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Abstract. Nondeterministic conformational search techniques, such as Genetic 
Algorithms (GAs) are promising for solving protein structure prediction (PSP) 
problem. The crossover operator of a GA can underpin the formation of poten-
tial conformations by exchanging and sharing potential sub-conformations, 
which is promising for solving PSP. However, the usual nature of an optimum 
PSP conformation being compact can produce many invalid conformations (by 
having non-self-avoiding-walk) using crossover. While a crossover-based con-
verging conformation suffers from limited pathways, combining it with depth-
first search (DFS) can partially reveal potential pathways. DFS generates ran-
dom conformations increasingly quickly with increasing length of the protein 
sequences compared to random-move-only-based conformation generation. 
Random conformations are frequently applied for maintaining diversity as well 
as for initialization in many GA variations.  

Keywords: Depth-first search, protein structure prediction, genetic algorithm, 
lattice model. 

1   Introduction 

We are seeking to solve the ab initio (meaning ‘from the origin’) or the de novo pro-
tein structure prediction problem [1]. In an ab initio approach, the building of a 3D 
conformation (structure) is essentially based on the properties of amino acids, where 
protein is a three dimensionally folded molecule composed of amino acids [2] linked 
together (called the primary structure) in a particular order specified by the DNA 
sequence of a gene. Particular folded structures are essential for the functioning of 
living cells as well as for providing body structure. Protein structure prediction (PSP) 
is a problem of determining the native state of a protein from its primary structure and 
is of great importance because three dimensionally folded structures determine the 
biological function [3] and hence proves extremely useful in applications like drug 
design [4].  



For investigating the underlying principles of protein folding, lattice protein mod-
els introduced by Dill [5] are widely used [6]. Protein conformation as a self-avoiding 
walk in the lattice model has been proven to be NP-complete [7, 8]. Therefore a de-
terministic algorithm for folding prediction is not feasible. So, a nondeterministic 
approach with robust strategies that can extract minimal energy conformations effi-
ciently from these models becomes necessary. Still, this is a very challenging task as 
there exists an astronomical number of possible conformations even for a very short 
sequence of amino acids [9, 10].  

We have chosen the Genetic Algorithm (GA) as a vehicle for providing solutions 
to the PSP problem for better performance, where crossover is regarded as the key 
operation of GA [11]. The core concepts of GAs and their components are often 
adapted by many PSP solving algorithms for the effectiveness [12-16]. While cross-
over can be very effective in joining two different potential sub-conformations, it can 
be repeatedly unsuccessful as the converging conformations (hence the sub-
conformations), being compact in nature, leave limited pathways to a valid (i.e., self-
avoiding-walk) conformation. This means many potential conformations may be lost, 
which motivates us to apply partial pathways based on depth first search (DFS) [17] 
to regain potential conformations, leading to effective PSP solution. 

2   Background and Preliminaries  

In nature, a protein folds remarkably quickly, requiring between a tenth of a millisec-
ond and one second in general, whereas any algorithm on any modern computer is 
still unable to simulate this task in anything approaching similar time[11, 18]. For the 
immensely complex protein structure prediction problem, there are several issues and 
approaches which are yet to be considered [11, 19, 20]:  

First, the energy function, which is a combination of several factors that determines 
the free energy of a folded protein, is not fully understood. Therefore, existing formu-
lations for energy functions do not suggest any obvious path to solution of the PSP 
problem.  

Second, conformational search algorithms are promising approaches toward this 
hard optimization problem, but the PSP problem still needs considerable research to 
find an effective algorithm. The aim of the search is to identify an optimum confor-
mation within a huge and very convoluted search landscape.  

Third, Cyrus Levinthal postulated, in what is popularly known as the Levinthal 
paradox, that proteins fold into their specific 3D conformations in a time-span far 
shorter than it would be possible for the molecule to actually search the entire con-
formational space (which is astronomically large) for the lowest energy state [21]. As 
proteins cannot, while folding, be sampling all possible conformations, therefore 
folding pathways must exist.  

While focusing on the second issue [22-27], we are utilizing DFS strategies, devel-
oping novel search algorithms in a form to address the pathway hypothesis. It has 
been concluded that conformational searching is the bottleneck in protein folding 
prediction and the observed folding rates have been found to be proportional to the 
number of microscopic folding routes [28]. These routes can be captured by the 
crossover operation from suboptimal conformations and then partial DFS can mimic 



 

the existing microscopic path guided by the converging sub-conformation, whereas a 
crossover operation alone can encounter more collisions [13] (while mating dissimilar 
converging conformations) before having a SAW conformation and thus often can 
reject the potential sub-conformation as being unfit when paired with the available 
counterpart of the crossover portion (from a dissimilar conformation). To determine 
the effect of DFS in such situations we will rely on empirical results. 

