
Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, 18-21 August 2005

BICLUSTERING GENE EXPRESSION DATA BASED ON A HIGH
DIMENSIONAL GEOMETRIC METHOD

XIANG-CHAO GAN1, ALAN WEE-CHUNG LIEW2 , HONG YAN1,3

1Department of Computer Engineering and Information Technology
City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong

2Department of Computer Science and Engineering
Chinese University of Hong Kong, Shatin, Hong Kong

3School of Electrical and Information Engineering
University of Sydney, NSW 2006, Austra

E-MAIL: 50004098@student.cityu.edu.hk, wcliew@cse.cuhk.edu.hk, h.yan@cityu.edu.hk

Abstract:
In gene expression data, a bicluster is a subset of genes

exhibiting a consistent pattern over a subset of the conditions.
In this paper, we propose a new method to detect biclusters in
gene expression data. Our approach is based on the high
dimensional geometric property of biclusters and it avoids
dependence on specific patterns, which degrade many
available biclustering algorithms. Furthermore, we illustrate
that a bilclustering algorithm can be decomposed into two
independent steps and this not only helps to build up a
hierarchical structure but also provides a coarse-to-fine
mechanism and overcome the effect of the inherent noise in
gene expression data. The simulated experiments demonstrate
that our algorithm is very promising.

Keywords:
Biclustering; gene expression data; superplanes

1. Introduction

In DNA microarray experiments, a key step in the
analysis of gene expression data is to discover groups of
genes that share similar transcriptional behavior. Clustering
gene expression data into homogeneous groups is
instrumental in functional annotation, tissue classification,
motif identification. A review can be found in [1]. However,
standard clustering methods, such as the k-means,
hierarchical, or self-organizing map algorithms, have their
limitations. They require that the related genes behave
similarly across all measurement conditions. When a
database includes many heterogeneous conditions from
many experiments, clustering algorithms often cannot
produce a satisfactory solution.

In this case, biclustering algorithms are preferable. In
gene expression data, a bicluster is a subset of genes
exhibiting a consistent pattern over a subset of conditions.

This means that biclustering performs clustering
simultaneously in two dimensions. In some situations,
where an interesting cellular process is active only in a
subset of conditions, or a single gene may participate in
multiple pathways that may, or may not, be co-active under
all conditions; biclustering approaches are a key technique
to use.

When evaluating a biclustering algorithm, one of the
key measurements is the patterns it can detect. There are
many different patterns useful for gene expression data.
This will be explained in detail in the following section. A
good algorithm should incorporate as many as possible
patterns and be flexible and extendable. However, most
available algorithms are based on specific patterns and this
limits their application. The Double Conjugated Clustering
(DCC) [2] and Block clustering [3] are designed to detect
constant values. The Coupled Two-Way Clustering (CTWC)
[4] and Sheng el al.’s algorithm [5] are interesting in their
account of the constant rows or columns bicluster. Segal et
al. [6] assume the additive model in their algorithm.
Lazzeroni and Owen (2000) introduce the notion of a plaid
model using general additive model. Wang et al. [7] and
Yuval et al. [8] develop their algorithms based on a
multiplicative model.

In practice, a perfect bicluster with constant columns or
coherent values seldom exists in gene expression data due
to noise in experiments. A good biclustering algorithm
should be able to adapt to noise situations and find the most
feasible solution. To overcome the effect of noise, many
biclustering algorithms use parametric method and assume
that both noise and gene data values that do not belong to
the target bicluster satisfy a certain statistical distribution.
This limits the application of their algorithms.

Based on the above analysis, we require a good gene

0-7803-9091-1/05/$20.00 ©2005 IEEE
3388

Authorized licensed use limited to: GRIFFITH UNIVERSITY. Downloaded on October 15, 2009 at 22:34 from IEEE Xplore. Restrictions apply.

Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, 18-21 August 2005

expression data biclustering algorithm be flexible and noise
immune. In this paper, we develop a novel biclustering
algorithm based on the high dimensional geometric
property of the biclusters. We decompose the biclustering
algorithm into two independent steps and this facilitates our
algorithm to easily incorporate all possible patterns. In
addition, we use a coarse-to-fine mechanism to overcome
the effect of noise in gene expression data, which has been
proven to be very efficient for overcoming the noise effect
in the image processing and pattern recognition fields.

2. Geometric Characteristic of A Bicluster

An interesting criterion when evaluating a biclustering
algorithm is the identification of the type of biclusters the
algorithm is able to find. There are three major classes of
biclusters that are well known to be related to gene
expression data: (a) Biclusters with constant values; (b)
Biclusters with constant values on columns or rows; (c)
Biclusters with coherent values on columns or rows. An
example of column-oriented biclusters is presented in
Figure. 1. Note there are also some bicluster approaches
that view the elements of the matrix as symbolic values
regardless of the exact numeric values. Since it is not the
emphasis of our paper, we omit it for simplicity. A detailed
survey of the most available biclustering algorithms based
on the type of biclusters detected can be found in [9].

(a) (b) (c) (d)

Figure 1: Examples of three types of biclusters: (a)
Constant Bicluster, (b) Constant Columns, (c) Coherent
values by additive models, where each row and column can
be obtained by adding a constant to each of the others, and
(d) Coherent values by multiplicative models, where each
row and column can be obtained by multiplying each of the
others by a constant value.

 As mentioned before, most available algorithms are
based on specific patterns and this limits their applications.
The Double Conjugated Clustering (DCC) [2] and Block
clustering [3] methods are designed to detect constant
values, (Fig.1.a). The Coupled Two-Way Clustering
(CTWC) [4] and Sheng el al.’s [5] algorithms extract
constant rows or column biclusters, (Fig.1.b). Segal et al. [6]
assume the additive model in their algorithm, (Fig.1.c), and
Yuval et al. [9] develop their algorithms based on a
multiplicative model, (Fig.1.c).

To avoid dependence of biclustering algorithms to a
specific pattern, we investigate the common property of a
bicluster first in this paper. From a geometric viewpoint, a
bicluster in Fig. 1 (b), (c), and (d) is denoted by a single
line in a high dimensional space. Each gene in the
bicluster is a point lying in this line when we only consider
the conditions selected by this bicluster. For example, if
we denote the four conditions in Fig.1 as x, y, m and n, the
bicluster in Fig.1(c) can be denoted as

 and 211 −=+=−= nmyx nmyx
3
225.0 === for the

bicluster in Fig. 1(d).
However, when all conditions, not only the conditions

selected by corresponding biclusters but also the conditions
do not belong to the bicluster, are considered, this
geometric property changes. We cannot denote a bicluster
with a line any more. Without loss of generality, assume a
three-conditioned experiment with the conditions denoted
as x, y, z respectively. If a bicluster covers conditions x and
z, there exists a bundle of hyperplanes that pass through all
points in this bicluster. All these hyperplanes conform to the
following equation:

0310 =++ zaxaa (1)
where ai, (i = 0, 1, 3) are constant and a2y is omitted since
a2 = 0. A demonstration is given in Fig. 2.

-10 -5 0 5 10-10010

-15

-10

-5

0

5

10

15

xy

z

Figure 2: A demonstration of a bicluster’s geometric

property: the bicluster covering x, and z conditions lies in a
plane in (x, y, z) space.

In Equation (1), there exist coordinates x, z while y,
which does not belong to the bicluster, has disappeared. We
find that a hyperplane denotes a possible bicluster: The
coordinates appearing in its equation denote the conditions
the bicluster covers and the points in the hyperplane denote
the genes in the bicluster.

Based on the above analysis, instead of directly
seeking specific bicluster patterns, which have been proven
to be a NP-complete problem, in this paper we decompose a
biclustering procedure into two steps: First, we detect the

3389

Authorized licensed use limited to: GRIFFITH UNIVERSITY. Downloaded on October 15, 2009 at 22:34 from IEEE Xplore. Restrictions apply.

Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, 18-21 August 2005

hyperplanes existing in the gene expression data; then we
analyze whether a required pattern exists for the genes
which lie on these hyperplanes. The block diagram of our
algorithm is as follows.
.

Figure3: The block diagram of the proposed biclustering

algorithm using high dimensional geometric method.

3. Plane Fitting by Fast Hough Transform Method

In the block diagram of our algorithm (see Figure 3), a
robust high dimensional plane fitting method is a key step
in our algorithm. To achieve this goal, we make use of the
Hough Transform (HT). Hough Transform is a powerful
technique for line extraction and pattern detection in image
processing and computer vision [11]. However, the standard
Hough Transform may not be feasible for high dimensional
data because of the computational complexity and storage
requirement.

Here we use the Fast Hough Transform (FHT) [12]
since it has easy high-dimensional extension and gives
considerable speed and less storage requirement than the
conventional methods. Furthermore, FHT is also a
coarse-to-fine method and is noise insensitive. We here
review the basic principles of the FHT.

As with a Hough transform, the FHT is also a mapping
from an observed data space, which is often called a feature
space in image processing, into a parameter space. Each
feature point in data space (In gene expression data, a point
is data values of a gene) generates “votes” for a set of
parameter-space points. An area in the parameter space

containing many mapped points reveals the feature of
interest.

Hyperplane formulation

The FHT is applied to problems in which points in the
parameter space are hyperplane represented as

 a . (2) njXa
k

i
iijj ,,2,1for0

1
0 "==+∑

=

where Xi is the i-th dimension of the parameter space. Each
aij is a function of observed feature points and is normalized

such that∑ =
=

k

i ija
1

2 1 . For parameter space (X1, X2, …, Xk),

the bound and the desired quantization of Xi are given.
Since the value interval of each Xi is given, all k intervals
will form a hypercube. We can use a hypercube to represent
the parameter space.

The FHT algorithm recursively divides the parameter
space into hypercubes from low to high resolution. It
performs the subdivision and subsequent “vote counting”
only on hypercubes with votes exceeding a selected
threshold. This hierarchical approach leads to a significant
reduction in both computation and storage compared to the
conventional Hough Transform.
Hyperplane/hypercube intersection test criterion.

The FHT needs to determine whether a hypercube
receives a vote from a particular hyperplane. We can use a
simple, conservative test to see whether the hyperplane
intersect the hypercube’s circumscribing hypersphere, that
is, if

rCaa
k

i
ii ≤+∑

=1
0 (3)

where [C1, …,Ck] are the coordinates of the hypercube’s
center and r is the radius of the hypersphere.
K-tree representation

For the FHT, we represent the parameter space as a
nested hierarchy hypercube. We can associate a K-tree with
the representation. The root node of the tree corresponds to
a hypercube with side-length S0 having one vertex at the
origin [0,…,0] and the diagonally opposite vertex at [S0,…,
S0]. Each node of the tree has 2k sons arising when that
node’s hypercube is halved along each of its k dimensions.
Each child has a child index, a vector b = [b1, …, bk], where
each bi is -1 or 1. The child index is interpreted as follows:
if a node at level l of the tree has center Cl then the center of
its child node with index [b1, …, bk] is

],,[
2 1

1
k

l
l bb

S
C …++ (4)

where Sl+1 is the side length of the son at level l+1 and
. 2/1 ll SS =+

3390

Authorized licensed use limited to: GRIFFITH UNIVERSITY. Downloaded on October 15, 2009 at 22:34 from IEEE Xplore. Restrictions apply.

Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, 18-21 August 2005

We here present an incremental formula for evaluating
the test in (3), The normalized distance can be computed
incrementally for a child node at level l+1 with child index
[b1, …, bk] as follows,

∑
=

+=
k

i
ia

S
a

R
10

0
0 2

1 (5)

∑
=

+ +=
k

i
iill baRR

1
1 2

12 (6)

The test (3) can be expressed as: A hyperplane
intersects a hypercube if

2|| kR ≤ (7)

To facilitate the understanding of the FHT, we here

provide a plane detection example in 3D data. Given M
range data points, (xj, yj, zj), j = 1,…,M, the plane detection
problem is to find one or more planes that best fit these
feature points. If the plane can be represented as

xxy bzmymx ++= (8)
where mx and my are the directional normals of the plane.
By choosing (my, mz, bx), we get a 3-parameter space. A
feature point (xj, yj, zj) is transformed into the parameter
spaces

03210 =+++ xjzjyjj bamamaa
where

jjj Lxa /0 −=

jj La /13 =

, , ,

,and
jjj Lya /1 = jjj Lza /2 =

1++ jj zy=jL .

Our biclustering algorithm

To summarize, when given a set of genes expression
data {Fj} under diverse experimental conditions, the high
dimensional geometric biclustering method can be
summarized as:
Parameters or function needs to be predetermined:
1. A minimum vote count “T” as threshold and the desired

resolution “q”.
2. A transformation that maps each gene expression data Fj

into a hyperplane in parameter space represented by

. where XnjXaa
k

i
iijj ,,2,1for0

1
0 "==+∑

=
i is

bounded by [0, S0] . The root of K-tree at [S0/2, …, S0/2]

Procedure:
1. Transform genes expression data into parameter space.
2. Compute the initial normalized distances from the

hyperplane to the root node and perform the vote
procedure for the root node. For each set of gene

expression data, if Equation (7) is satisfied, add one to
the vote number of the root node. If the vote number for
root node is bigger than the threshold T and resolution is
less than q, subdivide the root node into the K-tree child
nodes.

3. Vote for each child node and subdivide them if possible.
A similar vote-and-subdivide mechanism is performed
for each new node until no new nodes appear.

4. When there is no node with resolution equal to q and the
vote number is bigger than T, record the node with the
biggest resolution as it is the most probable solution.
When there are several nodes with resolution equal to q
and a vote number bigger than T, incorporate the planes
covering the same parts of the genes.

5. For each bundle of planes, the conditions with zero or
low value in the plane equations are discarded. Under
the remaining conditions, verify whether the genes in
the planes satisfy the expected pattern. If yes, we get a
bicluster; otherwise just discard it. Same processing
continues until all bundles are processed.

The above procedure is very efficient for a modest

database. Since the computational complexity of the FHT
algorithms change more dramatically with the dimension
increase than with the change of gene numbers, we here
provide a simple divide-and-conquer mechanism for large
datasets. First, divide the conditions into several
non-overlapping blocks and each block includes all genes
but different conditions. Then, we perform the proposed
biclustering algorithm for each block. For a detected
bicluster in one block, we test whether the other conditions
can be incorporated into it. Lastly, we delete the same
bicluster. Using this simple extension, we actually
transform the biclustering problem which performs
clustering on the two dimensions simultaneously into a
low-dimensional biclustering problem and a simple
clustering problem in one dimension.

4. Experiment results

We analyze the performance of our algorithm on
several datasets. We verify that the proposed algorithm is
not limited to a specific pattern by using our algorithm to
detect three different patterns: constant columns, constant
rows and coherent values by multiplicative models. All
three patterns are very useful and frequently mentioned in
biclustering algorithms for gene expression data. For a clear
evaluation, we also generate a synthetic dataset with three
overlapping biclusters to examine the ability of our
algorithm to find multiple biclusters, especially when
overlaps between biclusters are present. For these synthetic

3391

Authorized licensed use limited to: GRIFFITH UNIVERSITY. Downloaded on October 15, 2009 at 22:34 from IEEE Xplore. Restrictions apply.

Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, 18-21 August 2005

datasets, since the genes and conditions covered by each
bicluster are known, they will give a detailed look at our
algorithm.

