Additive versus Multiplicative Clause Weighting for SAT

John Thornton and Duc Nghia Pham and Stuart Bain and Valnir Ferreira Jr.
Institute for Integrated and Intelligent Systems, Griffith University
PMB 50, Gold Coast Mail Centre, 9726, Australia
email: {j.thornton, d.n.pham, s.bain, v.ferreira} @griffith.edu.au

Abstract

This paper examines the relative performance of additive and
multiplicative clause weighting schemes for propositional
satisfiability testing. Starting with one of the most recently
developed multiplicative algorithms (SAPS), an experimental
study was constructed to isolate the effects of multiplicative
in comparison to additive weighting, while controlling other
key features of the two approaches, namely the use of random
versus flat moves, deterministic versus probabilistic weight
smoothing and multiple versus single inclusion of literals in
the local search neighborhood.

As a result of this investigation we developed a pure additive
weighting scheme (PAWS) which can outperform multiplica-
tive weighting on a range of difficult problems, while requir-
ing considerably less effort in terms of parameter tuning. We
conclude that additive weighting shows better scaling prop-
erties because it makes less distinction between costs and so
considers a larger domain of possible moves.

Introduction and Background

Clause weighting algorithms for satisfiability testing have
formed an important research area since their first introduc-
tion in the early 1990s. Since then various improvements
have been proposed, resulting in the two best known algo-
rithms of today: the discrete Lagrangian method (DLM)
(Wu & Wah 2000) and scaling and probabilistic smooth-
ing (SAPS) (Hutter, Tompkins, & Hoos 2002). While these
methods differ in important aspects, both use the same un-
derlying trap avoiding strategy: increasing weights on un-
satisfied clauses in local minima and then periodically ad-
justing weights to maintain reasonable weight differentials
during the search.

The earliest clause weighting algorithms, such as Break-
out (Morris 1993), repeatedly increased weights on unsatis-
fied clauses and so allowed unrestricted weight growth dur-
ing the search. Flips were then chosen on the basis of min-
imizing the combined weight of the unsatisfied clauses. In
1997, Frank proposed a new weight decay algorithm that up-
dated weights on unsatisfied clauses using a combination of
a multiplicative decay rate and an additive weight increase.
While Frank’s work laid the ground for future advances, his
decay scheme produced relatively small improvements over

earlier weighting approaches. At this point, clause weight-
ing algorithms proved competitive on many smaller prob-
lems but were unable to match the performance of faster and
simpler heuristics, such as Novelty, on larger problem in-
stances (McAllester, Selman, & Kautz 1997). As a key rea-
son for developing incomplete local search techniques is to
solve problems beyond the reach of complete SAT solvers,
the poor scalability of clause weighting was a major disad-
vantage.

It was not until the development of DLM that a signifi-
cant performance gain was achieved. In its simplest form,
DLM follows Breakout’s weight increment scheme, but ad-
ditionally decrements clause weights after a fixed number of
increases. DLM also alters the point at which weight is in-
creased by allowing flat moves that leave the weighted cost
of the solution unchanged. These flat moves are in turn con-
trolled by a tabu list and by a parameter which limits the
total number of consecutive flat moves (Wu & Wah 2000).
In empirical tests DLM proved successful at solving a range
of random and structured SAT problems, and in particular
was able to outperform the best non-weighting algorithms
on many larger and more difficult problem instances.

In another line of research, Schuurmans and Southey
(2000) developed a fully multiplicative weighting algorithm:
smoothed descent and flood (SDF). SDF introduced a new
method for breaking ties between equal cost flips by ad-
ditionally considering the number of true literals in satis-
fied clauses. In situations where no improving moves are
available, SDF multiplicatively increases weights on un-
satisfied clauses and then normalizes (or smooths) clause
weights so that the greatest cost difference between any two
flips remains constant. SDF’s reported flip performance was
promising in comparison to DLM, but these results did not
look at the more difficult problems for which DLM was es-
pecially suited. In addition, SDF’s time performance did not
compare well, due to the overhead of adjusting weights on
all clauses at each local minimum.

