ and ‘l’. In other words, 

  



the ratio feature seemed to assist in differentiating between the characters ‘l’ from ‘i’ whilst 

preventing large increases in mis-classifications from ‘i’ to ‘l’.  

 

Another noticeable improvement was the decrease of recognition error when the top two character 

confidences were used to determine the recognition rate. Previously, when employing MDF, the 

recognition error was decreased from 520 to 300 when the top two character confidences were 

taken into account. After employing the additional ratio feature, this error was further reduced to 

285. In other words, the recognition accuracy increased from 91.1% to 91.55% by just adding this 

global feature. 

 

In summary, the addition of the ratio feature lowered the confusion in distinguishing between the 

most difficult character classes, at the expense of increasing the error slightly for some of the 

remaining characters. Overall, this is an acceptable outcome in our investigation. 

 

4.1.4 Comparison Between Character Recognition Results with Other Researchers in the 

Literature 

It is always a difficult task to compare results for handwritten character recognition with other 

researchers in the literature. The main problems that arise are differences in experimental 

methodology, different experimental settings and the difference in the handwriting database used. 

The comparisons presented below have been chosen for two main reasons. The handwriting 

databases used by the researchers were similar to those used in this research (i.e. 

cursive/segmented characters from the CEDAR database) and/or the results are some of the most 

recent in the literature. 

  



Yamada and Nakano [17] presented a handwritten word recognition system that included a 

character recognizer. Their classifier was trained on segmented characters from the CEDAR 

benchmark database. The classifier was trained to output one of 52 classes (a-z, A-Z). They 

recorded recognition rates of 67.8% and 75.7% for the recognition of characters where upper case 

letters and lower case letters were distinguished (case sensitive) and not distinguished (non-case 

sensitive) respectively. Therefore, the top recognition rate from the combined dataset in this 

research (84.58%) should be used for comparison purposes. This recognition rate compares well 

with their result. The top recognition accuracy using the BAC data set in this research (89.01%) 

exceeds their top result by more than 13%. 

 

Another example where a 52-output classifier was used for segmented character recognition was 

in research presented by Kimura et al. [18]. They used neural and statistical classifiers to 

recognize segmented CEDAR characters. For case sensitive experiments, their neural classifier 

produced an accuracy of 73.25%, which again was comparable to the combined dataset result of 

84.58% presented in this research. The top recognition accuracy in this research using the BAC 

dataset exceeded theirs by more than 16%. 

 

Singh and Hewitt [19] obtained a recognition rate of 67.3% using a Linear Discriminant Analysis-

based classifier. The result obtained from the combined dataset (84.58%) compares well to their 

recognition rate. Furthermore, the best result using the BAC dataset exceeds their top recognition 

rate by nearly 22%.  

 

  



From previous experimentation [25], it was found that the standard transition feature, as proposed 

by Gader et al. [11], produced results of 70.31% and 79.23% for lowercase and uppercase 

characters respectively. The most recent results on the CAS data set are higher than those 

described above. Moreover, the top result obtained from the combined dataset, which also contains 

upper and lower case characters, exceeds their top result by more than 5%. 

 

Finally, the results presented in our research (specifically those for the BAC dataset – 89.01% and 

the combined dataset – 84.58%) compare favourably to those presented by Camastra and 

Vinciarelli [23] who obtained a recognition rate of 84.52%. As in most of the results above, a 

precise comparison is difficult, as Camastra and Vinciarelli's classifier configuration and dataset 

composition were different to those described in this research.  

 

4.2 Comparison Between MDF and MDF-R 

Although the top results obtained by the MDF-R technique in Table 3 (84.58%) show a marginally 

better performance than the standard MDF technique (84.57%) whilst employing the same 

network configuration, this type of comparison is not sufficient on the whole to indicate whether 

MDF-R outperforms MDF. Hence, in order to evaluate overall whether the MDF-R technique is a 

better feature extraction technique than MDF for off-line character recognition, it was decided to 

perform a paired t-test to evaluate on average which feature extraction technique performed better, 

based on all the results obtained in Table 3. This was carried out in preference to an independent t-

test, to determine if the results obtained were attributed to the feature extraction technique 

employed and not as a result of the treatment utilised (the neural network classifier and 

configuration used). It was hypothesized that if there was no significant difference between the 

  



recognition rates obtained by the two techniques, then p>0.05.  However, if there was a significant 

difference in the recognition rates obtained by the two techniques, then p<0.05. 
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Figure 14. Modified box plot illustrating the recognition rate performance based on the MDF and MDF-R 

feature extraction techniques. 
 

The results obtained from the paired t-test found that there was a significant difference in the 

recognition rates obtained by the two techniques, as p<0.05, being 0.004 (n=15), irrespective of 

the treatment employed.  A box plot in Figure 14, was used to show which technique performed 

better. As can be seen from Figure 14, the MDF-R technique had a higher average recognition rate 

of 83.7% for all 15 experiments, than did the MDF technique, which had a mean recognition rate 

of 83.4%. There is a large amount of variation in the recognition rates obtained using MDF-R 

between the lower quartile and minimum value, however this is only as a result of 3 values. In 

addition, there exists a potential outlier (*
1 representing 80.6%) as illustrated in the Figure. The 

  



majority (11) of the recognition rates obtained using MDF-R for the 15 experiments, lay above the 

mean value of 83.73%, whereas for the MDF technique, only 8 recognition rates lay above the 

mean value of 83.45%. Also, the modified box plot identifies two of the results obtained by MDF 

as potential outliers (o17 representing 81.97% and *16 representing 80.34%). 

 

Overall, it was found that the recognitions rates obtained using MDF-R were significantly higher 

than the recognitions rates obtained by the MDF technique and hence it may be concluded that it 

performed better as a feature extraction technique. 

 

5. CONCLUSIONS AND FUTURE RESEARCH 

In conclusion, a novel feature extraction technique for cursive handwritten characters is proposed.  

Experiments have been conducted exhaustively to test the significance of the proposed technique. 

From the results, the original MDF outperformed the traditional TF and DF in terms of 

recognition accuracy. This research also described a further improvement with regards to 

recognition rate, by adding an additional feature and modifying the extraction process. A 

comparison with top results in the literature indicates that the proposed feature extraction 

technique provides comparable and in most cases higher recognition accuracy for cursive 

characters. 

 

Besides performing experiments, an analysis and discussion of the results, including the strengths 

and weaknesses of the technique, were also investigated. Upon performing the experiments and 

conducting an analysis of the results, it was concluded that the MDF extraction method which 

combines direction values, transition features and width to height ratio (MDF-R) provided the 

  



most descriptive information for MLP classification and consequently provided the best overall 

recognition rate.  

 

In future research, a number of considerations will be addressed to further investigate and enhance 

the technique. These include conducting further experiments with thinned characters and 

comparing the results obtained between the boundary and thinned versions of character images. 

Also curve information will be incorporated in the process of determining direction values. 

Finally, further investigations into mis-classifications will be conducted.  
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