
An Investigation of the Modified Direction Feature for Cursive Character
Recognition

*M. Blumenstein and X. Y. Liu

School of Information Technology
Griffith University-Gold Coast Campus

PMB 50, Gold Coast Mail Centre,
QLD 9726, Australia

Phone: +61 7 5552 8271
Fax: +61 7 5552 8066

E-mail: m.blumenstein@griffith.edu.au

*Corresponding Author

B. Verma
School of Information Technology

 Central Queensland University
Bruce Highway

North Rockhampton QLD 4702, Australia
E-mail: b.verma@cqu.edu.au

An Investigation of the Modified Direction Feature for Cursive
Character Recognition

Abstract - This paper describes and analyses the performance of a novel feature extraction

technique for the recognition of segmented/cursive characters that may be used in the

context of a segmentation-based handwritten word recognition system. The Modified

Direction Feature (MDF) extraction technique builds upon the Direction Feature (DF)

technique proposed previously that extracts direction information from the structure of

character contours. This principal was extended so that the direction information is

integrated with a technique for detecting transitions between background and foreground

pixels in the character image.

In order to improve on the DF extraction technique, a number of modifications were

undertaken. With a view to describe the character contour more effectively, a re-design of

the direction number determination technique was performed. Also, an additional global

feature was introduced to improve the recognition accuracy for those characters that were

most frequently confused with patterns of similar appearance. MDF was tested using a

neural network-based classifier and compared to the DF and Transition Feature (TF)

extraction techniques. MDF outperformed both DF and TF techniques using a benchmark

dataset and compared favourably with the top results in the literature. A recognition

accuracy of above 89% is reported on characters from the CEDAR dataset.

Key Words: Handwritten Character Recognition, Pattern Recognition, Image Processing and

Computer Vision, Neural Networks.

1. INTRODUCTION

Handwriting recognition is a technology that allows machines to reliably recognize handwritten

material written by humans. The concept can be divided into 2 main areas – on-line and off-line

handwriting recognition. An off-line handwriting recognition technique is an approach that

interprets characters, words and/or cursive scripts that have been written on a common surface

(i.e. paper) [1]. On-line handwriting recognition refers to automatically recognizing handwritten

characters/words using real-time information such as pressure and the order of strokes made by a

writer usually employing a stylus and pressure sensitive tablet [2].

The main approaches that exist for off-line cursive word recognition may be divided into

segmentation-based and holistic ones. In general, the former approach uses a strategy based on the

recognition of individual characters or patterns whereas the latter deals with the recognition of the

word image as a whole [2]. To this day, research into the recognition of cursive handwriting still

continues to be concerted. This sustained motivation may be attributed in part to the challenging

nature of the problem as well as the countless number of commercial areas that it may be applied

to [3]. Applications that have received particular attention in recent times include postal address

recognition [4], [5], bank cheque processing [6], [7], and form processing [8].

In the segmentation-based strategy for handwritten word recognition, the objective is to over-

segment the word a sufficient number of times to ensure that all appropriate letter boundaries have

been dissected. To determine the best segmentations, a set of hypotheses are tested by merging

segments of the image and invoking a classifier to score the combinations. Most techniques

employ an optimization algorithm making use of some sort of lexicon-driven, dynamic

programming technique and possibly incorporating contextual knowledge. The basic approach

described above was proposed simultaneously by a number of researchers [5], [9]-[12].

A crucial component of the segmentation-based strategy is the development of a classification

system for scoring individual characters and character combinations. The literature is replete with

high accuracy recognition systems for separated handwritten numerals [13]-[15]. However,

although recent techniques show promising results [16], the same measure of success has not been

attained for segmented or cursive characters [11], [17]-[24]. There are three main problems faced

when dealing with segmented, handwritten character recognition: the first relates to the ambiguity

of the character without the context of the entire word, for example, an “l” may look similar to an

“i”. The second problem relates to the illegibility of certain characters due to the nature of cursive

writing, i.e. ornamentation, distorted character shape etc. [25]. Finally, the process of

segmentation may itself introduce some anomalies depending on the algorithm used. Certain

algorithms may not locate the segmentation path or anchorage point accurately and may

sometimes dissect adjacent character components [26].

In order to address the problems discussed above, researchers have explored two main

approaches: (1) determining features best suited for recognition and (2) investigation of different

classification schemes [20]. Yamada and Nakano investigated a standard technique for feature

extraction based on direction histograms in character images [17]. They used a multi-template

strategy with clustering for the recognition of segmented characters from words in the CEDAR

database [27]. Kimura et a/. [18] investigated a similar feature extraction technique calculating

local histograms based on chain code information in segmented handwritten characters. They used

statistical and neural classifiers for the recognition of segmented CEDAR characters. Gader et al.

have proposed a feature extraction technique utilizing transition information for recognizing

segmented characters [11]. Their technique was based on the calculation and location of

transitions from background to foreground pixels in the vertical and horizontal directions. The

authors used neural networks trained with the back-propagation algorithm for recognizing

characters obtained from US postal words. Other studies by Camastra and Vinciarelli [21], [23]

have proposed feature extraction techniques generating local and global features. The local

features obtained from sub-images of the character included foreground pixel density information

and direction information. The global features that were used included the fraction of the

character appearing below the word baseline and the character’s width/height ratio. The authors

used learning vector quantization (LVQ) [21] and a combination of neural gas and LVQ

classifiers [23] for the recognition of segmented characters from the CEDAR database. Another

recent study into cursive character recognition by Blumenstein et al. [25] has proposed a local

feature extraction technique, which retrieves direction information from character contours. Their

proposed technique replaces the foreground pixels from a character contour with appropriate

numerical direction values. Then the image is evenly divided into a number of windows, and

features are locally extracted from each window.