In subsequent work, SDF evolved into the exponenti-
ated subgradient algorithm (ESG) (Schuurmans, Southey,
& Holte 2001), which in turn formed the basis of the scal-
ing and probabilistic smoothing (SAPS) algorithm (Hutter,
Tompkins, & Hoos 2002). ESG and SAPS dispensed with
SDF’s augmented cost function, and SAPS further improved
on the run-time performance of ESG by only smoothing
weights periodically, and only increasing weights on vio-

s280233
Text Box

lated clauses in a local minimum'.

The feature of greatest interest to the current study is that,
ignoring the issue of additive versus multiplicative clause
weighting, the weight update scheme of SAPS is almost
identical in structure to the weight update scheme of DLM:
both increase weight when a local minimum is identified (al-
though using different identification criteria), and both peri-
odically adjust weights according to a parameter value that
varies for different problems?. SAPS differs from DLM only
in using the parameter to probabilistically determine when
weight is reduced, whereas DLM deterministically reduces
weight after a fixed number of increases.

The aim of this study is to investigate whether an ad-
ditive or multiplicative weight update scheme is better for
satisfiability testing. Given that SAPS and DLM both have
some claim to be considered as the state-of-the-art in local
search for SAT and that both have separately hit upon a sim-
ilar underlying weighting structure, it now becomes possi-
ble to compare additive and multiplicative clause weighting
without their relative performance being disguised by dif-
fering implementation details. To perform this comparison,
we started with the authors’ original version of SAPS and
changed it in small steps until it became an effective addi-
tive clause weighting algorithm. By examining and empir-
ically testing the effect of each step, we set out to isolate
exactly those features that are crucial for the success of each
approach. This resulted in the development of a new pure
additive weighting scheme (PAWS). As the published results
for SAPS have only looked at relatively small problems, we
also decided to evaluate SAPS and PAWS on an extended
test set that includes a selection of the more difficult prob-
lems for which DLM was developed. In the remainder of the
paper we describe in more detail the development of PAWS
from SAPS and DLM, and then present the results and con-
clusions of our empirical study.

Clause Weighting Algorithms for SAT

DLM has been described as “ad hoc” (Schuurmans, Southey,
& Holte 2001) and criticized for requiring a large num-
ber of parameters to obtain optimum performance. How-
ever, DLM has evolved through several versions, the last of
which was developed specifically to solve the larger towers
of Hanoi and parity learning problems from the DIMACS
benchmarks (Wu & Wah 2000). As already discussed, the
basic structure of DLM is similar to SAPS, except for the
heuristic used to control the taking of flat moves. In addi-
tion, although the latest version of DLM has 27 parameters,
in practice only three of these require adjustment in the SAT
domain.

'ESG’s approach is to scale and smooth the weight on all
clauses in every local minima.

%Additionally, a third clause weighting algorithm, GLSSAT
(Mills & Tsang 1999), uses a similar weight update scheme, addi-
tively increasing weights on the least weighted unsatisfied clauses
and multiplicatively reducing weights whenever the weight on any
one clause exceeds a predefined threshold. Although GLSSAT per-
formed well in comparison with Walksat, it could not match DLM
on larger problems and so is not considered further in this study.

Of particular interest is that DLM uses a single parameter
to control the weighting process (corresponding to M ax ;.
in Figure 2), which determines when weights are to be re-
duced. In contrast, SAPS requires two further parameters
(o and p) to determine the amount that weights are multi-
plicatively scaled or smoothed (in DLM clause weight in-
creases and decreases are implemented by adding or sub-
tracting one). The other two DLM parameters (f; and 65)
are used to control the flat move heuristic: Using the terms
from Figure 1, if best < 0, DLM will randomly select and
flip any z; € L. Otherwise, if best = 0, and the number
of immediately preceding consecutive flat moves is < 6
and L; # (), then DLM will randomly select and flip any
x; € L;, where L; contains all flat move literals that have
not been flipped in the last 2 moves. Otherwise clause
weights are additively updated, as per Figure 2.

