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Modeling Price and Volatility Relationshipsin the Australian
Wholesale Spot Electricity Markets Using Constant and Dynamic
Conditional Correlation Multivariate GARCH Models

Helen Higgs

ABSTRACT

This paper examines the inter-relationship of whale spot electricity prices among the
four regional electricity markets in the Australidadational Electricity Market (NEM):
namely, New South Wales, Queensland, South Austiaid Victoria using the constant
conditional correlation and Tse and Tsui's (2008) &ngle’s (2002) dynamic conditional
correlation multivariate  GARCH models. Tse and ®sui2000) dynamic conditional
correlation multivariate GARCH model which takes@aent of the Student specification
produces the best results. At the univariate GARICH(level, the mean equations indicate
the presence of positive own mean spillovers irfalt markets and little evidence of mean
spillovers from the other lagged markets. In theadyic conditional correlation equation, the
highest conditional correlations are evident betw#e well-connected markets indicating
the presence of strong interdependence betweea thasgkets with weaker interdependence
between the not so well-interconnected markets.

JEL classificationsC32, C51, L94, Q40

Keywords wholesale spot electricity price markets, constard dynamic conditional correlation, multivariate
GARCH

1. INTRODUCTION

The Australian National Electricity Market (NEM) waestablished on 13 December
1998. It currently comprises four state-based [N®&outh Wales (NSW), Victoria (VIC),
Queensland (QLD) and South Australia (SA)] and apae-state based [Snowy Mountains
Hydroelectric Scheme (SNO)] regional markets opegeds a nationally interconnected grid.
Within this grid, the largest generation capacityaund in NSW, followed by QLD, VIC and
SA, while electricity demand is highest in NSW,ldated by VIC, QLD and SA. The NEM,
encompasses privately and publicly owned generati@ssmission and distribution network
providers and traders (for details of the NEM’s ulagpry background, institutions and
operations see ACCC, 2000; IEA, 2001 and NEMMCOQ8). However, each state’s
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network was (and still is) characterised by a v@mnall number of participants and sizeable
differences in electricity prices were found. Orfethee objectives in establishing the NEM

was to provide a nationally integrated and effitigectricity market.

However, a defining characteristic of the NEM ig timitations of physical transfer
capacity. QLD has two interconnectors that togetia@rimport and export to and from NSW,
NSW can export to and from the SNO and VIC can irhfrom the SNO and SA and export
to the SNO and to SA. There is currently no diminector between NSW and SA and QLD
is only directly connected to NSW. As a result, MiEM itself is not yet strongly integrated.
During periods of peak demand, the interconnectmsome congested and the NEM
separates into its regions, promoting price difiees across markets and exacerbating
reliability problems of regional utilities (IEA, 2Q; ACCC, 2000 and NEMMCO, 2008a).

While the appropriate regulatory and commercial m@ésms do exist for the creation
of an efficient national market, and these are etqueto have an impact on the price of
electricity in each region, it is argued that tleenplete integration of the separate regional
electricity markets has not yet been realised. Brtiqular, the limitations of the
interconnectors between the member states sudgastfar the most part, the regional spot

markets are relatively isolated.

There are many studies that use various univargdeeralised autoregressive
conditional heteroskedasticity (GARCH) models teemsthe dynamics within spot electricity
markets. This is then extended to multivariate GARMGARCH) models to capture
volatility clustering between spot electricity pr&c The univariate autoregressive conditional
heteroskedasticity (ARCH) models [as introducecEngle (1982)] and GARCH models [as
proposed by Bollerslev (1986)] have already beatelyiemployed in modeling the dynamics
of spot electricity markets. Suitable surveys of RB#H modeling in the spot electricity
markets may be found in Knittel and Roberts (20@bjjbakke (2002), Hadsell at al. (2004),
Higgs and Worthington (2005) and Chan and Gray §200

The only studies to date that have extended theatiasie GARCH analyses to
MGARCH applications as proposed by Bollerslev (198 De Vany and Walls (1999a),
Bystrom (2003) and Worthington et al. (2005). Denyand Walls (1999a) use cointegration
analysis between pairs of US regional electricigrkets to assess market integration while
Bystrom (2003) applies the constant correlatiorabate GARCH model to the short-term
hedging of the Nordic spot electricity prices wallectricity futures. Worthington et al. (2005)
employ the multivariate GARCH (MGARCH) BEKK (Babi&ngle, Kraft and Kroner) model
to capture the price and volatility spillovers amgdive spot electricity markets in Australia.
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The disadvantage of the MGARCH BEKK model is tHa estimated coefficients for the
variance covariance matrix cannot be interpretedaanindividual basis: “instead, the
functions of the parameters which form the intetdcepms and the coefficients of the lagged
variance, covariance, and error terms that appeaofainterest” (Kearney and Patton, 2000:
36). So far Worthington et al. (2005) produce thdycstudy that utilizes the MGARCH

model to assess the inter-relationships amongAiuw&ralian spot electricity markets.