1.1. Contributions of the Proposed Research

In this research, a novel feature extraction technique is presented for extracting structural features

from cursive handwritten characters. This Modified Direction Feature (MDF) extraction technique

combines local feature vector and global structural information and provides integrated features to

a neural network for training and testing. The proposed approach first employs an existing

character outline tracing technique, which traces the contour of a given character image. Then, the

directions of line segments comprising the characters are detected and the foreground pixels are

replaced with appropriate direction values. Finally, features of the characters, based on the

location of background to foreground pixel transitions, are extracted and neural training and

classification is performed.

Following on from earlier work presented in [28], the current paper extends this research through

the following novel contributions. A revised and extended version of MDF is proposed including

(a) novel enhancements to the direction value detection technique, (b) a new and enhanced version

of the algorithm for distinguishing individual line segments and direction normalisation, (c) a

detailed algorithm for calculation of location and direction transitions (LTs and DTs respectively),

(d) an algorithm for re-sampling the raw LT and DT values for MDF extraction and (e) the

proposal of a global feature (ratio) added to the MDF feature vector.

In addition to this, extended experimental results are presented using two individual character

data sets, a combined data set and a comparison of MDF and MDF-Ratio. Finally, a new/more

detailed analysis of all experimental results is presented including (a) an investigation of

incorrectly recognised characters using MDF and MDF-Ratio, (b) an extended comparison of

results using MDF and those feature extractors proposed by other researchers in the literature (c)

a statistical comparison of results between MDF and MDF-Ratio.

The remainder of this paper is broken down into four sections: Section 2 describes the principle of

the proposed feature extraction technique. Section 3 provides experimental results. Analysis and

discussions take place in Section 4, and finally Section 5 presents conclusions and future work.

2. Research Methodology

2.1. System Overview

The modified direction feature extraction technique combines the advantages of both the

traditional direction feature extraction and transition feature extraction techniques [28]. Part of the

direction feature extraction technique was used to provide stroke direction information, and the

transition feature extraction technique was also used to provide structural information of a

character. The local averaging method was used to avoid local stroke shifts.

There are a number of steps in the whole process of obtaining an MDF vector from character

images. The first step is to pre-process the input character image. For cursive handwritten

characters, most of them are slanted, skewed and full of noise. Therefore, there is a need to pre-

process the images so that more accurate features can be extracted. In general, the image pre-

processing stage includes skew, slant detection and correction, noise removal and underline

removal.

Then, the boundary of each character needs to be retrieved. This is important to narrow the scope

of the information input to the feature extractor and subsequently to the classifier. This step,

amongst others, purports to reduce classification time and to facilitate the extraction of significant

features. Next, replacement of foreground pixels with direction values needs to take place on the

boundary of the image to enable stroke direction determination. This high-level process is

illustrated in Figure 1.

Figure 1. System Overview

2.2. Modified Direction Feature (MDF) Extraction

The previous section briefly described the methodology of the MDF technique. This section

explains the details of each component of the MDF extraction technique. Section a) illustrates

the process of obtaining direction values. Section b) explains how MDF features are calculated

and finally, the calculation of an additional global feature – "ratio feature" is introduced in

Section c).

2.2.1. Obtaining Direction Values

The process of obtaining direction values in the MDF technique is different from that of the

Direction Feature (DF) extraction technique [25] in many respects. The following sub-sections

depict the detail of detecting direction values from foreground pixels using the MDF technique.

2.2.1.1. Assumptions

For the direction value detection algorithm used in this research, there are two assumptions made

relating to the image that is to be processed. First, this image is assumed to be binary and second,

the image has been pre-processed so that only the boundary of the image remains.

2.2.1.2. Direction Values

The new array of direction values (updated from DF) are i) 2 for vertical direction, ii) 3 for right

diagonal direction, iii) 4 for horizontal direction, iv) 5 for left diagonal direction and v) 8 for

starting point (see Figure 2). This starting point is the number used in the intermediate process and

when processing of the image is completed, all starting point values are normalised; therefore, the

direction value 8 is not shown in Figure 2.

Figure 2. Direction Values used for MDF

2.2.1.3. Finding Starting Points

The modified algorithm for obtaining direction values searches for a certain black pixel to start

the image processing procedure; these pixels are called starting points. The starting point is

defined as the first black pixel found at the bottom-most and left-most location in a given

character image. In this direction detection algorithm, a new starting point is sought whenever an

end of a connected line segment (stroke) is encountered. See Figure 3.

Figure 3. Seeking Starting Points

Also, in this algorithm, all starting point pixels are temporarily replaced by the value "8". After

the normalisation stage (described below), each starting point is normalised by the predominant

direction value in the line segment it belongs to.

2.2.1.4. Distinguishing Individual Line Segments

The rules for distinguishing individual line segments used in this algorithm are similar to the rules

used in the DF extraction technique. Essentially, the algorithm collects each foreground pixel and

based on the previous direction, it converts the foreground pixel to an appropriate direction value

whilst at the same time checking for line segment conditions. Various rules serve as line segment

conditions. If one of the conditions is met, then a line segment is found. The rules used for

distinguishing line segments by the direction value detection algorithm in this research are:

• A corner condition is found OR

• During line segment detection, when a change in direction occurs more than three times OR

• A change in direction AND the previous direction has been continuously the same

AND the length of the previous direction is greater than three pixels

In order to save confusion, it is important to clarify what the corner conditions are. During

traversal along the boundary of a given character image, if there is a sudden change in direction

and such a change forms a particular angle, then a corner is said to be found. As previously

described, if a corner condition is met, a line segment (stroke) is found and the search for a new

line will begin.