Although SAPS implements a fairly “pure” weighting al-
gorithm, there are a few implementation details that distin-
guish it from DLM (see Figure 1). The first is the wp param-
eter which probabilistically controls whether a random flip
is taken when no improving cost move is available. This acts
as an alternative to DLM’s flat move heuristic. The second
is that the set of local neighborhood of moves for SAPS con-
tains a single copy of each literal that can make a false clause
(i.e. turn it from false to true). In DLM, the neighborhood
consists of all literals in all false clauses. This means that if
a literal appears in more than one false clause, it will appear
more than once in the local neighborhood, thereby increas-
ing the probability that it will be selected. Finally, as noted
earlier, SAPS uses probabilistic smoothing when adjusting
clause weights, i.e. if Psmootn 1S set to 5% then there is a 1
in 20 chance that weight will be adjusted after an increase.
In contrast, DLM’s third parameter fixes the exact number
of increases before weight is decreased, and so represents a
deterministic weight reduction scheme.

Overall, there is little difference between DLM and SAPS
in terms of parameter tuning. While SAPS has four parame-
ters (a, p, wp and Pjsp,o0r) and a basic version of DLM has
three, in practice at least one of the SAPS parameters can
be treated as a constant and the others adjusted to suit (in
this study wp is set at 1%). For both algorithms the process
of parameter tuning is time consuming, as optimal perfor-
mance is highly dependent on the correct settings. This com-
pares poorly with simpler non-weighting algorithms, such as
adaptive Walksat (Hoos 2002), which only requires the au-
tomatic tuning of a single noise parameter. To address this, a
version of SAPS called Reactive SAPS (RSAPS) was devel-
oped (Hutter, Tompkins, & Hoos 2002) that automatically
adjusts the Pj,00tn parameter during the search. However
we found this algorithm did not perform as well as a prop-
erly tuned SAPS on our problem set, so we did not consider
it further.

Hence, the main design criticism that can be levelled at
DLM is that it relies on a somewhat complex flat move
heuristic, whereas SAPS can search purely on the basis
of weight guidance (while taking the occasional random
move). From this it could be argued that multiplicative
weighting is superior to additive weighting because it makes
finer distinctions between moves and so avoids the need to

procedure SAPS
begin
generate random starting point
for each clause c; do: set clause weight w; < 1
while solution not found and not timed out do
best + oo
for each literal z; appearing in at least one false clause do
Aw < change in false clause Yw caused by flipping z;
if Aw < best then L < z; and best < Aw
else if Aw = best then L < LU x;
end for
if best < —0.1 then randomly flip z; € L
else if probability < wp then randomly flip any literal
else
for each false clause f; do: w; + w; X
if probability < Pgmootr then
4w 4+ mean of current clause weights
for each clause ¢j do: w; < wj X p+ (1 — p) X pw
end if
end if
end while
end

Figure 1: Scaling and probabilistic smoothing (SAPS)

search plateau areas. However, this assumes that the overall
performance of SAPS is at least as good as DLM’s and that
the effectiveness of additive weighting depends on plateau
searching, both issues we shall address later in the paper.

The Pure Additive Weighting Scheme (PAWS)

SAPS has demonstrated that effective local search guid-
ance can be given by a reasonably simple manipulation of
clause weights. It has also outperformed DLM on a range of
SATLIB benchmark problems, both in terms of time and me-
dian number of flips (Schuurmans, Southey, & Holte 2001;
Hutter, Tompkins, & Hoos 2002). From this work several
questions arise: firstly how does SAPS perform on the larger
DIMACS benchmark problems for which DLM was devel-
oped? Secondly, the SAPS code is based on a very efficient
implementation of Walksat®, so to what extent is the supe-
rior time performance of SAPS based on the details of this
implementation? And finally, does the success of SAPS de-
pend on multiplicative weighting? i.e. can we obtain the
same kind of guidance using additive weighting, avoiding
the complication of multiplicative update parameters and
without resorting to the further complication of a plateau
searching strategy?

