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ABSTRACT

Gabor wavelet related feature extraction and classification is 
an important topic in image analysis and pattern 
recognition. Gabor features can be used either holistically or 
analytically. While holistic approaches involve significant 
computational complexity, existing analytic approaches 
require explicit correspondence of predefined feature points 
for classification. Different from these approaches, this 
paper presents a new analytic Gabor method for face 
recognition. The proposed method attaches Gabor features 
on a set of shape-driven sparse points to describe both 
geometric and textural information. Neither the number nor 
the correspondence of these points is needed. A variant of 
Hausdorff distance is employed to recognize faces. The 
experiments performed on AR database demonstrated that 
the proposed algorithm is effective to identify individuals in 
various circumstances, such as under expression and 
illumination changes. 

Index Terms—Image representation, face recognition, 
Significant Jet Point, Hausdorff distance 

1. INTRODUCTION 

One popular class of techniques used for face recognition is 
based on Gabor features. These techniques can be roughly 
classified into holistic approaches and analytic approaches. 
Holistic approaches employ the whole image after Gabor 
transformation for feature representation. Liu and Wechsler 
[1] presented an Enhanced Fisher Linear Discriminant 
Model (EFM) to the Gabor feature vector for face 
recognition, and the so-called Gabor-Fisher Classifier 
(GFC) outperformed both PCA and LDA. Since the 40 
Gabor filtered images are concatenated together to form a 
feature vector, the dimension is huge. This work is later 
extended to use Independent Component Analysis (ICA) [2] 
and Kernel PCA [3] to reduce the dimension of the 
extracted Gabor feature vector and enhance the 
discriminative power at the same time. 

Analytic approaches originated with Dynamic Link 
Architecture (DLA) [4], which was later extended to Elastic 
Bunch Graph Matching (EBGM) [5]. In this deformable 
graph matching method, a topology graph is constructed for 

each face, with each node attached one or several Gabor 
jets. Each component of a jet is a filter response of a 
specific Gabor wavelet extracted at a predefined feature 
point. These locally estimated Gabor features are known 
robust against illumination change, distortion and scaling 
[6]. In the graph matching process, each node of the 
template graph is allowed to vary its scale and position 
according to the appearance variations on the face. Though 
EBGM showed remarkably competitive performance in the 
FERET evaluation test [7], the computation involved is 
rather intensive. 

Both DLA and EBGM methods are based on a basic 
principle that Gabor features should be extracted from 
predefined fiducial points in a face image. Each fiducial 
point has clear and exact meaning and refers to the same 
position across different face images. Face recognition is 
performed through comparing Gabor features of the same 
fiducial points over different individuals. Most 
computational work of EBGM lies in the optimization of 
locating accurate fiducial points. This paper presents a new 
approach to circumvent building correspondence between 
fiducial points. Different from EBGM and DLA, the 
proposed approach extracts Gabor features from a set of 
significant points, which are shape-driven and detected from 
edge map with rich information content on the face image. 
Neither the number nor the location of significant points is 
confined, and so diverse facial characteristics of different 
persons can be represented. A significant point attached 
with its Gabor jet is called a Significant Jet Point (SJP), 
which contains useful information and discriminative power 
for face recognition. Different from most existing analytic 
Gabor methods that only compare Gabor features from 
equal numbers of corresponding points, the proposed Jet 
Point Distance (JPD) is proved to be an effective 
measurement on different numbers of SJPs. Moreover, 
unlike neural network methods which inherently suffer from 
the generalizability problem, the proposed method is 
suitable for single model face database recognition. The 
investigation and evaluation of the proposed method is 
conducted in public available AR face database [8], 
covering all conditions of human face recognition. The 
proposed method obtains a significantly higher recognition 
accuracy than that of Directional Corner Point (DCP) [9] in 
our experiments, demonstrating the validity of this method 
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on face representation and recognition. However, it is 
important to stress that this method is not only restricted to 
face recognition, but capable of dealing with any other 
object recognition problems as well. 

The remaining part of this paper is organized as 
follows. Section 2 presents the proposed significant point 
detection and SJP representation. Section 3 describes the 
JPD in detail. In Section 4, comparative experiments on AR 
database are conducted to evaluate the performance of the 
proposed method. The last section concludes the paper. 

2. SIGNIFICANT JET POINT 

2.1. Significant Point Detection 

Containing geometric information, significant points are 
detected at those positions which have rich edge 
information in a face image. In most feature-based methods, 
feature points are predefined as the locations of eyes, nose, 
mouth, etc. However, neither the number nor the location of 
significant points is fixed here. The number of significant 
points and their locations can vary in order to better 
represent diverse facial characteristics of different 
individuals, such as dimples, moles, etc. These diverse 
features are also important cues that people might use for 
recognizing faces. 