There are 8 corner conditions in total; among these there are 4 vertical corner types. The first type

is defined when the previous direction is an upward right direction and the current direction is

facing upward left (See Figure 4a). The second type is when the previous direction is upward left

and the current is the upward right direction (See Figure 4b). The third type is when the previous

direction is down-right and the current direction is down-left (See Figure 4c). The fourth type is

when the previous direction is down-left and the current direction is down-right (See Figure 4d).

Figure 4. Vertical Corner Conditions

There are 4 other horizontal corner types, the first type is when the previous direction is facing the

up-right direction and the current direction is facing down-right (See Figure 5a). The second type

is when the previous direction is down-right and the current direction is up-right (See Figure 5b).

The third type is when the previous direction was going upward left and the current direction is

pointing in the downward left direction (See Figure 5c). The last type is when the previous

direction was facing down-left and the current direction is pointing up-left (See Figure 5d).

Figure 5. Horizontal Corner Conditions

2.2.1.5. Direction Value Normalisation

There are three steps to normalising a line segment. The first step is to find the most frequently

occurring direction value in a line segment. The second step is to use the most occurring value to

replace the values of the other pixels in the current line segment, except the starting point. The last

step is to normalise the starting point pixel. In other words, the value of each starting point will be

converted from 8 to the normalised value of the line segment that the starting point belongs to.

Figure 6 illustrates the complete process of direction detection and line segment normalisation. As

can be seen, an image of lowercase “a” in its boundary format is shown in Figure 6a. This image

is then fed into the new direction detection algorithm. Figure 6b shows the intermediate stage of

image processing. One can see from Figure 6b that the location of each starting point and the

direction values for all other foreground pixels has been identified. And in Figure 6c, all line

segments in the image have been normalised.

 (a) (b) (c)

Figure 6. Direction Normalisation in a Given Image

2.2.2. Obtaining the Modified Direction Feature

The proposed MDF technique builds upon the DF and TF techniques described in previous

sections [28]. The main difference is in the way the feature vector is created. For TF, feature

vector creation is based on the calculation of transition features from background to foreground

pixels in the vertical and horizontal directions. However, in MDF, aside from calculating the

Location of Transitions (LTs), the Direction Transition (DT) values at a particular location are

also recorded. Therefore, for each transition, a pair of values such as [LT, DT] is stored.

To calculate LT values, it is necessary to scan each row in the image from left-to-right and right-

to-left. Likewise, each column in the image must be scanned from top-to-bottom and bottom-to-

top. As in the standard transition feature extraction technique [11], the LT values in each direction

are computed as a fraction of the distance traversed across the image. Therefore, as an example, if

the transitions were being computed from left-to-right, a transition found close to the left would be

assigned a high value compared to a transition computed further to the right (See Figure 7a). A

maximum value (MAX) was defined to be the largest number of transitions that may be recorded

in each direction. Conversely, if there were less than MAX transitions recorded (n for example),

then the remaining MAX - n transitions would be assigned values of 0 (to aid in the formation of

uniform vectors).

Once a transition in a particular direction is found, along with storing an LT value, the direction

value (DT) at that position is also stored. The DT value is calculated by dividing the direction

value (at that location) by a predetermined number, in this case: 10. The value 10 was selected

based on the maximum numerical values used to describe line segments in the DF technique [25]

to facilitate the calculation of floating-point values between 0 and 1 (See Figure 7).

 0.82 0.59 0.24
0.89 0.65 0.35
0.89 0.71 0.35

 0.3 0.4 0.2
 0.2 0.3 0.2
 0.2 0.3 0.2

(a) Processing LT and DT Values From the Left-to-right Direction

 . . .
0.87 0.65 0.31
. . .
. . .
0.78 0.33 0.11

 . . .
. . .
. . .
0.82 0.59 0.24
0.89 0.65 0.35
0.89 0.71 0.35
. . .
. . .
. . .

0.79 0.44 0.22
0.85 0.38 0.11
0.71 0.18 0.0

 . . .
0.23 0.33 0.2
. . .
. . .
0.3 0.33 0.5

 . . .
 . . .
 . . .
 0.3 0.4 0.2
 0.2 0.3 0.2
 0.2 0.3 0.2
 . . .
 . . .
 . . .

 0.3 0.4 0.5
 0.2 0.3 0.5
 0.4 0.3 0.5

 (b) Calculation of LT (c) Calculation of DT

Figure 7. Calculation and Creation of MDF

Therefore, following the completion of the above, four vectors would be present for each set of

feature values (eight vectors in total). For each of the LT and DT values, two vectors would have

dimensions MAX × NC (where NC represents the Number of Columns (width) of the character)

and the remaining two would be MAX × NR (where NR represents the Number of Rows (height)

of the character).

A further re-sampling of the above vectors was necessary to ensure that the NC/NR dimensions

were normalized in size. This was achieved through local averaging. The target size upon re-

scaling was set to a value of 5, which is consistent with that used for the TF technique [11].