To answer all three of these questions we developed a
pure additive weighting scheme (PAWS), which we em-
bedded directly into the SAPS source code* (so the same
efficiencies were obtained), and tested PAWS on both the
SATLIB benchmarks used for SAPS and a selection of the
DIMACS benchmarks used for DLM. We term PAWS as a
pure weighting scheme because it does away with DLM’s
plateau searching heuristic and only relies on weight guid-

3 http://www.cs.washington.edu/homes/kautz/walksat/walksat-dist.tar.Z.uu

4http://www.int.gu.edu.au/‘ Jjohnt/paws.tar

procedure PAWS
begin
generate random starting point
for each clause c; do: set clause weight w; <— 1
while solution not found and not timed out do
best + oo
for each literal ;; in each false clause f; do
Aw < change in false clause 3w caused by flipping x;;
if Aw < best then L ¢ z;; and best + Aw
else if Aw = best then L < L U z;;
end for
if best < 0 or (best = 0 and probability < Pf;4:) then
randomly flip z;; € L
else
for each false clause f; do: w; < w; + 1
if # times clause weights increased % Mazine = 0 then
for each clause ¢j|w; > 1do: w; ¢+ w; —1
end if
end if
end while
end

Figure 2: The pure additive weighting scheme (PAWS)

ance to determine the search trajectory. However, PAWS
retains DLM’s preference for taking flat moves when no
improving moves are available, by selecting random moves
from the domain of available flat moves. In addition, PAWS
retains DLM’s deterministic weight reduction scheme and
the multiple inclusion of literals that appear in more than
one false clause.

Figure 2 shows the complete PAWS procedure which is
now controlled by two parameters: Pgjq; which decides
whether a randomly selected flat move will be taken (cor-
responding to wp in SAPS), and M ax;,. which determines
at which point weight will be decreased (corresponding to
Psmooth in SAPS). As with wp in SAPS, we found that Pyjq¢
can be treated as a constant, and for all subsequent experi-
ments it was set at 15%. Hence PAWS only requires the tun-
ing of a single parameter, M ax;,., which we found to have
roughly the same settings and sensitivity as the equivalent
parameter in DLM. On all our test problems the optimum
value of Max;,. was relatively easy to find, generally show-
ing a similar concave shaped relationship with local search
cost as that observed for Walksat’s noise parameter in (Hoos
2002). The requirement to only tune a single parameter with
a fairly stable relationship to cost gives PAWS a consider-
able practical advantage over DLM and SAPS, which typi-
cally need considerably more effort to set up for a particular
class of problem.

While PAWS comes close to being an additive version of
SAPS, as discussed earlier, it differs in three aspects:

e Random Flat (RF): PAWS probabilistically takes a ran-
dom flat move when no improving move is available
(rather than allowing cost increasing moves).

e Deterministic Reduction (DR): PAWS deterministically
reduces weights after M az;,. number of increases (rather
than reducing weights with probability Pg,,00th)-

e Multiple Inclusion (MI): PAWS allows optimal cost flips
that appear in n false clauses to also appear n times in its
move list L (rather than exactly once).

To test the effects of these differences, three additional ver-
sions of PAWS were developed, each with one of these fea-
tures replaced by the alternative heuristic used in SAPS.
Similarly, three further versions of SAPS were developed
each using the alternative PAWS heuristic.