The aim of this research is to extend on the p&yeWorthington et al. (2005) by
employing an up-to date family of constant and dyitaconditional correlation MGARCH
models to capture the effects of cross-correlatiofatility spillovers between the four
Australian spot electricity markets. This permitgraater understanding of pricing efficiency
and cross-correlation volatility spillovers betwedrese interconnected markets. To the
author’'s knowledge a detailed study of the apphbeet of constant and dynamic correlation
MGARCH models to spot electricity markets has neerb undertaken. It is within the

context of previous limited empirical work that gheesent paper is conducted.

Accordingly, the purpose of this paper is to inigege the price volatility and inter-
relationships in four Australian regional electiycmarkets by employing three conditional
correlation MGARCH models namely: the constant domal correlation, Tse and Tsui's
(2002) and Engle’s (2002) dynamic conditional clatien MGARCH models. If there is a
lack of significant inter-relationships betweeniosgl markets then doubt may then be cast
on the ability of the NEM to foster a nationallyegrated and efficient electricity market. The
reminder of the paper is divided into four sectiomBe second section explains the data
employed in the analysis and presents some brigfmgry statistics. The third section
discusses the methodology employed. The resultdeat with in fourth section. The paper

ends with some brief concluding remarks in thelfseation.
2. DATA AND DESCRIPTIVE STATISTICS

The data employed in this study consists of dalyt ®lectricity prices from January 1,
1999 to 31 December 2007 for each of the four wdad&e electricity markets. All data is
obtained from National Electricity Market Managerne@dompany (NEMMCO, 2008b)
originally on a half-hourly basis representing 48ding intervals in each 24-hour period. A
series of daily arithmetic means is calculated ftbm48 trading interval data, yielding 3,287
observations for each regional market. The prigesiradollars per megawatt hour (MWh).
By way of comparison, De Vany and Walls (1999a; 99 Robinson (2000), Wolak (2000),
Lucia and Schwartz (2002), Escribano et al. (2008plibakke (2002), Higgs and
Worthington (2005), Worthington et al. (2005), Claard Gray (2006), Koopman et al. (2007)
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and Becker et al. (2007) employ daily spot priceshieir respective analyses of the western
United States, United Kingdom, Scandinavian andtralian electricity markets. Importantly,
the use of daily prices may lead to the loss deast some ‘news’ impounded in the more

frequent trading interval data.
<TABLE 1 HERE>

Table 1 presents the summary of descriptive stistf the daily spot electricity prices
and the natural logarithm of the daily spot elettlyiprices for the four Australian electricity
markets. Sample means, medians, maximums, minimgtagdard deviations, skewness,
kurtosis, the Jarque-Bera (JB) statistic and thgmented Dickey-Fuller test aqevalues are
reported. The spot electricity prices for the fouarkets range from $34.10/MWh (VIC) to
$42.99/MWh (SA. The highest average spot electricity prices ar8An($42.99/MWh) and
QLD ($38.89/MWh). The standard deviations of spletcticity prices range from $47.09
(VIC) to $65.88 (NSW). The coefficient of variatiomneasures the degree of variation relative
to the mean. On this basis, SA and VIC are lesabiarthan either NSW or QLD.

The distributional properties of the spot electyigirice series appear non-normal. All
of the markets are significantly positively skeweahging from 10.3449 (SA) to 15.7461
(VIC) indicating the greater likelihood of largeiqe increases than price falls. The kurtosis,
or degree of excess, is also large, ranging frothQRR9 for SA to 384.4721 for VIC, and
since the kurtosis, or degree of excess, in altheke electricity markets exceeds three,
leptokurtic distributions are indicated. The castatl Jarque-Bera statistic and corresponding
p-value in Table 1 is used to test the null hypatisethat the distribution of spot electricity
prices is normally distributed. Afi-values are < 0.01 level of significance indicatthg null
hypothesis is rejected. These spot electricitygsriare then not well approximated by the
normal distribution. The respective Augmented Dickeller (ADF) t-statistic andp-value
are -13.4736 and <0.01 for NSW, -14.4815 and <@@1LD, -30.6863 and <0.01 for SA
and -15.3856 and <0.01 for VIC. The AD¥statistics reject the null hypothesis of non-
stationarity or unit root at the 0.01 level of sfgrance. The spot electricity price series in the
four markets are stationary. Contrary to previoogieical work by De Vany and Walls
(1999a; 1999b), which found that spot electricitycgs contained a unit root, this study
concurs with Lucia and Schwartz (2001), Higgs anortiington (2005), Worthington et al.