Therefore, for a particular LT or DT value vector, windows of appropriate dimensions were

calculated by determining an appropriate divisor of NC/NR, and the average of the LT/DT values

contained in each window were stored in a re-sampled 5 × 3 matrix (as shown in Figure 7, for

vectors obtained from a left-to-right direction traversal). This was repeated for each of the

remaining transition value vectors so that a final 120 or 160 element feature vector could be

formed using the following formula (Figure 8):

Total MDF features = Feature Pair * Number of Transitions * Number of Directions * Re-sampled Matrix size

 Figure 8. Calculation of the Total Number of MDF Features

where:
Feature Pair [LT,DT] = 2,
Number of Transitions = 3 or 4,
Number of Directions = 4 and
Re-sampled Matrix Size = 5

The complete algorithm for the calculation of location transitions and direction transitions can

be viewed in the format of pseudo-code and is shown below:

For each direction of traversal
 For i = 0 to number of lines
 For j = 0 to number of transitions
 IF traversal is from left to right THEN
 LT = 1 – v / character width
 ELSE IF traversal is from top to bottom THEN
 LT = 1 – v / character height
 ELSE IF traversal is from right to left THEN
 LT = v / character width
 ELSE IF traversal is from bottom to top THEN
 LT = v / character height
 END IF

 DT(v) = dv / 10
 Record [LT, DT(v)] as a feature pair in feature vectors
 END For
 END For
END For

In the algorithm above, a line of traversal refers to a row or a column, let LT be the value of the

transition value and DT(v) be the value of the direction feature at the position where a transition

occurs. When a background to foreground pixel transition occurs, the exact location of the

transition is represented by v, and the direction number at the position of transition is denoted by

dv.

As mentioned earlier, after obtaining the raw feature vectors in 4 directions, a further re-

sampling (local averaging) of the above vectors was necessary so that the NC/NR dimensions

were normalized in size. The complete algorithm of performing such a local averaging task is

shown below in the format of pseudo-code:

For each dimension of the feature matrix
 IF it is an NC dimension THEN
 L = number of columns
 ELSE
 L = number of rows
 END IF
 G = L / re-sampling size
 For i = 0 to L
 For j = 0 to number of transitions
 Let m = i
 Let n = i + G
 aveLT = (LTm + LTm+1 + … + LTn-1) / G
 aveDT = (DTm + DTm+1 + … + DTn-1) / G
 record [aveLT, aveDT] as a feature pair in the re-sampled feature matrix
 END For
 Set i = n
 END For
END For

In the algorithm above, L is used to denote the length of either a row or a column. The re-sampled

matrix size in this research is set to 5. G represents the number of elements (intervals) needed to

perform local averaging. Variables m and n represent the starting and ending positions for local

averaging. Finally, aveLT and aveDT represent the averaged LT and DT values.

2.2.3. Adding Ratio Feature

Based on the analysis undertaken in the preliminary investigation of the MDF technique, an extra

feature was deemed to be necessary. As may be seen in section IV, confusion occurs very

frequently when encountering alphabet letters ‘l’ and ‘i’. It has been observed that in general,

lower case ‘i’ has a shorter and wider shape compared to the lower case ‘l’, conversely, the letter

‘l’ has a taller and narrower shape compared to ‘i’. Therefore, the authors were interested in

seeing the significance of introducing a width to height ratio to the list of features. In the

following sub-section, the feature itself and the description of the calculation procedure are

discussed.

2.2.3.1. The Ratio Feature

The extra feature that was deemed necessary and was added to the feature vector was the

character width to height ratio. Since this extra feature of width to height ratio was added, an extra

assumption was required. This assumption stated that character images could not be resized. The

reason for this was because if all training character images were resized to a uniform size in the

pre-processing stage, then the ratio value would be the same for all characters and therefore would

not influence the recognition rate.

2.2.3.2. The Problem of Obtaining Width to Height Ratio

The easiest approach for acquiring the ratio feature is by performing a division of the character

width and height directly. However, there is a problem with this approach. The problem comes

from both the image size and the neural network classifier.

On one hand, the Multi-layer Perceptron (MLP) classifier used in this research accepts

predominantly feature values ranging between 0 and 1, if the feature values are outside of this

boundary, undesirable results may occur. On the other hand, it was assumed previously, that the

image must not be resized. So the value of width to height ratio can be much greater than 1.0. For

example, if the character image is very long in terms of width and short in terms of height, i.e. 150

pixels wide and 15 pixels high, the ratio value will be 10 and this is not acceptable since it is

greater than 1; therefore, this way of getting the ratio value is not feasible and other methods of

calculating the ratio value have been investigated.

2.2.3.3. The Solution to the Problem

The solution to this problem is to use the angle ratio to represent the width to height ratio. The

idea is to view a character image as a rectangle. Then, the rectangle is divided diagonally,

resulting in two symmetrical right triangles (See Figure 9).

Figure 9. Dividing a Character Image Symmetrically

In fact, only one triangle is needed, and in this research, the top triangle was chosen to calculate

the ratio. As illustrated in Figure 10, firstly, the angle α is calculated by using the arc tan

function. Once the character width and height are input to the formula, the angle α is obtained in

radians. The ratio is then calculated by dividing the α value by half of pi.

()2/
)2

)arctan()1

π
α

α

=

=

ratio

height
width

α−Angle

Figure 10. Calculation of the Ratio Value

The advantage of retrieving the ratio value in this way is that no matter how wide and short or tall

and thin the images are, ratio values ranging between 0 – 1 are always ensured. The wider and

shorter the image is, the closer the ratio is to 1. Also, the taller and thinner the image is, the closer

the ratio value is to 0. But 0 and 1 will never be achieved since there is always a proportion

between width and height. Although this value is not directly calculated by dividing the width and

height values, it does however use the ratio between the width and height. So it is a true alternate

representation of a character width and height ratio. This version of the MDF technique,

incorporating the ratio feature, is called MDF-Ratio (MDF-R).

3. EXPERIMENTAL RESULTS

The word images used for experiments were obtained from the CEDAR benchmark dataset [27].

The first character data set used is called the CEDAR Automatically Segmented (CAS) data set.