2.1   The HP Lattice Model 

The simplified HP lattice model [29, 30] is based on hydrophobicity [31], dividing the 
amino acids into two different beads – hydrophobic (H) and hydrophilic (or polar 
(P)). The model allows HP protein sequences to be configured as self-avoiding walks 
(SAW) on the lattice path favoring an energy free state due to HH interaction. The 
energy of a given conformation is defined as the number of topological neighboring 
(TN) contacts between those Hs, which are not adjacent in the sequence. This contact 
between two neighboring H residues (or HH contact) is TN and is assigned a value for 
the potential, termed interaction potential which is define as -1 for the regular HP 
model [32]. Further, the HP interaction and PP interaction potential value is assigned 
0, which basically implies that there is no interaction between an H and a P of HP 
contact or between the Ps of PP contacts. 

To define PSP formally, assume for an amino-acid sequence nsssss ,,,, 321 L= , a 

conformation c needs to be formed where )(* sCc ∈ , )(sC  is the set of all valid (i.e., 

SAW) conformations of s, n is the total number of amino acids in the sequence  and 

energy { }CccECEE ∈== |)(min)(*  [15]. If the number of TNs (for HH contact) in 

a conformation c is q then the value of )(cE  is defined as qqcE −=×−= 1)(  and the 

fitness function is qF −= . The optimum conformation will have a maximum possi-

ble value of |F|. In a 2D HP square lattice model (Figure 1), a non-terminal and a 
terminal residue, each with 4 neighbours, can have a maximum of 2 TNs and 3 TNs, 
respectively. In this paper, we will confine ourselves to using the 2D HP square lattice 
model only, as this model will be sufficient for our needs. However, its simplicity 
may encourage interested readers to do further research, which would otherwise be 
very difficult. The HP lattice model is also very popular with the research community 
[11, 23, 29, 30, 33-39], since it allows easy development, validation and comparison 
of new techniques for protein structure prediction (PSP) [22-24, 26, 27, 40]. 

 

Fig. 1. HP conformation in the 2D HP model shown by a solid line. 2D square lattice having 
fitness = - (TN Count) = -9.  indicates a hydrophobic and  indicates a hydrophilic residue. 
The dotted line indicates a TN. Starting residue is indicated by a ‘1’ in the figure. 



2.2   Complexity of the Lattice Model  

Even if we use this simplified model we have an inordinate number of valid (i.e., 
SAW) conformations, even for a shorter sequences [9, 10, 41]. For instance, for a 

sequence of n amino acids, the number of valid conformations is proportional to nμ , 

where the connective constant or the effective coordinate number μ , is lattice de-

pendent [10]. Prediction of the optimal conformation using the lattice model is also an 
NP-complete problem [7, 8]. To predict the backbone conformation of the folded 
protein from its amino acid sequence based on global interactions such as hydropho-
bicity, lattice models are used for approximation [29, 30, 33-35]. For ab initio predic-
tion in Critical Assessment of Structure Prediction (CASP) [33-35], most successful 
approaches followed the hierarchical paradigm where the lattice-based, backbone 
conformational sampling works very effectively at the top of the hierarchy. With 
further advancement toward all-atom or full modeling from the lattice, the energy 
functions include atom-based potentials from molecular mechanics packages such as 
CHARMM, AMBER, ECEPP and so on [42, 43]. Conformational search algorithms 
built on lattice models, which play a key role in solving PSP, are discussed next.  

2.3   Nondeterministic Conformational Search Algorithms  

For solving ab initio PSP using the lattice model numerous nondeterministic ap-
proaches have been investigated: Monte Carlo (MC) simulation, Evolutionary MC 
(EMC) [12, 13], Simulated Annealing (SA), Tabu Search with Genetic Algorithm 
(GTB) [14], Ant Colony Optimisation [15], and Immune Algorithm (IA) based on Arti-
ficial Immune System (AIS) [44]. Due to their simplicity and search effectiveness, 
Genetic Algorithms (GAs) [11, 26, 32, 45-48] are the most attractive. They also pro-
vided superior performance over MC [46, 47]. The concepts of GAs are also widely 
adapted within these algorithms. For instance, a new MC algorithm [12] adopted the 
population-based cut-and-paste (i.e. crossover) operation to achieve higher fitness. The 
evolutionary Monte Carlo (EMC) [13] algorithm incorporated the evolutionary fea-
tures of genetic algorithms, such as a population which is updated by crossover and 
mutation operations. Jiang et al. applied the GA with Tabu (GTB) search to solve PSP 
using lattice models [14]. Also, the conformational space annealing (CSA) [16, 49] 
algorithm is based on GA concepts, where the population is renamed as a “bank”. 