In order to ensure the less demand on storage space and 
less sensitivity to illumination changes, the significant 
points should be placed on the significant edge curves with 
high curvatures. While any general edge detection method 
can be used to detect the significant points, we choose an 
edge detector from [10], followed by the Dynamic two-strip 
algorithm (Dyn2S) [11] to obtain these points. Fig. 1 
illustrates two examples of significant points superimposed 
on the original face images. 

2.2. Significant Jet Point 

Gabor features are one of the widely used image feature 
descriptors in image processing and object recognition. 
They can capture the salient visual properties in an image. 
The 2D Gabor kernel functions used for feature extraction 
are
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The index 8j  covers a discrete set of five different 
frequencies 0, , 4  and eight orientations 0, ,7 .
The width of the Gaussian is controlled by the parameter 

2  [5, 12]. Fig. 2 illustrates the visualized real and 
imaginary parts of the 40 Gabor kernel functions. A jet J is 
defined as the set { }jJ  of 40 convolution coefficients for 
kernels of different frequencies and orientations obtained at 
one image pixel ( , )x yx  in an image ( )I x :

2
j jJ I dx x x x x .  (3) 

After significant points are detected, Gabor jet is 
extracted from each point. A Significant Jet Point (SJP) is 
defined as the Cartesian coordinate ( , )x yx  of a 
significant point accompanied with a Gabor jet extracted 
from this point: 

( ; )SJP Jx .   (4) 
Based on the SJP description, a face is represented by a set 
of significant points with a Gabor jet attached on each point 
as textural cues. The SJP descriptor, using sparse points, 
reduces the storage demand of an image and improves the 
computational efficiency to meet the high-speed 
requirement in face recognition. It is also expected to be less 
sensitive to illumination changes due to the fact that it is a 
feature derived from low-level illumination-insensitive edge 
map representation. Meanwhile, the Gabor features on the 
points significantly enhance the discriminative power of the 
descriptor to improve the recognition accuracy. 

3. JET POINT DISTANCE 

Generally, face images of a same individual suffer from 
various external interferences such as illumination, 
expression, aging, etc. Since general edge detection 
methods are used to find significant points, it is difficult to 
find correspondence of SJP pairs between two faces. 
Hausdorff distance and its variants [13, 9] have been widely 
utilized as shape comparison metrics on binary images. As a 
purely geometrics-based method, Hausdorff distance is 
originally defined between two point data sets. Unlike most 
shape comparison methods that build a point-to-point 
correspondence between a model and a test image, 
Hausdorff distance can be calculated without explicit 
pairing of points in their respective data sets. In this section, 
we apply the Hausdorff distance measure to SJP matching 

  
Fig. 2. Gabor kernels. (a) Real part. (b) Imaginary part. 

  
Fig. 1. Significant points. 
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and propose a new Jet Point Distance (JPD) for image 
recognition. Taking both structural and textural information 
into consideration, the JPD presents a more reliable 
dissimilarity measure between two face images represented 
by SJPs. 

3.1. Structure and Texture Measurements 

In a SJP, structural information is represented by the 
coordinates of the significant point. For two points 

( , )x yx  and ( , )x yx , the Euclidean distance 
2 2, ( ) ( )Ed x x y yx x  is used as the structure 

measurement in this study. The textural information of a 
SJP is represented by the Gabor jet extracted from the 
significant point. As complex numbers, a Gabor jet can be 
written as the polar form exp( )j j jJ a i , where jet 
magnitudes ( )ja x  vary slowly with spatial position and jet 
phases ( )j x  rotate with a rate set by the spatial frequency 
or wave vector jk  of the kernels [5, 12]. We thus use a 
magnitude similarity function to measure two jets J  and 
J :
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j jj
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because this jet similarity measurement provides certain 
robustness to small position variation, which is most likely 
segmentation error or intra-class variation. 

3.2. Jet Point Distance 

Given two finite SJP sets 1 2{ , , , }M M M
PM SJP SJP SJP

representing a model face in the database and 
1 2{ , , , }T T T

QT SJP SJP SJP  representing a test face from 
input, where P and Q are the numbers of SJPs in M and T
respectively. The JPD is defined as 

( , ) max _ , , _ ,JPD M T d JPD M T d JPD T M , (6) 
where the function _ ( , )d JPD M T  is called the directed JPD 
from set M to T and can be defined as 

2

11
_ , max min , ,M T M T

E p q p qq Qp P
d JPD M T d S J Jx x . (7) 

This directed JPD function identifies the SJP *
M
pSJP M

that has the largest distance from any SJP of T and measures 
the distance from *

M
pSJP  to its nearest neighbor in T. The 

distance between two SJPs is measured through combining 
Euclidean distance of significant point and magnitude 
similarity of Gabor jets. This is a compound measurement 
composed of both structural and textural information. The 
weight  is used to balance the contributions of Euclidean 
distance and jet dissimilarity (inversed from magnitude 
similarity using a minus). The JPD is the maximum of 

_ ( , )d JPD M T  and _ ( , )d JPD T M . Therefore, it measures the 

degree of mismatch between two SJP sets by measuring the 
distance of the SJP of M that has the largest distance from 
any SJP of T, and vice versa. However, this distance 
measure is very sensitive to outlier SJPs. A few outlier 
SJPs, even only a single one, can perturb the distance 
greatly, though the two faces might be very similar. 