(2005) that electricity prices are stationary.



3. MODEL SPECIFICATION

The distributional properties of Australian spoteatficity prices indicate that
multivariate generalised autoregressive conditidmetieroskedastistic (MGARCH) models
can be used to examine the dynamics of the pritaiMy process between spot electricity
markets. A family of MGARCH models uses the comuisl correlations to assess the
volatility spillovers between markets. The conditigariance hence conditional correlation
matrix for this family of models is specified in @avstages. At the first stage, the conditional
variances are obtained from a univariate GARCH gsecfor each market. At the second
stage, the conditional variances are used to deteritne conditional correlation matrix
imposing a positive definiteness for alin the optimisation process. Engle et al. (1984)
presented the necessary conditions for the conditieariance of a bivariate ARCH model to

be positive definite.

Bollerslev (1990) proposes a constant conditiomatetation MGARCH model (CCC)
where the computational simplicity of this modestmeen widely used in empirical research.
Although the constant correlation assumption presid convenient process for estimation,
this assumption does not hold for many economicfarahcial applications. There is a need
to extend to the MGARCH model to take account afetivarying correlations and yet

retaining the positive definite optimisation comatit for the conditional correlation matrix.

Tse and Tsui (2002) and Engle (2002) extend the QGE€QIynamic conditional
correlation models (DCC) by including a time depamtdconditional correlation matrix. Tse
and Tsui’s (2002) dynamic conditional correlatioRnfTDCC) and Engle’s (2002) dynamic
conditional correlation (EDCC) models include infation effects and can vary according to
the assumed distribution of the random error tema'@ the conditional variance-covariance
and conditional correlation equations. The TTDCQ &DCC models assume that each
conditional variance term follows a univariate GAR@rocess. These DCC model have the
flexibility of univariate GARCH processes and ndtetcomplexity of the MGARCH
processes. An autoregressive moving average pracagplied to the conditional correlation
matrix. By imposing some suitable restrictions te tonditional correlation matrix, this
ensures the conditional correlation matrix is pesitefinite for each point in time during the
optimisation. The DCC models retain the insight anidrpretation of the univariate GARCH
model while satisfying the positive definite comalit as required in the conditional
correlation MGARCH models. The following sectionrrfaulates the three conditional
correlation MGARCH models.



The first stage starts with the definition of theivariate GARCH process. A basic
requirement is to remove the predictable compooéthe electricity prices so as to produce
the price innovationg, with a conditional mean of zero before a GARCHia®pn is
specified for the variance. One common method tmlpee an uncorrelated process in the
daily prices is to assume that they follow an ARggcess. The following MGARCH model
is developed to examine the processes relatinigetspot prices for thi€ electricity markets.
The following conditional mean price equation acoumdates each market’'s own prices and

the prices of its own and other markets laggedpan®d:
K
P :a0+zaipit—1+8it (1)
i=1

whereP; is the natural logarithm of the daily prices ofrketi (i = 1,...,K) at timet and

8i1|lit-1~N(0’ h,), & is the random errors or innovation with its copesding conditional

variance h;; for marketi at timet. The market information available at timel is represented
by the information sél.;. The ao, represent the long-term drift coefficients. Themeentsa,

are the degree of mean spillover effect across etsrkr put differently, the current prices in
marketi that can be used to predict future prices (one idagdvance) in markgt The
estimates of these elements can provide measurté® afignificance of the own and cross
mean spillovers. This univariate structure therb&smathe measurement of the effects of the
innovations in the mean spot prices of one sene#soown lagged prices and those of the

lagged prices of other markets.

The conditional variance of a univariate GARCH @sg of order 1 and 1 is denoted as

GARCH(1,1) and the random error tergp, is specified as:

& = tht €& ~ iid N (02) (2)
with
he =5+ B+ B 3)

whereh; is the conditional variance of volatility & for marketi at timet, % is a constani;
andg, are coefficients that are associated with theekegf innovation from previous period,

£, (ARCH term) and previous period’s volatility spier effectsh, , (GARCH term) for

each market respectively.