2.4   Focus of the Paper  

Given the widespread adaptation of GAs for PSP, the heart of a GA, i.e. the crossover 
operation, can be made more effective by combining it with DFS which can have a 
significant positive impact on solving the PSP problem. In a conventional GA, since 
the optimum conformation is mostly compact physically (see Figure 2), a crossover-
based converging conformation suffers from limited pathways and the algorithm 
increasingly generates invalid conformations. Our hypothesis is that the combination 
of depth-first search (DFS) with crossover can instead reveal potential pathways in 
solving PSP. Thus, a repeatedly failing crossover with a congested but potential sub-
conformation can be allowed a limited number of pathways for possible candidate 
crossover counterparts obtained by using DFS if there exists at least one path. 



 

   

(a): Fitness = -15 (b): Fitness = -33 (c): Fitness = - 42 

Fig. 2. As the search proceeds the conformation gets more compact: For a typical run, confor-
mations at generation 1, 1434 and 5646 have been shown in (a), (b) and (c) respectively, show-
ing the fitter conformation is relatively more compact. 

2.5   Defining the GA Operators for PSP Problem 

Here, we define the GA operators for the PSP problem based on the HP lattice model: 

Crossover operation: For PSP, this aids the construction of global solutions by the 
cooperative combination of many local substructures [11]. We particularly followed 
the commonly-used crossover operation pioneered by Unger et al. [46], as illustrated 
in Figure 3, a single-point crossover. We follow this single-point crossover, since 
otherwise the converging conformation, being compact in nature, would generate 
more collisions or invalid conformations [13]. The ability to rotate before joining 
within the crossover, in addition, provides a mutation-equivalent operation. With the 
help of relative encoding [40], this can be seen easily. For example, if we emulate the 
crossover in Figure 3 without the rotation, we can write using relative encoding that: 

Crossover (a:‘LFLLRRLRLLFLRFRLFL’, b:‘RFFFRFRFLFLRFRLLFL’)  would 
output, c': ‘LFLLRRLRLLFL*RLLFL’ without the rotation before joining. (Here, ‘*’ 
indicates an undefined move in relative encoding but here it indicates a non-SAW 
move.) But, with rotation, the conformation can have SAW, i.e. c: 
‘LFLLRRLRLLFLRRLLFL’. 

 

   

(a) (b) (c) 

Fig. 3. An example of the crossover operation [46]. Conformations are randomly cut and pasted
with the cut point chosen randomly between residues 14 and 15. The first 14 residues of (a) are
rotated first as needed (as allowed by the degree of freedom by the model configuration) and
then joined with the last 6 residues of (b) to form (c), where fitness, F = -9. ‘ ’ indicates 
crossover positions.  



Comparing c':‘LFLLRRLRLLFL*RLLFL’and c:‘LFLLRRLRLLFLRRLLFL’, it 
becomes clear that the ‘*’ is replaced by an ‘R’ after the rotation, which is genotypi-
cally a single-point mutation. 

Crossover failure: This implies that before joining two parts all, possible, rotated 
positions at the joining point have been tried but failed to produce at least one valid 
conformation (i.e., a SAW). 

Combination of crossover and DFS: For generating a conformation this implies that a 
DFS-generated random and partial path has been joined with the first half of the sub-
conformation. 

DFS after crossover failed: This implies that ‘combination of crossover and DFS’ has 
been performed after an occurrence of ‘crossover failure’. 

Mutation operation: This involves pivot rotation (Figure 4) as basically pioneered by 
Unger et al. [46]. We employed single-point mutation to avoid more collisions. 

  
(a) (b) 

Fig. 4. An example of the mutation operation [46]. Dotted lines indicate TN. Residue number 
11 is chosen randomly as the pivot. For the move to apply, a 180° rotation (among a number of
possible degree of freedom defined by the model configuration) alters (a) with F = -4 to (b) F = 
-9. ‘ ’ indicates the mutation residue. 

Ordinary random conformation generation: This implies the generation of a SAW 
conformation based on random-move-only (RMO). In a 2D square lattice model Left, 
Right and Forward moves are permissible but Backward move is prohibited. For a 
conformation, once a path search has failed after looking in the three possible degrees 
of the freedom the whole process restarts. 