Empirical Study
Problem Set

We firstly set out to reproduce the problem set reported in the
original study on SAPS (Hutter, Tompkins, & Hoos 2002).
This involved selecting the median and hardest problems
from several SATLIB problem classes. As we were unable
to verify the exact problems with the authors, we ran our
own tests with SAPS, using the published parameter set-
tings, to identify the median and hardest instances for the
flat100, flat200, uf100 and uf250 problem sets. Secondly, to
test performance on larger problem instances, we included
the SATLIB bw-large.d blocks world problem, the two most
difficult DIMACS graph coloring problems (g125.17 and
£250.29) and the median and hardest DIMACS 16-bit par-
ity learning problems (par16). We then generated three sets
of random 3-SAT problems from the accepted hard region,
each containing 20 instances, the first with 400 variables, the
second with 800 variables and the last with 1600 variables.
To these we added the £400, f800 and 1600 DIMACS prob-
lems and repeated the earlier process to identify the median
and hardest problem from each set. Finally, we generated a
range of random binary CSPs, again from the accepted hard
region, and transformed them into SAT problems using the
multivalued encoding described in (Prestwich 2003). These
problems were divided into 4 sets of five problems each,
according to the number of variables (v), the domain size
(d), and the constraint density (c) in the original CSP, giv-
ing the 30v10d40c, 30v10d80c, 50v15d40c and 50v15d80c
problem sets from each of which the hardest problem was
selected.

Complete versus Local Search

One of the key motivations for the development of local
search techniques for SAT was to solve problems beyond
the reach of existing complete solvers. Complete solvers,
even if slower on particular instances, have the advantage
of unambiguously reporting if an instance is unsatisfiable.
Hence, local search for SAT is most applicable to problems
that are too difficult for complete search to solve in a reason-
able time frame. This means the scalability of local search
is important, and that evaluations on problems that can eas-
ily be solved by a complete solver are not conclusive. To
clarify this issue we additionally tested our problem set us-
ing the well-known complete solver, Satz (Li & Anbulagan
1997).

The Wilcoxon Rank-Sum Test

Local search run-times can vary significantly on the same
problem instance, as determined by the initial starting point

and any subsequent randomized decisions. For this reason
empirical studies require the same problem to be solved mul-
tiple times, and at least for the mean, median and standard
deviation to be reported. However, it is still unclear exactly
how much confidence we can have in the reported differ-
ences between algorithms. Standard deviation is informative
for normally distributed data, but local search run-times are
generally not normally distributed, often having the median
to the left of the mean and a number of unpredictably dis-
tributed outliers. Hence standard comparisons that assume
normality, such as a two-sample t-test, are not reliable, and
the level of statistical confidence in differences between al-
gorithms is rarely investigated.

However, nonparametric measures, such as the Wilcoxon
rank-sum test, do not rely on normality, and only assume that
the distributions to be compared have a similar shape. To
use the Wilcoxon test requires that the run-times (or num-
ber of flips) from two sets of observations, A and B, are
sorted in ascending order. Then each observation is ranked
(from 1...N) and the sum of the ranks for distribution A
is calculated. This value (w4) can now be used to test the
hypothesis that distribution A lies to the left of distribution
B,i.e. H; : A < B, using the normal approximation to the
Wilcoxon distribution (Gibbons & Chakraborti 1992)°:

z=(wa —na(N+1)/2=0.5)/\/nang(N +1)/12

where n 4 and npg are the number of observations in distri-
butions A and B respectively and N = n 4 + np. Using the
standard Z ~ Normal(0, 1) tables, z will give the probabil-
ity P that the null hypothesis, Hy : A > B, is true.

Results

Table 1 shows the results for the original SAPS problem
set from (Hutter, Tompkins, & Hoos 2002), except the {400
problems which came from our own problem distribution (as
the SAPS uf400 problems were unavailable). Table 2 shows
the results for the larger DIMACS benchmarks and our ran-
dom 3-SAT and binary CSP problems®. In both tables, the
Wilcoxon values give the probability that the null hypoth-
esis A > B is true, where A is the distribution of flips or
run-times that has the smaller rank-sum value. We record
P-values against distribution A and take P < 0.05 to indi-
cate that A is significantly less than B, marking such results
with “*’. Also, due to space limitations, we only report the
base version performance of SAPS and PAWS, and discuss
the overall performance of each variant in the next section.
Table 1 shows SAPS and PAWS to be fairly evenly
matched on the original SAPS problem set. SAPS is sig-
nificantly better on the flat-med and uf250-hard problems,
and slightly better on the flat-hard, f400-hard and bw _large.b
problems, whereas PAWS is significantly better on the
bw_large.c, logistics.c, uf100 and f400-med problems and
slightly better on bw_large.a and ais10. However, the results
also show that most of these problems are not difficult for