The second data set was comprised of pre-segmented Binary Alphanumeric Characters (BAC)

and therefore called the BAC data set. More details on the creation of CAS and the nature of

BAC may be found in [1]. The classifier used in this research was a feed forward, Multi-layer

Perceptron (MLP) trained with the Error Backpropagation (EBP) algorithm. The dataset and

experimental environment was identical throughout all phases of experimentation.

3.1. Individual Data Set Experiments

The first sets of results are displayed in tabular form for each sub-set of experiments. Table 1

displays the experimental results using the CAS dataset. Separate experiments were conducted for

lower case and upper case character patterns. A total of 18655 lower case and 7175 upper case

character patterns were generated for training. A further 2240 lower case and 939 upper case

patterns were used for testing. Table 1 presents the top result for the TF, DF and MDF extraction

techniques using the MLP. For comparison purposes, all feature extraction techniques were tested

on boundary representations of resized characters from the CAS dataset.

Table 1. Character recognition rates with an MLP network trained using boundary information from
resized characters on the CAS dataset

Test Set Recognition Rate [%]
 TF DF MDF (120)

Lowercase 67.81 69.73 70.26
Uppercase 79.23 77.32 80.72

The second set of results is displayed in tabular form for each sub-set of remaining individual data

set experiments. Table 2 displays the experimental results using the BAC dataset. Experiments

were conducted for a combination of lower case and upper case character patterns. It was noticed

by Singh [19] that for some characters, their upper case shapes are similar to their lower case

equivalents. Therefore, by combining the upper and lower case characters, some characters may be

merged into one category or class. For example, the shape of the upper case letter ‘O’ and the

lower case letter ‘o’ are extremely similar especially in the context of cursive handwriting. The

order of the 36 outputs used in this research is shown in Figure 11 below.

Figure 11. 36 Categories of Outputs

A total of 19145 lower case and upper case character patterns were prepared for training. A further

2183 lower case and upper case patterns were used for testing. Table 2 presents the top results for

the TF, DF and MDF extraction techniques using the MLP trained with EBP. For comparison

purposes, all feature extraction techniques were tested on boundary representations of non-resized

characters from the BAC dataset.

Table 2. Character recognition rates with an MLP network trained using boundary information from non-
resized characters on the BAC dataset

Test Set Recognition Rate [%] TF DF MDF(120)
Combined 36
outputs 82.82 83.65 89.01

3.2. Combined Data Set Experiments

A combined dataset were created for further experiments. This dataset consisted of training and

testing characters from both CAS and BAC datasets mentioned above. There are three reasons

why the BAC and CAS datasets were combined. The first reason was that by combining these two

datasets, a much larger training and testing database would result and theoretically more training

examples could be provided to the neural network for superior learning. The second reason was

that the BAC dataset was known as an easy or ‘clean’ dataset, and the CAS dataset was known as

a difficult dataset even for humans to recognise. Again in theory, the presentation of character

patterns of mixed difficulty was hypothesised to provide the neural network with a more effective

data set for training. The final reason was that by combining the BAC and CAS datasets, it was

easier and more meaningful to compare the results of this research with the recognition rates of

other researchers in the literature that used larger datasets.

After combining the datasets, a total of 34243 training characters and 3372 testing characters were

generated. For the CAS dataset, there were many ‘garbage’ or non-character images, which were

used for training the classifiers as reject patterns. In order to create a dataset with 36 outputs, the

reject characters needed to be removed from both the CAS training dataset and the CAS testing

dataset.

Based on the fact that MDF provided a higher recognition rate than the TF and DF extraction

techniques in Section 3.1, further experiments were conducted using a combined data set to

ascertain the significance of adding a ratio feature (MDF-R) to MDF. Experiments were conducted

with identical neural classifier settings in order to compare the performance between MDF and

MDF-R in terms of recognition rate. A random sub-set of the experimental results conducted,

using the combined data set, is shown in Table 3.

Table 3. Character recognition rates with an MLP trained using boundary information from non-resized
characters on the combined dataset employing MDF and MDF-R techniques

Neural Classifier Settings Recognition Rate [%]

Num. Hidden Units Num. Iterations Num. Features Num. Outputs MDF MDF-R

50 3500 120 36 80.34 80.6
65 4500 120 36 81.97 82.3
80 6000 120 36 83.16 82.74

110 9000 120 36 83.16 83.07
120 10000 120 36 83.45 84.16
135 11500 120 36 83.78 84.25
138 9000 120 36 83.87 84.19
140 10000 120 36 83.78 84.13
150 11000 120 36 83.69 84.16
160 11500 120 36 83.9 84.46
170 14500 120 36 83.51 84.34
180 14000 120 36 84.37 84.49
180 14500 120 36 84.57 84.58
180 15000 120 36 84.4 84.46
190 16000 120 36 83.78 84.05

4. ANALYSIS AND DISCUSSION OF RESULTS

An analysis was conducted after the completion of each set of experiments. The analysis

following the individual data set experiments (Section 3.1) was used as a general direction for

subsequent experiments in this research. In this section, the analysis of each experiment set is

summarised in the following sub-sections.

4.1 Analysis of Experiments

The analysis of individual data set experiments (Section 3.1) was undertaken in three main ways,

and each is described in a separate sub-section. Sub-section 4.1.1 analyses the performance of

each feature extraction technique. Then, an investigation of incorrectly recognized characters is

conducted in sub-section 4.1.2. Finally, sub-section 4.1.3 provides a comparison of the character

recognition results with other researchers in the literature.

4.1.1 Comparison Between Feature Extraction Techniques

As shown in Table 1 and Table 2, the networks trained with the MDF provided a higher

recognition rate than the DF and TF techniques in each case. In particular, the MLP network

trained with the MDF (120 inputs) for the BAC dataset, demonstrated an increase of

approximately 5% and 6% over the DF and TF techniques respectively. This increase may be

attributed to the enhanced feature information obtained from both the LT and DT values.