Random conformation generation by DFS: This implies that we apply DFS to gener-
ate a SAW conformation. As the DFS proceeds, it stores the possible pathways using 
a stack-memory [17] and, upon total failure after trying all possible degrees of free-
dom on a particular location (i.e. lattice point), it can backtrack to restart from the 
stored options instead of restarting the creation of the whole conformation. 

3   Experiments and Results 

We carried out experiments to empirically verify our hypothesis that combining  
DFS with crossover will be advantageous. The simple GA (SGA) applied for PSP is  
 



 

1. Initialize the fixed size current population ( zPop ) of randomly generated conformations. 

2. Obtain a new solution ( newS ) from the current population by using Crossover and 

Mutation operations at the pre-specified rates ( cp  and mp  respectively). 

3. Assess the quality or fitness, F, of newS .

4. Promote the obtained newS , and elite and untouched chromosomes, to the next generation 
and assign the new generation as the current population.

5. IF END-OF-SOLUTION is not reached THEN repeat from Step 2.  
 

Fig. 5. Genetic Algorithm for solving PSP problem†1 

(a) (b) 
 1. DO single-point Crossover. 
 2. IF ‘Crossover failure’ = TRUE then 
 3.      REPLACE one of the parents.
 4.      DO single-point Crossover.

 END IF    

 1.  DO single-point Crossover.
 2.  IF ‘Crossover failure’ = TRUE then 
 3.       DO ‘DFS after crossover failed’.
      END IF 

(c) (d) 
1. DO single-point ‘Combination of
    crossover and DFS’.

 1. DO apply option: (a). 
 2. IF no improvement for 5 consecutive generations,
 3.    DO apply option: (b). 

   END IF  

Fig. 6. Crossover operation and variation details 

illustrated in Figure 5 and the crossover variations with the possible implementation 
have been shown in Figure 6. As shown in Figure 6, we have experimented with four 
variations of the crossover operation. Crossover (a) (see Figure 6(a)) represents a 
conventional crossover operation for PSP without DFS. Crossover(b) (see Figure 
6(b)) applies DFS-based partial path generation with the sub-conformation immedi-
ately the sub-conformation fails to join with its counterpart sub-conformation after 
trying all possible degrees of freedom. Crossover(d) (see Figure 6(d)) is similar to 
Crossover(b) in operation but allows more time to a failed crossover to search for a 
suitable counterpart sub-conformation to match. Crossover(c) is a the most dissimilar 
variation of Crossover(d) where, instead of a sub-conformation looking for its coun-
terpart sub-conformation in the population, Crossover(c) directly uses DFS to gener-
ate the rest of the path to complete the conformation. This alternative was investigated 
to determine an effective rate of DFS.  

The default GA parameters for all experiments were set as population size ( zPop ) 

to 200, crossover rate ( cp ) to 0.85 or 85%, mutation rate ( mp ) to 5% and for elitism 

the elite rate was set to 5% [50, 51]. 
The fold for longer PSP problems generally has complex energy landscapes [30, 

52-57], and hence those sequences will take longer to converge. So we chose those 
longer sequences to highlight the true benefit of this approach. A maximum of 2000  



Table 1. Benchmark protein sequences for 2D HP model 

Length Sequences  Ref. 

50 H2(PH)3PH4PH(P3H)2P4H(P3H)2PH4P(HP)3H2 [59] 
60 P2H3PH8P3H10PHP3H12P4H6PH2PHP [59] 
64 H12(PH)2(P2H2)2P2HP2H2PPHP2H2P2(H2P2)2(HP)2H12 [59] 
85 4H4P12H6P12H3P12H3P12H3P1H2P2H2P2H2P1H1P1H [58] 

100 
3P2H2P4H2P3H1P2H1P2H1P4H8P6H2P6H9P1H1P2H1P11H2P3H1P2H
1P1H2P1H1P3H6P3H [58] 

‘H’ and ‘P’ in the sequence indicate hydrophobic and hydrophilic amino acids, respectively. 

 
Table 2. Run results of 10 iterations on each PSP sequence (see Table 1 for the sequences). GA 
runs with four different crossover options (shown in Figure 6), have been compared. 