At the second stage, the conditional variances imdda from the univariate
GARCHY(1,1) process are then used to estimate tielittanal correlation matrix for the
CCC, TTDCC and EDCC models. The conditional coti@ta matrix has to be positive

definite for allt.

First, the constant conditional correlations (CO@BARCH model is presented by
Bolleslev (1990). Under the assumption of constariditional correlations the maximum
likelihood estimate of the correlation matrix isueglent to the sample correlation. As the
sample correlation is always positive definite, tpgimisation can be achieved as long as the
conditional variances are positive. The CCC MGARRHdel has been introduced because
of its computational simplicity (Tse, 2000 and Liemd Tse, 2002). The conditional

covariance matrix of the CCC model (Bollerslev, QP& specified as:

H, =D,RD, = p; A By e (4)

where
D, =diag(h;.. h (5)
R=p, (6)

hiit is defined as the conditional variance of the umata GARCH model for marketandR
is the symmetric positive definite constant comdhitil correlations matrix witjm; = 1 for alli.
The CCC model with a GARCH(1,1) specification fach conditional variance iD; is

specified as:
he =5+ Iglgitz—l + Bl (7

The conditional covariance matrk{; is positive definite and only if all th& conditional

variances are positive aitis positive definite.

Although the assumption that the conditional catiehs are constant provides a very
convenient MGARCH model for estimation, this asstiorp may not hold for many
economic and financial time series. Tse and TsudZ2@nd Engle (2002) extend the CCC
model to dynamic conditional correlation models @Cby including a time dependent
component in the conditional correlation matrix.adadition, the time dependent conditional
correlation matrix has to be positive definite &tirt. This condition is upheld in DCC models

under simple conditions on the parameters.

Second, the conditional covariance matrix of Tsg Bsui's (2002) dynamic conditional

correlation model (TTDCC) is defined as:



H.=DRD (8)

whereD:; is defined in (5) andl; is defined as any univariate GARCH process withtitme-

varying conditional correlation matrR; is generated from the recursion:
R=01-6-6,)R+6¥_ +6,R (9)

where 8, and & are non-negative parameters wiéh+ & < 1,Ris theK x K symmetric
positive definite constant parameter matrix wah= 1 for alli, R; is a weighted average Bf
Re1andWeandWy, is theK x K correlation matrix ofe, for r=t-Mt-M+ 1...,t- 1 If

R and W, are well-defined correlation matrices (ie positigefinite with unit diagonal
elements), the® will also be a well-defined correlation matri¥,.; depends on the lagged

standardised residuafsand itsijth elements can be denoted as:

M
zgi,t—mgj,t—m
Wia = = l<i<jsK (10)

[ge )50 ]

whereéi = &/+/h, . The matrix¥..; can be expressed as:

W =B L LBT (11)

M 1/2
whereB.; is aK x K diagonal matrix with thé&h diagonal element given t{yZEft_hj

h=1
fori =1,...KandL; is aK x M matrix given byt = (&1,... &wm)-

A necessary condition fd¥P,.; and alsdR to be positive definite iM = K.

Finally, Engle (2002) proposes a dynamic conditiaraatelation model (EDCC) which
defines equation (8) witR; specified as:

R =diagdy, *. gae’) Q diagasy .. O” (12)
whereQ; = (git) is aK x K symmetric positive definite matrix given by:
Qt =(1- 91 - 92)6 + glft—lgtl—l + 92Qt—1 (13)

whereQ is theK x K unconditional correlation matrix & where8, and & are non-negative

parameters witl#, + 6 < 1.



Engle (2002) presents the conditional correlation agighted sum of past correlations.
In addition, Engle (2002) specifies the matfi@as a GARCH equation, and then transforms it
to a correlation matrix. For both DCC models, thdl hypothesis ofg, = & = 0 is tested to

determine whether imposing constant correlatiomslesvant.