4.1.2 Investigation of Incorrectly Recognized Characters Employing MDF

In this research, aside from testing the performance of the MDF technique compared with two

other techniques, it was also important to perform an analysis of the characters that were

incorrectly recognized to determine the distribution of errors provided by the MLP classifiers.

Of great interest were the classification errors generated by the MDF technique using the

combined data set, as it provided some of the top results in this research. For the network

configuration obtaining one of the top recognition rates employing MDF, out of a total of 3372

characters in the testing set, there were 520 characters that were not successfully recognized.

Firstly, an investigation was performed recording which individual classes of characters provided

the most errors for the network. It was found that characters ‘i’, ‘l’, ‘e’, and the character ‘a’

provided the most misclassifications out of the 36 possible outputs. Figure 12 illustrates this

distribution.

Distribution of Incorrectly Recognised Characters from
the Combined Dataset

a

b

c

d
f

g
h j

l

m
n o

p
q

r
s

t u

v

w x y z
A H T

i

RN

Q

D

k
G

EB

e

0

10

20

30

40

50

60

70

36 Character Outputs
N

um
be

r o
f I

nc
or

re
ct

Figure 12. Error Distribution for Incorrectly Recognized Characters

The investigation continued to determine which of the remainder of the characters were mostly

being confused with the top four incorrectly recognized classes. It was found that the character ‘i’

was mostly incorrectly recognized as the character ‘l’ (and vice-versa). The character ‘e’ was

mainly confused with the character ‘i’, and ‘a’ was mostly confused with ‘o’. The following

figures present the error distributions of each of the above characters (Figure 13).

Character 'l'

0

10

20

30

40

i e h c
Mismatched Characters

N
um

be
r o

f
M

is
m

at
ch

Character 'e'

0

5

10

15

i l c
Mismatched Characters

N
um

be
r o

f
M

is
m

at
ch

 (a) (b)

Character 'i'

0
5

10
15
20
25

l r c t

Mismatched Characters

N
um

be
r o

f
M

is
m

at
ch

Character 'a'

0
2
4
6
8

10
12

o n e
Mismatched Characters

N
um

be
r o

f
M

is
m

at
ch

 (c) (d)
Figure 13. Error Distribution of Mismatched Characters for (a) character 'l' (b) character 'e' (c) character

'i' and (d) character 'a'.

During the investigation, it was noted that due to the ambiguities of some character images, in

certain instances, the neural network was unable to give a reliable confidence to determine a

correct output at all. In other words, when the MLP encountered 'ambiguous' character features, it

ranked many of the possible outputs at confidence values below 0.3. For the MLP test case using

the combined dataset (mentioned above), there were 77 out of 520 such characters that were

incorrectly recognized in this manner.

Another interesting result of the investigation was that if the top two character confidences output

by the MLP were used to determine the character recognition rate, the recognition error decreased

from 520 incorrectly recognized characters to 300. Hence, when the top two confidences output by

the MLP are taken into account, the character recognition rate reaches approximately 91%.

4.1.3 Investigation of Incorrectly Recognized Characters Employing MDF-R

A similar analysis on the classification errors generated by the MDF-R technique using the

combined data set was also conducted. Although the overall distribution of the classification error

did not change dramatically and the top 4 mis-classified characters remained the same as those

obtained using MDF, there are some noticeable differences. The most noticeable improvement is

that by adding the ratio feature value to the MDF vector, the mis-classification of the lower case

letter ‘l’ decreased by approximately 21.5%. As can be seen from Figure 13(a), ‘l’ was most

confused with lower case character ‘i’. However, after the ratio feature was employed, the mis-

classification from ‘l’ to ‘i’ decreased by almost 31%. In addition, the result of the analysis

showed a similar figure on the number of mis-classifications between ‘i’ and ‘l’. In other words,

the ratio feature seemed to assist in differentiating between the characters ‘l’ from ‘i’ whilst

preventing large increases in mis-classifications from ‘i’ to ‘l’.

Another noticeable improvement was the decrease of recognition error when the top two character

confidences were used to determine the recognition rate. Previously, when employing MDF, the

recognition error was decreased from 520 to 300 when the top two character confidences were

taken into account. After employing the additional ratio feature, this error was further reduced to

285. In other words, the recognition accuracy increased from 91.1% to 91.55% by just adding this

global feature.

In summary, the addition of the ratio feature lowered the confusion in distinguishing between the

most difficult character classes, at the expense of increasing the error slightly for some of the

remaining characters. Overall, this is an acceptable outcome in our investigation.

4.1.4 Comparison Between Character Recognition Results with Other Researchers in the

Literature

It is always a difficult task to compare results for handwritten character recognition with other

researchers in the literature. The main problems that arise are differences in experimental

methodology, different experimental settings and the difference in the handwriting database used.

The comparisons presented below have been chosen for two main reasons. The handwriting

databases used by the researchers were similar to those used in this research (i.e.

cursive/segmented characters from the CEDAR database) and/or the results are some of the most

recent in the literature.

Yamada and Nakano [17] presented a handwritten word recognition system that included a

character recognizer. Their classifier was trained on segmented characters from the CEDAR

benchmark database. The classifier was trained to output one of 52 classes (a-z, A-Z). They

recorded recognition rates of 67.8% and 75.7% for the recognition of characters where upper case

letters and lower case letters were distinguished (case sensitive) and not distinguished (non-case

sensitive) respectively. Therefore, the top recognition rate from the combined dataset in this

research (84.58%) should be used for comparison purposes. This recognition rate compares well

with their result. The top recognition accuracy using the BAC data set in this research (89.01%)

exceeds their top result by more than 13%.