Length X(a) X(b) X(c) X(d) CSA UGA 
50 -17.3/-20 -17.6/-20 -14.5/-17 -18/-20 -17 / -19 -16.6 / -18 
60 -29.2/-32 -29.8/-32 -27.8/-31 -30.5/-32 -30.4/-32 -29/-31
64 -29.1/-31 -29.3/-31 -25.2/-29 -32/-35 -29/-30 -27.8/-31 
85 -39.4/-44 -39.6/-45 -34.5/-38 -43.4/-46 -43.2/-46 -41.4/-46
100 -37.1/-39 -37.6/-41 -30.2/-37 -38.5/-42 -37.2/-38 -37.4/-40 

The format of column entries is ‘Average / Minimum’. The X implies Crossover operation. Thus, X(a)
indicates Crossover(a) as described above, and so on. CSA and UGA indicate Conformational Space 
Annealing Algorithm [16] and Unger’s GA [46], respectively. Bold entries indicate the row-wise best 
values obtained.  
 

generations was allocated for each of the 10 iterations carried out per sequence, per 
category of experiments. Benchmark PSP sequences shown in Table 1 for the 2D 
square HP lattice model [5], length ranging from 50 to 100 were used [58, 59]. The 
results are shown in Table 2.  

It may be noted that in Table 2, we include two other algorithms in their generic 
form: Unger’s GA (UGA [46]) and Conformational Space Annealing (CSA) algo-
rithm [16, 49] with our proposed algorithm for solving the PSP problem. UGA has 
already outperformed many MC variations, as reported in [11, 46]. We emulated 
UGA in our experiment with the same parameter for cooling, i.e. the cooling tempera-
ture was set to 2 at the start and decreased by 0.99 every 200000 steps until the tem-
perature became 0.15. 

We abstracted the general form of the CSA algorithm by removing the heuristic-
based special moves, keeping the generic form intact, to provide a fair comparison in 
our experiment. Comparison with CSA algorithm is particularly important for our 
work, since the CSA approach has recently been applied in the PSP software 
ROSETTA [33, 60-63]. Both UGA and CSA ran 2000 GA generation equivalent runs 
per iteration. 



 

4   Discussion of the Experimental Results  

We have introduced the concept of finding potential partial pathways using a depth-
first search (DFS) strategy when a converging, potential sub-conformation in a  
crossover failed to find a matching counterpart to produce a valid (i.e., having a  
self-avoiding-walk) conformation. Crossover variation X(c) has the worst result in 
Table 2. X(c) involves applying DFS constantly at the same rate as the crossover op-
eration to generate the other half of the crossover portion, which is misguiding the 
optimum results more that guiding them. X(a) represents the crossover-only approach, 
that is, crossover with DFS, and X(b) is the variant where DFS is applied whenever a 
crossover fails. X(b) is a slight improvement over X(a). X(d) performed the best, with 
results comparable to the UGA and CSA algorithms. This is because, in X(d), cross-
over was applied exhaustively by allowing a failed crossover to look for more coun-
terparts to match and when there is no improvement at all in the whole population for 
consecutive few generations, the failed crossover is combined with DFS to generate 
the possible potential pathways. It is interesting to note that, in our experiment we 
find DFS has zero failure in finding pathways. Thus, a constantly failing sub-
conformation in a crossover operation, which is likely to have few possible pathways, 
can be salvaged using DFS to unravel the hidden paths effectively. As an alternative 
to DFS, breadth-first search (BFS) [17] could have been used; however, BFS is both 
memory and time intensive. 

5   Supplementary Applications of DFS in PSP  

It is important to remember that ordinary random conformation generation†2takes 
exponential time (fitted curve: y = 2.8723 e0.0326x with square of coefficient of deter-
mination, R2 = 0.9832) with increasing sequence length using the random-move-only  
 

 

Fig. 7. Random conformation generation: DFS approach versus random-move-only (RMO) 
approach. An average of 100 iterations is taken for a particular length of a single random con-
formation generation. 
 



(RMO) approach. In contrast, the run-time for random conformation generation by 
DFS remains quadratic (fitted curve: y = 0.02 x2-0.5717x+54.789, with R2 = 0.9996) 
(see Figure 7).  

The application of random conformation generation by DFS may have a gener-
ally lower impact because totally random conformations are only generated for ini-
tialization of the population. To maintain diversity many GA approaches replenish the 
population a considerable amount and at frequent intervals [64, 65]. For example, 
Hoque et al. have shown removal of chromosomes having 80-90% or greater similar-
ity from a GA population helps it to perform better [64]. After removal it is necessary 
to replenish the population by random conformations of 20 to 30% in each generation. 
Thus, in such a case, for longer sequences, random conformation generation by DFS 
would make the GA search far more efficient. 

6   Conclusions 

A depth-first search (DFS) strategy at a low rate has been applied in combination with 
a powerful crossover operation. Together they revealed convoluted and microscopic 
pathways in solving protein structure prediction problem. Experiments using a variety 
of longer, standard benchmark sequences from the literature have demonstrated the 
efficacy and improved performance characteristics of this approach. The search strat-
egy developed was inspired by the pathway hypothesis. Further work will be directed 
to exploring the biological significance and relevance of this novel approach. 
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