The disadvantage of the DCC models is tlatand & are scalars, therefore the
conditional correlations feature the same dynamiitss is a necessary condition to ensure
that R is positive definite for alt. Since the data indicate that all four markets raoe-
normally distributed, the Studenspecification is introduced into the MGARCH progds

take account of the fat-tailed characteristichmgpot price series.
4. EMPIRICAL RESULTS

At the first stage, the parameters of the univar@ARCH(1,1) model are calculated for
each spot electricity market. The estimated coeffis, standard errors apevalues for the
conditional mean equation of the univariate GARCH)Imodel for each spot electricity
market are presented Table 2. The average dailyrlog (&) is 0.4565 for NSW, 0.2865 for
QLD, 0.9270 for SA and 0.6042 for VIC. This indicathat average equilibrium prices range
from $1.33/MWh (QLD) [i.e. $1.33 = exp(0.2865)] $2.53/MWh (SA). All four electricity
spot markets exhibit a significant own mean spéiofrom their own lagged electricity price.
In all cases, the mean spillovers are positive.dxample, in NSW a $1.00/MWh increase in
its own spot price will Granger cause an incredsk2d4/MWh (0.8063) in its price over the
next day. Likewise, a $1.00/MWh increase in the \d@ged spot price will Granger cause a
$2.15/MWh (0.7671) increase the next day. As a @ispn, Worthington et al. (2005) found
only two of the five Australian spot electricity rkats exhibit a positive significant own

mean spillover from their own lagged electricitycpr

There appears to be a significant positive relatignbetween the mean price in the SA
market and the lagged mean price in the QLD markkére is no logical reason for this
relationship as there are no direct interconnectoetween these two markets. The
relationship may results from both QLD and SA maslate relatively poorly interconnected
and have higher spot electricity prices than thieeotmarkets. There is a negative and
significant relationship between mean price in W€ and the lagged mean price in the SA
market. A $100/MWh increase in the SA spot pricdl Wranger cause a decrease of
$0.96/MWh in the VIC market over the next day. émnis of the relationship between the
mean price of a market and that of the other madgged one period, only two out of 12

markets are significant. This indicates that on agershort-run price changes in the four spot



electricity markets are not associated with pribanges in any of the other spot electricity
markets, despite the connectivity offered by the NBMbrthington et al. (2005) obtained

similar results with no significant mean spillovérsm other lagged markets.
<TABLE 2 HERE>

Table 2 also presents the estimated coefficienésdsird errors ang-values for the
conditional variance equation of the univariate GAR1,1) for all four markets. The own-
innovation or ARCH spilloversf) in all four markets are significant indicatingethresence
of significant ARCH effects, while the lagged vdliat or GARCH spillovers ) are also
significant and larger in magnitude for NSW, SA aA€ markets. The respective innovation
and volatility spillovers are 0.4672 and 0.532@ha NSW market, 0.6648 and 0.4119 in the
QLD market, 0.0615 and 0.9216 in the SA market atd@B and 0.8563 in the VIC market.
This implies that for all markets the last period&atility shocks in the spot electricity price
have a great effect on its future volatility thame tmemory of previous surprises or
innovations with the exception of QLD. As a compamisHiggs and Worthington (2005)
concluded that the GARCH effects were larger in mitagle than the ARCH effects in QLD

and SA while the reverse was true for NSW and VIC.

One important and well-founded characteristic efceicity spot prices is the tendency
for volatility clustering to be found, such thatda changes in spot prices are often followed
by other large changes, and small changes in dpiy prices are often followed by yet more
small changes. The implication of such volatilitystering is that volatility shocks today will
influence the expectation of volatility in the fuéu The persistence coefficient is defined as
the sum of the ARCH and GARCH effecfs ¢ ). The persistence coefficient is less than
one for NSW (0.9992), SA (0.9830) and VIC (0.967tHys implies that these markets
experience a mean-reverting conditional volatiptpcess in which the shocks are transitory
in nature. The degree of persistence is greater dn& in QLD (1.0768). This suggests that
the positive shocks in the QLD market exhibit anp@nent impact, indicating the daily spot
electricity price exceeding the normal or mean lleske volatility lead to an increase in
conditional volatility that do not die down. As amparison, Higgs and Worthington (2005)
found the degree of persistence to be less thariarreach of the Australian spot electricity

markets, employing the skewed Student asymmetiep@RCH model.