Another example where a 52-output classifier was used for segmented character recognition was

in research presented by Kimura et al. [18]. They used neural and statistical classifiers to

recognize segmented CEDAR characters. For case sensitive experiments, their neural classifier

produced an accuracy of 73.25%, which again was comparable to the combined dataset result of

84.58% presented in this research. The top recognition accuracy in this research using the BAC

dataset exceeded theirs by more than 16%.

Singh and Hewitt [19] obtained a recognition rate of 67.3% using a Linear Discriminant Analysis-

based classifier. The result obtained from the combined dataset (84.58%) compares well to their

recognition rate. Furthermore, the best result using the BAC dataset exceeds their top recognition

rate by nearly 22%.

From previous experimentation [25], it was found that the standard transition feature, as proposed

by Gader et al. [11], produced results of 70.31% and 79.23% for lowercase and uppercase

characters respectively. The most recent results on the CAS data set are higher than those

described above. Moreover, the top result obtained from the combined dataset, which also contains

upper and lower case characters, exceeds their top result by more than 5%.

Finally, the results presented in our research (specifically those for the BAC dataset – 89.01% and

the combined dataset – 84.58%) compare favourably to those presented by Camastra and

Vinciarelli [23] who obtained a recognition rate of 84.52%. As in most of the results above, a

precise comparison is difficult, as Camastra and Vinciarelli's classifier configuration and dataset

composition were different to those described in this research.

4.2 Comparison Between MDF and MDF-R

Although the top results obtained by the MDF-R technique in Table 3 (84.58%) show a marginally

better performance than the standard MDF technique (84.57%) whilst employing the same

network configuration, this type of comparison is not sufficient on the whole to indicate whether

MDF-R outperforms MDF. Hence, in order to evaluate overall whether the MDF-R technique is a

better feature extraction technique than MDF for off-line character recognition, it was decided to

perform a paired t-test to evaluate on average which feature extraction technique performed better,

based on all the results obtained in Table 3. This was carried out in preference to an independent t-

test, to determine if the results obtained were attributed to the feature extraction technique

employed and not as a result of the treatment utilised (the neural network classifier and

configuration used). It was hypothesized that if there was no significant difference between the

recognition rates obtained by the two techniques, then p>0.05. However, if there was a significant

difference in the recognition rates obtained by the two techniques, then p<0.05.

MDFMDF-R

Feature Extraction Technique

85.00

84.00

83.00

82.00

81.00

80.00

Re
co

gn
iti

on
 R

at
es

 (%
)

17

16

1

Figure 14. Modified box plot illustrating the recognition rate performance based on the MDF and MDF-R

feature extraction techniques.

The results obtained from the paired t-test found that there was a significant difference in the

recognition rates obtained by the two techniques, as p<0.05, being 0.004 (n=15), irrespective of

the treatment employed. A box plot in Figure 14, was used to show which technique performed

better. As can be seen from Figure 14, the MDF-R technique had a higher average recognition rate

of 83.7% for all 15 experiments, than did the MDF technique, which had a mean recognition rate

of 83.4%. There is a large amount of variation in the recognition rates obtained using MDF-R

between the lower quartile and minimum value, however this is only as a result of 3 values. In

addition, there exists a potential outlier (*
1 representing 80.6%) as illustrated in the Figure. The

majority (11) of the recognition rates obtained using MDF-R for the 15 experiments, lay above the

mean value of 83.73%, whereas for the MDF technique, only 8 recognition rates lay above the

mean value of 83.45%. Also, the modified box plot identifies two of the results obtained by MDF

as potential outliers (o17 representing 81.97% and *16 representing 80.34%).

Overall, it was found that the recognitions rates obtained using MDF-R were significantly higher

than the recognitions rates obtained by the MDF technique and hence it may be concluded that it

performed better as a feature extraction technique.

5. CONCLUSIONS AND FUTURE RESEARCH

In conclusion, a novel feature extraction technique for cursive handwritten characters is proposed.

Experiments have been conducted exhaustively to test the significance of the proposed technique.

From the results, the original MDF outperformed the traditional TF and DF in terms of

recognition accuracy. This research also described a further improvement with regards to

recognition rate, by adding an additional feature and modifying the extraction process. A

comparison with top results in the literature indicates that the proposed feature extraction

technique provides comparable and in most cases higher recognition accuracy for cursive

characters.

Besides performing experiments, an analysis and discussion of the results, including the strengths

and weaknesses of the technique, were also investigated. Upon performing the experiments and

conducting an analysis of the results, it was concluded that the MDF extraction method which

combines direction values, transition features and width to height ratio (MDF-R) provided the

most descriptive information for MLP classification and consequently provided the best overall

recognition rate.

In future research, a number of considerations will be addressed to further investigate and enhance

the technique. These include conducting further experiments with thinned characters and

comparing the results obtained between the boundary and thinned versions of character images.

Also curve information will be incorporated in the process of determining direction values.

Finally, further investigations into mis-classifications will be conducted.

REFERENCES

[1] B. Verma, M. Blumenstein, M. Ghosh, “A novel approach for structural feature extraction: contour
vs. direction”, Pattern Recognition Letters, vol. 25, pp. 975 – 988, 2004.

[2] R. Plamondon, S. N. Srihari, “On-line and off-line handwriting recognition: A comprehensive

survey”, IEEE Tran. Pattern Anal. Mach. Intell., vol. 22, pp. 63 – 84, 2000.