5 assuming na > 12, np > 12 and that no rank values are tied
8 All results are for 100 runs with a 20 million flip cut-off except
50v15d40c which had a 50 million cut-off.

| ||Success|Time(secs)| Flips || Satz |Wi1coxon|

|Pr0blem |Method|PaIams | Z"J,?S % % E;anes) i}t fi{?;s
bwlagea [saPs |6 5330 100] T 3hesll on
PAWS | Max:34 00| OO 2507 008
bwlargeb [sAPS [p5 2S00 100] 333 Gatiell o.40.5aere
PAWS [Max:50 100 o3t ig’i’fi
bwlargec [SAPS [P7 g dg]l 100 STRR15000 5] 288
PAWS |Max:5 100 %3] 796700 %0.00057
logistiese [SAPS [P5 53-30]] 100 002 Z,;;‘g‘; 0.53
PAWS |Max:oo 100 o2 o360 000007
flacto0-med[saps [P5 020l 100] DU Boeoll o.20[20 0ae0%
PAWS |Max:16 100 0l oie
flat100-hard[sAPS |P:6 237501 100 008 aaiesl| o.s0] 03957
PAWS |Max:46 100 0:66] 36261
fla200-med [sAPS |8 850 201 100] 332] 197%ea||l o.30|30 0697
PAWS |Max:9 100 0:35] 138059
fa200-hard[sAPS [P:5 SE20T 100 855 |5:065.008]| ©0-50| 03524
PAWS | Max:74 100 ER RS
uf100-hard [SAPS [p:6 50-50]] 100 oot Yeca|| .08
PAWS |Max:15 100 8:00 3004 igﬁgéggtf
ur2s0-med [saps [p5 5330 100 09 2;g§§ 1.42| 047187
PAWS |Max:15 o] TU[a4 0.4518t
uf250-hard [SAPS |P:6 020 || 100 OS2l sivoncl] o.32 10 0asny
PAWS |Max:18 100 0:75| 318992
t400med [saPs [p5 20 28][100] 093] ieeg||110.06
PAWS |Max:9 100 O8] ZooET 10:0050%
£400-hard [sAPs |p:5 830]| 100 3521505 707 | 37107 | 308835
PAWS |Max:11 T I
ais10 saps [pa 0030 1oo] TT] 13Sesl|] o.s0
PAWS |Max:52 100 STl o o 2ea0y
Overall [SAPS 100 9:05| 400488
PAWS 0] T85] 57 0es "0 36657

Table 1: Results for original SAPS problem set

a complete search, with Satz having easily the best perfor-
mance on bw_large.c and flat200-hard, and only being seri-
ously challenged on the f400 problems.

In contrast, Table 2 shows PAWS to be strongly outper-
forming SAPS on all problems except the most difficult ran-
dom binary CSP (50v15d40c). Additionally, Satz is sig-
nificantly challenged on this problem set, being unable to
solve the larger 3-SAT f problems, 50v CSP problems or
2125/g250 problems before timing out after an hour’. The
strong performance of PAWS in Table 2 is therefore doubly
important, because it is in a domain where complete search
starts to break down.

Figure 3 further illustrates the superior performance of
PAWS on the Table 2 problem set by graphing the run-times
for all 1300 runs of each algorithm. Here PAWS is consis-
tently better than SAPS, in particular solving 93% versus
78% of instances within 50 seconds.