At the second stage, the conditional variances fiteenunivariate GARCH(1,1) models
are used to calculate the conditional correlatioatrn. Table 3 presents the estimated

coefficients, standard errors apevalues for the conditional correlations betweea tbur
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markets employing the CCC, TTDCC and EDCC models. €emated conditional
correlations are all positive and significant atGd0level for all three models, indicating the
presence of significant strong positive spillovetationship between the spot electricity
markets. In the CCC model, the conditional corretet are the highest between NSW and
VIC (0.8801); SA and VIC (0.7577); and NSW and Q[I7428), whereas the conditional
correlations are the lowest between NSW and SAGDE QLD and VIC (0.6531); and QLD
and SA (0.5241). The conditional correlations foe former three pairs of spot electricity
markets are the strongest for the well-intercoreweharkets thus exhibiting the presence of
interconnectivity between these markets. The lowdd@nal correlations between the latter
three pairs of markets are consistent with the fdatt there is currently no direct
interconnector linkage between these pairs of sgettricity markets. In general, the
conditional correlations are higher for the EDCC eldtian the TTDCC model which in turn
is higher than those of the CCC model. For exarti@econditional correlation between NSW
and QLD increased dramatically from 0.7428 in theQCi@odel to 0.9149 in the TTDCC
model and 0.9256 in the EDCC model, with smallemges in the conditional correlations

between the other pairs of markets across the thegkods.
<TABLE 3 HERE>

Table 3 also presents the likelihood ratio statidtiR) testing for the restrictiond46 =
6 = 0 or whether the constant correlations are eglevThe LR test is distributed as)d
with P = K(K - 1)/2 degrees of freedom. The LR statistics, fer TfDCC and EDCC models
are respectively 1636.25 and 1515.66 and tferitical value is 12.5916. This indicates that

the constant correlation assumption is rejected.tl@nbasis of the log-likelihood, Akaike
Information (AIC) and Schwartz Criteria (SC), th@OCC is the best model for all four
markets. Clearly, the dynamic conditional correlatprocess has the ability to accommodate
the time-varying conditional correlation volatilitgpillovers across the four Australian
electricity markets. In brief, the discussion o thstimated conditional correlation matrix is

only presented for the TTDCC model.

In the TTDCC model, the conditional correlations allepositive and significant at the
<0.01 level. The conditional correlations are highetween NSW and QLD (0.9149); NSW
and VIC (0.8654); and SA and VIC (0.7847), thusgasiing interdependence between these
markets over the sample period. The conditionatetations are lowest between QLD and
VIC (0.7597); NSW and SA (0.6127); and QLD and S/A888). The high interdependence

of the conditional correlation spillovers are evitdbetween the well-interconnected markets
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while the contrary is found between the not so awveg#rconnected markets such as QLD and

SA which are located at the extremities of the NEM.

Plots of the dynamic correlations for the TTDCC modet depicted in Figure 1.
Between 1999 and 2001, the conditional correlatioetsveen the NSW and QLD markets
reveal that they are very volatile ranging fromdveD.0 to 0.8 and after 2001, the conditional
correlations are still very volatile (ranging beeme0.1 to 0.9) but are mean-reverting. This is
the result of the inception of the Queensland aedvNouth Wales Interconnector which
began operation on 18 February 2001. The amplitidbe conditional correlations narrows
towards the end of the sample period. Similar pastare exhibited between the SA and VIC
markets with evidence of mean-reverting conditiarmatelation spillovers after 2002 with the

introduction of the Murraylink interconnector.

Another interesting plot is the one between thgistanding spot electricity markets of
NSW and VIC which are linked by the Snowy Mountakhgiroelectric Scheme (SNO) from
the beginning of the sample period. These marketergée the largest interconnected
capacity in the NEM. The conditional correlationgween these markets are mean-reverting
with the amplitude of the conditional correlatidmscomes narrower towards the end of the
sample period. This plot shows that the conditiaax@telations between the long-standing
electricity spot markets between NSW and VIC atergependent and mean-reverting over

this sample period.

In sum, the strong significant positive conditionadrrelation volatility spillovers
between the well-connected electricity markets tiogiewith the mean-reverting plots of the
dynamic conditional correlations over the sampleqgoesuggest the NEM has fostered a
nationally integrated and stable spot electriciprket, thus indicating that the interconnected

markets are informationally efficient.
<FIGURE 1 HERE>

Table 3 also presents the degrees of freedom (dthéStudent specification. The df
are also significant for the three models rangimgnf 2.6008 (CCC) to 2.7076 (EDCC). The
significance of the Studentcoefficients indicates that this specification kelsen account of
the fat-tailed characteristic of the four spot prigeries. The estimated coefficients for the
conditional correlation equationg( and &) for both TTDCC and EDCC models are
significant and sum to less than one which impiies dynamic conditional correlations are

mean-reverting.
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5. CONCLUSIONS