Realizing that there could be different ways to define 
the directed Hausdorff distance, Dubuisson and Jain [13] 
investigated 24 different distance measures and indicated 
that a modified Hausdorff distance has the best 
performance. Based on this observation, we define a 
modified directed JPD as 

2

11

1_ , min , ,M T M T
E p q p qq Q

p P

d JPD M T d S J J
P

x x .  (8) 

The definition of the undirected JPD is the same as 
Equation (6). This distance measure can alleviate the 
sensitivity to outlier SJPs. For a test face image, the face 
recognition system calculates the JPD between the test face 
and each model face in the database. The model with 
minimum distance is considered as the correct return. 

4. EXPERIMENTAL RESULTS 

The proposed method is assessed on the publicly available 
AR face database [8]. Because images in some sessions are 
either missing or corrupted, we eventually obtain 120 
complete set of images (65 men and 55 women) in our 
experiments. All the images are normalized (in scale and 
rotation) and cropped to 160×160 pixels based on the 
manually labeled positions of two eyes. Two examples of 
the cropped faces are illustrated in Fig. 1. 

4.1. Determining the Weight 

In Equation (8), the weight  balances the contributions of 
structural and textural measurements. When 0 , the JPD 
reduces to a pure point Hausdorff distance. To determine ,
a series of preliminary experiments is performed using all 
the neutral expression faces in AR database. The model set 
is the neutral faces of the first session, and the test set is 
those of the second session. The top-one recognition rate 
against the weight  is displayed in Fig. 3. From the figure, 
it is found that the recognition rate reaches maximum when 

160 . The weight 160  is selected and used in the rest 
of the experiments. This parameter determination method 
can be employed to achieve optimal settings in other 
applications with different face database. 

In the following, the proposed method is compared with 
the Directional Corner Point (DCP) method [9] under 
various situations, using the neutral faces in normal 
condition taken in the first session as the model set. 

4.2. Face Recognition under Various Conditions 

The face images under controlled condition in the second 
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session are first used to evaluate the proposed method. The 
comparative recognition accuracy is illustrated in Table 1. 
Although the number of images used in this paper is more 
than that in DCP, the proposed method still outperforms 
DCP method by 4.53%. 

To compare the recognition accuracy with expression 
variations, the experiment is also performed on three 
different sets of images with smiling, angry and screaming 
expressions in the first session. The results are listed in 
Table 2. It can be seen from the table that the performance 
of the proposed method is significantly better than DCP 
method under all three expression variations, especially 
under the smiling condition, where the improvement is close 
to 30%. The recognition rate under the screaming 
expression is the lowest due to the fact that screaming 
produces the most considerable physical deformation on a 
human face, and further heavily distorts the locations of 
significant points. 

We finally perform the experiment under the condition 
of illumination changes. The AR database contains three 
different lighting conditions: left light, right light and both 
lights on. Table 3 displays these experimental results. The 
proposed method obtains a noticeable recognition accuracy 
of 100% when either left or right light on. This 
demonstrates that the proposed method is very tolerant to 
lighting changes. However, it is still sensitive to extreme 
lighting, which causes strong specular reflectance on the 
face skin and thus could erase some significant points. 

5. CONCLUSIONS 

This paper presents a novel analytic face recognition 
method using Gabor features on sparse points for face 
recognition. Taking both structural and textural information 
into consideration, the proposed face representation and 
dissimilarity measurement are proved to be not only 
efficient and reliable, but also robust to illumination, 
expression and possibly occlusion. We anticipate the 
proposed method could be extended to other object 
recognition tasks in the future. 
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Fig. 3. Recognition rate against the weight . 

Table 1. Recognition rates under controlled condition 
Methods DCP [9] The proposed method 
Database size 112 120 
Recognition rate 94.64% 99.17% 

Table 2. Recognition rates under different expressions 
Methods DCP [9] The proposed method 
Database size 112 120 
Smiling 63.39% 92.50% 
Angry 93.75% 96.67% 
Screaming 27.68% 53.33% 

Table 3. Recognition rates under different illuminations 
Methods DCP [9] The proposed method 
Database size 112 120 
Left light on 87.50% 100.00% 
Right light on 89.29% 100.00% 
Both lights on 61.61% 75.00% 
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