TAll experiments were performed on a Sun supercomputer
with 8 x Sun Fire V880 servers, each with 8 x UltraSPARC-III
900MHz CPU and 8GB memory per node.

| ||Success|Time(secs)| Flips || Satz | Wilcoxon |
|Pr0blem |Method|Params | Z"J,?S % %| '(:ZZL:S) 1}1:;{?;
bw larged [saps |p5 5000l 100] 3335 S:oasaaz||se6.16

PAWS | Max:4 AN 10,0057
1800-med [saps [ps a2l 100] SE3] 32301 MIsse00

PAWS | Max:9 100 Sl oo Ry
£800-hard [SAPS [P:5 S0 an|| 100 3o LI oo [3600

PAWS | Max:10 0] 133 100a5es MRt
£1600-med|[SAPS [P:5 2730|100 320] 1,952 872]| >3600

PAWS | Max:10 0] IT BT 10.00007
£1600-hard[SAPS | P:5 50 20 92] 3900 eseziol|>a600

PAWS | Max:11 99| 110E| Soes ven 1000037
parl6-med [SAPS |P7 27200 gs| 1352 Sosm ol 152

PAWS | Max:36 08 RS 00000
parl6-hard[SAPS [P:4 5050 86| 10.33] 5200 s0rll 057

PAWS | Max:40 98] 5 R 3ianans 0 0000
12507 [saps [ps ST 2D 00| 50027 % 05420 [>s600

PAWS |Max:4 100 R 10.00007
25029 [sAPs [P6 5015 o0[299-33] , 2553BOTT 2600

PAWS | Max4 100 3T 315050 £0:00007
30v10dsoc|saPs [P &7-30]| 100 o.9¢ ol 0.20

PAWS | Max:7 0] IR T *0.39%8 7
30v10d40c[SAPS [P:6 025 || 100 o1 ;Z;g?ﬁ 0.35

PAWS [Max7 o B[250 033187
sovisasoc[saps |6 gm0 || 100] FE3] 535050 || >se00

PAWS |Max:5 00| TE| 24T 0 0000
S0vISdd0c|SAPS |5 07 28 99] 3001 ns aes| >8600| 0 3252%

PAWS |Max:6 98] 16055 }gfsg’sm |
Overall |SAPS 96.23] TP . Taviee

PAWS 99.46] T530| 5,573 698 1000007

Table 2: Results for harder problem set

° 4

o

=

o

(7] 4

(%]

Q

o

8 |

ol [

2 40|)

c

£ 30} |
20 | 1
10+ 1
0 L L L L L L L L L

0 50 100 150 200 250 300 350 400 450 500
Run time in seconds

Figure 3: SAPS versus PAWS on the Table 2 problem set

Analysis and Conclusions

Our analysis of the three variants of each algorithm only
showed an overall significant difference in performance
(P < 0.05) on the Table 2 problems, where the exchange

of the deterministic reduction (PAWS-DR, SAPS+DR) and
random flat (PAWS-RF, SAPS+RF) heuristics produced a
significant worsening of performance for both SAPS and
PAWS. Conversely, the multiple inclusion heuristic (MI) did
not have a significant effect on the overall performance of
either approach. Therefore, we conclude that neither algo-
rithm significantly benefits from the inclusion of the other
algorithm’s secondary heuristics.

Overall the results indicate that additive weighting tends
to perform better than multiplicative weighting on larger and
more difficult problems. The most obvious difference be-
tween the two schemes is that multipliers create finer distinc-
tions between clause weights: as multiplicative weights are
real-valued, the previous history of clause weighting will be
retained in small differences, even after smoothing. Hence,
in longer term searches, we would expect clause weights to
become more and more distinguished, making it increas-
ingly unlikely that any two flips will evaluate to the same
cost. Conversely, additive weighting changes clause weights
by simply adding or subtracting one, and most weights are
returned to a base weight of one at some point in the search.
Hence longer term residual weight is eliminated and the like-
lihood that different flips will evaluate to the same cost re-
mains relatively high, meaning additive weighting will gen-
erally have a greater number of possible best cost moves to
select from. We confirmed this by measuring the mean num-
ber of candidate moves in list L for SAPS and PAWS for a
single run of each algorithm on each test problem, eliminat-
ing any duplicate flips from the PAWS list. For all instances,
except bw_large.b/c and g125/g250, the SAPS list tends to
a length of one, whereas the smallest average list length for
PAWS was 2.05 (ais10), with an average list length ratio of
PAWS to SAPS of 3.3

We therefore conjecture that this difference in the avail-
able number of moves is important for longer term searches
and gives additive weighting the greater freedom of move-
ment needed to navigate difficult cost surfaces (i.e. cost
surfaces that produce ambiguous clause weight guidance).
However, the fact that SAPS is better on the most difficult
problem (50v15d40s), shows this rule cannot be automati-
cally generalized and that for some problems other, as yet
unidentified, features are important.