This study presents an analysis of inter-relatigrsim the wholesale electricity price
volatility in the four Australian electricity martee of New South Wales, Queensland, South
Australia and Victoria. The data consists of haitiHy prices for the period 1 January 1999
to 31 December 2007. Three different conditionatelation MGARCH models namely: the
constant conditional correlation (CCC), Tse and Bs(2002) and Engle’s (2002) DCC
MGARCH models are estimated. The results indicaa¢ tie price and price volatility inter-
relationships in the Australian wholesale eledlyionarkets are best described by the Tse and
Tsui (2002) DCC MGARCH specification. This model Hhas ability to capture the time-
varying dynamics of the conditional correlationgoss pairs of electricity markets. The
Studentt specification is also included to accommodate fetailed properties of the
observed data.

These findings make a significant contribution irtireating the volatility and the
efficiency of the wholesale electricity markets kynploying time-varying multivariate
techniques that have not been previously explanettieé Australian context. The assessment
of these prices and volatility between regional kets allows for better understanding of the
spot electricity dynamics by electricity producdrsnsmitters and retailers and the efficient

distribution of energy on a national level.

At the first stage, the univariate GARCH(1,1) madate used to identify the source and
magnitude of the mean, innovation and volatilityllepers of each market. All four markets
exhibit a significant own mean spillover. Only twbthe markets exhibit a significant mean
spillover from other lagged markets. This suggefsts,the most part, that Australian spot
electricity prices could not be usefully forecasing lagged price information from other
markets. The results of the univariate GARCH(1,$pahow the presence of strong ARCH
and GARCH effects with the exception of the QLD nedrk his indicates that for all regional
markets volatility shocks are persistent over tifikis persistence suggests that high (low)
volatility of price changes is followed by high @) volatility price changes; that is, like
magnitudes of price changes cluster over time. Tmuise clustering captures the non-

normality and non-stability of Australian electticspot prices.

At the second stage, the conditional correlatiotatidy spillovers of the TTDCC
model are positive and significant for all pairsneéirkets, indicating the presence of positive
volatility effects between pairs of markets. Thehegt conditional correlations are evident
between the well-connected markets namely: NSW@bD; NSW and VIC; and SA and
VIC. This indicates that the interconnectivity beem the separate regions in the NEM has
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fostered a nationally integrated and stable spettetity market, thus indicating that the
interconnected markets are informationally effitiehhe lowest conditional correlation is
evident between the not directly interconnected QIrid SA markets. As a general rule, the
less direct the interconnection between regions, lttwer the conditional correlations
volatility spillover effects between these regiofbis suggests that the main determinant of
the interaction between regional electricity masketgeographical proximity and the number
and size of interconnectors. Accordingly, it may Ureeasonable to expect that prices in

electricity markets that are geographically isadatearket will ever become fully integrated.
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Table 1.Summary statistics of daily spot prices ($/MWh) aatlral logarithms of spot prices, 1 January
1999 — 31 December 2007

Spot electricity prices Log spot electricity @i

Statistics NSW QLD SA VIC NSW QLD SA VICA
Mean 37.4255 38.8852  42.9947 34.1017 3.328  3.35953658 3.5588
Median 26.0396 25.3046  31.5856 25,8392 3.2519  8.2593.231  3.4527
Maximum 1293.064 1378.986 1152.575 1499.753 7.3131.1648 7.2291 7.0498
Minimum 11.7585 0.5392 10.6142 4934 15961 2.4646.6177 2.3622
Std. Dev. 65.8795 65.0153 56.0917 47.0939 0.51535423. 0.6027 0.5109
Skewness 11.6013 10.6917 10.3449 15.7461 1.7445 822.3 1.868 1.9315
Kurtosis 171.9408 160.301 144.0229 384.4721 9.2272.2122 9.1874 9.7555
CcVv 1.7603 1.672 1.3046 1381 0.1548 0.1615 0.1791143B
J-B 3982658 3451468 2782379 20066136 6979 14731 5 7158294
J-B p-value 0.0000 0.0000 0.0000 0.0000 0.0000  0.00000000. 0.0000
ADF -13.4736 -14.4815 -30.6863 -15.3856 -6.6693 5996 -9.6958 -7.4436
ADF p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Observations 3287 3287 3287 3287 3287 3287 3287 3287

Notes: Prices are in dollars per megawatt-hour-JaBque-Bera test statistic; ADF—Augmented Dickey-
Fuller test: H: unit root (non-stationary), 1 no unit root (stationary); NSW-New South Wale$CV
Victoria, QLD—Queensland, SA-South Australia; CV-e@izient of variation.
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Table 2.Estimated coefficients for GARCH(1,1) conditiomedan and variance equations