[3] C. Y. Suen, R. Legault, C. Nadal, M. Cheriet, L. Lam, “Building a new generation of handwriting

recognition system”, Pattern Recognition Letters, vol. 14, pp. 305-315, 1993.

[4] C.J.C. Burges, J. I. Be, C. R. Nohl, “Recognition of handwritten cursive postal words using neural

networks”, Proc. of the 5th USPS Advanced Tech. Conf., pp. 117 – 124, 1992.

[5] F. Kimura, S. Tsuruoka, M. Shridhar, Z. Chen, “Context-directed handwritten word recognition for

postal service applications”, Proc. of the 5th USPS Advanced Tech. Conf., pp. 199 - 213, 1992.

[6] T. Paquet, Y. Lecourtier, “Handwritten recognition: Application on bank cheques”, Proc. of the first

Int. Conf. on Doc. Anal. and Rec., pp. 749 – 757, 1991.

[7] D. Guillevic, C. Y. Suen, “HMM-KNN word recognition engine for bank cheque processing”, Proc.

of the 14th Int. Conf. on Pattern Rec., pp. 1526 – 1529, 1998.

[8] T. Bruel, “Design and implementation of a system for recognition of handwritten responses on US

census form”, Proc. of the IAPR Workshop on Doc. Anal. Sys., pp. 237 – 264, 1994.

[9] F. Kimura, S. Tsuruoka, Y. Miyake, M. Srihari, “A lexicon directed algorithm for recognition of

unconstrained handwritten words”, IEICE Trans. Information Sys., E77-D, pp. 785 – 793, 1994.

[10] P. D. Gader, M. Magdi, J. H. Chiang, “Segmentation based handwritten word recognition”, Proc. of

the 5th USPS Advanced Tech. Conf., pp. 215 – 226, 1992.

[11] P. D. Gader, M. Mohamed, J. H. Chiang, “Handwritten word recognition with character and inter-
character neural networks”, IEEE Trans. on Sys. Man and Cybernetics – part B: Cybernetics, vol.27,
pp. 158 – 164, 1997.

[12] G. Kim, V. Govindaraju, “A lexicon driven approach to handwritten word recognition for real time

applications”, IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, pp. 366 – 379, 1997.

[13] J. Cai, Z. Q. Liu, “Integration of structural and statistical information for unconstrained handwritten

numeral recognition”, IEEE Trans. Pattern Anal. Mach. Intell., vol. 21, pp. 263 – 270, 1999.

[14] S. W. Lee, “Off-line recognition of totally unconstrained handwritten numerals using multilayer

cluster neural network”, IEEE Trans. Pattern Anal. Mach. Intell., vol. 18, pp. 648 – 652, 1996.

[15] S. B. Cho, “Neural network classifiers for recognizing totally unconstrained handwritten numerals”,

IEEE Trans. of Neural Networks, vol.8, pp. 43 – 53, 1997.

[16] X. Wang, X. Ding and C. Liu, “Gabor filters-based feature extraction for character recognition”,

Pattern Recognition, vol. 38, pp. 369-379, 2005.

[17] H. Yamada, Y. Nakano, “Cursive handwritten word recognition using multiple segmentation

determined by contour analysis”, IEICE Trans. Information Sys., E79-D, pp. 464 – 470, 1996.

[18] F. Kimura, N. Kayahara, Y. Miyake, M. Shridhar, “Machine and human recognition of segmented

characters from handwritten words”, Proc. of 4th Int. Conf. on Doc. Anal. and Rec., pp. 866 – 869,
1997.

[19] S. Singh, M. Hewitt, “cursive digit and character recognition on cedar database”, Int. Conf. on

Pattern Rec., pp. 569 – 572, 2000.

[20] B. Lazzerini, F. Marcelloni, “A linguistic fuzzy recognizer of off-line handwritten characters”,

Pattern Recognition Letters, vol.21, pp. 319 – 327, 2000.

[21] F. Camastra, A. Vinciarelli, “Cursive character recognition by learning vector quantization”, Pattern

Recognition Letters, vol.22, pp. 625 - 629, 2001.

[22] N. Arica and F.T. Yarman-Vural, “Optical Character Recognition for Cursive Handwriting”, IEEE

Trans. Pattern Anal. Mach. Intell., vol. 24, pp. 801-813, 2002.

[23] F. Camastra, A. Vinciarelli, “Combining neural gas and learning vector quantization for cursive

character recognition”, Neurocomputing, vol.51, pp. 147-159, 2003.

[24] M. Hanmandlu, K. R. M. Murali, S. Chakraborty, S. Goyal, D. R. Choudhury, “Unconstrained

handwritten character recognition based one fuzzy logic”, Pattern Recognition, vol.36, pp. 603 – 623,
2003.

[25] M. Blumenstein, B. K. Verma, H. Basli, "A Novel Feature Extraction Technique for the Recognition

of Segmented Handwritten Characters", 7th Int. Conf. on Doc. Anal. and Rec., pp. 137-141, 2003.

[26] M. Blumenstein, B. K. Verma, “Analysis of segmentation performance on the CEDAR bench mark

database”, Proc. of 6th Int. Conf. on Doc. Anal. and Rec., pp. 1142 – 1146, 2001.

[27] J.J. Hull, “A database for handwritten text recognition”, IEEE Trans. Pattern Anal. Mach. Intell.,

vol.16, pp. 550 – 554, 1994.

[28] M. Blumenstein, X. Y. Liu and B. Verma, "A Modified Direction Feature for Cursive Character

Recognition", Int. Joint Conf. on Neural Networks (IJCNN ’04), Budapest, Hungary, pp. 2983-2987,
2004.

	B. Verma
	REFERENCES