However, the overall case for preferring additive over
multiplicative weighting is compelling: firstly, the average
flip performance of PAWS does not differ significantly from
SAPS for Table 1 and strongly dominates SAPS on the more
difficult problems of Table 2 (i.e. those beyond the reach
of Satz). Secondly, additive weighting is more time effi-
cient than multiplicative due to using integer rather than real-
valued clause weights (the average flips/sec for PAWS on
the complete problem set was 148,899 versus 114,665 for
SAPS, remembering both algorithms are running within the
same software architecture). And finally the search space of
possible parameter settings is at least an order of magnitude
less for PAWS than for SAPS (M ax;,. was tested on a do-
main of less than 100 distinct values ranging from 3 to 75 in
steps of one, whereas the search space of «, p and Pgp,00th
was approximately 20 x 20 x 5).

In summary, this paper balances much of the recent work

on clause weighting that has concentrated on multiplicative
updates, showing that additive weighting can be faster, sim-
pler in terms of parameter tuning, and more applicable to
larger problems beyond the reach of complete search meth-
ods. However, multiplicative weighting still has the better
performance in several problem domains, and in future work
it would be worth identifying the problem characteristics
and search behaviors that favor a multiplicative approach.

References

Gibbons, J., and Chakraborti, S. 1992. Nonparamet-
ric Staistical Inference. Statistics: Textbooks and Mono-
graphs. New York: Marcel Dekker, Inc. 241-251.

Hoos, H. 2002. An adaptive noise mechanism for Walk-
SAT. In Proceedings of the Nineteenth National Confer-
ence on Artificial Intelligence (AAAI-02), 655-660.

Hutter, F.; Tompkins, D.; and Hoos, H. 2002. Scaling and
probabilistic smoothing: Efficient dynamic local search for
SAT. In Proceedings of the Eighth International Confer-
ence on the Principles and Practice of Constraint Pro-
gramming (CP’02), 233-248.

Li, C., and Anbulagan. 1997. Look-ahead versus look-back
for satisfiability problems. In Proceedings of the Third In-
ternational Conference on the Principles and Practice of
Constraint Programming (CP’97), 341-355.

McAllester, D.; Selman, B.; and Kautz, H. 1997. Evi-
dence for invariance in local search. In Proceedings of the
Fourteenth National Conference on Artificial Intelligence

(AAAI-97),321-326.

Mills, P., and Tsang, E. 1999. Guided local search ap-
plied to the satisfiability (SAT) problem. In Proceedings of
the 15th National Conference of the Australian Society for
Operations Research (ASOR’99), 872—-883.

Morris, P. 1993. The Breakout method for escaping local
minima. In Proceedings of the Eleventh National Confer-
ence on Artificial Intelligence (AAAI-93), 40-45.

Prestwich, S. 2003. Local search on SAT-encoded CSPs.
In Proceedings of the Sixth International Conference on
Theory and Applications of Satisfiability Testing (SAT-03).

Schuurmans, D., and Southey, F. 2000. Local search char-
acteristics of incomplete SAT procedures. In Proceedings
of the Seventeenth National Conference on Artificial Intel-
ligence (AAAI-00), 297-302.

Schuurmans, D.; Southey, F.; and Holte, R. 2001. The
exponentiated subgradient algorithm for heuristic Boolean
programming. In Proceedings of the Seventeenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-
01),334-341.

Wu, Z., and Wah, B. 2000. An efficient global-search
strategy in discrete Lagrangian methods for solving hard
satisfiability problems. In Proceedings of the Seventeenth
National Conference on Artificial Intelligence (AAAI-00),
310-315.