NSwW QLD SA VIC
Coefficient ~ Std. error p-value  Coefficient ~ Std.cerr p-value  Coefficient ~ Std. error p-value  Coeffitie Std. error  p-value

0o 0.4565 0.0787  0.0000 0.2865 0.1055 0.0066 0.9270 0746. 0.0000 0.6042 0.0802 0.0000
o, 0.8063 0.061  0.0000 0.0996 0.0592 0.0928 0.0410 556.0 0.4612 0.0817 0.0582 0.1602
a, 0.004 0.013 0.7570 0.8062 0.035 0.0000 0.0665 0.0280178 0.008 0.0185 0.6639
O3 -0.0234 0.0177 0.1867 0.0415 0.0328 0.2066 0.6369 .0358 0.0000 -0.0369 0.0152 0.0153
Oy 0.0777 0.0559 0.1644 -0.0356 0.0469 0.4478 -0.0033-0.0526  0.9499 0.7671 0.0478  0.0000
Bo 0.0221 0.0075 0.0030 0.0325 0.0149 0.0298 0.0032 0019. 0.0932 0.0056 0.0056 0.321
B1 0.4672 0.1255 0.0002 0.6648 0.2295 0.0038 0.0615 0198. 0.0015 0.1108 0.0559 0.0474
B 0.532 0.0851  0.0000 0.4119 0.1561 0.0084 0.9216 278.0 0.0000 0.8563 0.0941  0.0000
LnL -928.8710 -1421.2770 -1339.4030 -871.9180

Persist 0.9992 1.0768 0.9830 0.9671

This table provides the estimated coefficientspddad errors ang-values for the mean and conditional variance eégostfor the NSW, SA and VIC electricity markets.
0o is the constant in the conditional mean equatiaris the degree of mean spillover lagged one peridd WSW, . is the degree of mean spillover lagged one period
with QLD, asis the degree of mean spillover lagged one peritld 8A, a4 is the degree of mean spillover lagged one periitld MIC, (3o is the constant in the conditional
variance equatigfd,s is the ARCH coefficient, 32 is the GARCH coefficient, LnL is the log likelihoodPersist is the degree of persistence.
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Table 3.Estimated coefficients for conditional correlatioofSCCC, TTDCC and EDCC models

CCC TTDCC EDCC

Coefficient ~ Std. error p-value Coefficient  Std.cerr p-value  Coefficient  Std. error  p-value
PNsw oLD 0.7428 0.0125 0.0000 0.9149 0.0135 0.0000 0.9256 008a. 0.0000
Prsw sa 0.655 0.0111 0.0000 0.6127 0.0309 0.0000 0.7207 150.0 0.0000
Prsw vic 0.8801 0.0051 0.0000 0.8654 0.0128 0.0000 0.9099 00658. 0.0000
PoLb sa 0.5241 0.0127 0.0000 0.5368 0.0341 0.0000 0.6505 0182. 0.0000
PaLbvic 0.6531 0.0113 0.0000 0.7597 0.0201 0.0000 0.8192 0100. 0.0000
Psavic 0.7577 0.0095 0.0000 0.7847 0.0240 0.0000 0.8516 0128. 0.0000
df 2.6008 0.0209 0.0000 2.6703 0.0252 0.0000 2.7076 0260. 0.0000
6, 0.0966 0.0190 0.0000 0.1049 0.0111 0.0000
6, 0.8602 0.0306 0.0000 0.8225 0.0195 0.0000
Parameters 39 41 41
LnL 3904.15 4722.28 4661.98
LR Test 1636.25 1515.66
AlC -7806.30 -9362.55 -9241.96
sC -7492.50 -9112.56 -8991.97

This table provides the estimated coefficientspddad errors ang-values for the conditional correlations for the
CCC-Constant Conditional Correlation, TTDCC-Tse disdi’'s (2002) Dynamic Conditional Correlation aBBCC-
Engle’s (2002) Dynamic Conditional Correlatiqn),is the correlation between market i and market js dhe degrees
of freedom, LnL is the log likelihood, LR Tedl; = 6, = 0 (constant correlation assumption); AIC and &r€ the
Akaike Information Criterion and Schwartz Criteniaspectively.
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FIGURE 2.Time-varying conditional correlations between neskof TTDCC model
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