Synthetic data with one embedded bicluster

Biclusters with constant columns. We embed a pattern
of 25 rows by columns 8 into a dataset of size 100 by 30. In
this experiment, the pattern is constant columns and the
value of each row is produced from a uniform distribution
U(-5, 5). The background is also generated from the
uniform distribution U(-5, 5). A similar experiment was
performed by Sheng et al. (2003).

The final pattern of the bicluster revealed by our
algorithm is shown in Fig. 4. We see that all the columns
where the embedded pattern locations were correctly found.
In addition, all embedded rows were recovered. We can
compare our performance to that of (Sheng et al. 2003). For
their algorithm, all columns where the embedded pattern
locations were correctly found and most of the embedded
rows were recovered.

Figure4: Results of the synthetic data set with a bicluster of
constant columns. (a) The data matrix. (b) The position of
the data matrix belongs to the bicluster. (c) The pattern of
the bicluster. (d) Pattern and the position of the bicluster
revealed by the proposed high geometric method.

Biclusters with constant row and biclusters with

coherent values by multiplicative models. Our algorithm is
very flexible at detecting different patterns, besides the
pattern of constant columns. We now also test the
performance of our algorithm using following two patterns:
constant rows and coherent values by multiplicative models.
The experimental results are provided in Figure 5 and
Figure 6, respectively. We found that for all these three
datasets, the resulting biclusters are correctly found with the
same conditions and same genes as the original known
bicluster.

Figure 5: Results of the synthetic data set with a bicluster of
constant rows. (a) The data matrix. (b) The position of the
data matrix belongs to the bicluster. (c) The pattern of the
bicluster. (d) pattern and the position of the bicluster
revealed by the proposed high geometric method.

Figure 6: Results of the synthetic data set with a bicluster
with coherent values by multiplicative models. (a) The data
matrix. (b) The position of the data matrix belongs to the
bicluster. (c) The pattern of the bicluster. (d) The
multiplicative coefficients of each row in the bicluster. (e)
pattern and position of the bicluster revealed by the
proposed high geometric method.

Synthetic data with multiple overlapping biclusters

To examine the ability of our algorithm to find multiple
biclusters, especially when overlap between biclusters is
present, we embed three biclusters into a noisy background
described by a uniform distribution U(-5, 5). The dataset is
of size 200 rows by 40 columns, and the three embedded
biclusters are of the following sizes, 40 by 7 for Bicluster 1,
25 by 10 for Bicluster 2, and 35 by 8 for Bicluster 3. As can
be seen in the main plot of Figure 7(a), Bicluster 1 overlaps
with Bicluster 2 at two columns, and Bicluster 3 overlaps
with Bicluster2 at five rows and three columns.

3392

Authorized licensed use limited to: GRIFFITH UNIVERSITY. Downloaded on October 15, 2009 at 22:34 from IEEE Xplore. Restrictions apply.

Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, 18-21 August 2005

In this experiment, we divide the dataset into 4 blocks,
each with 10 conditions and 200 rows. In the first block, the
bicluster 1 was found with all 7 conditions and 40 rows.
Bicluster 2 was also found with the first 3 conditions and 25
rows, and the other 7 conditions was tested and then added
into the bicluster. In the 2nd block, bicluster 3 was found
with 8 conditions and 35 rows. Bicluster 2 with 7
conditions missed in Block 1 is detected and then the other
3 conditions are found back in the subsequent analysis.
Since Bicluster 2 is detected twice, one is deleted.

Based on the above analysis, three biclusters are
perfectly detected. An unexpected outcome of our
algorithm is in Block 2, a bicluster with 3 conditions
overlapping with Bicluster 2 and Bicluster 3 and 60 rows
comprises all rows of Bicluster 2 and 3 is detected as a new
bicluster. After a careful analysis, we think it is a reasonable
result. Furthermore, a good algorithm should detect many
possible patterns and let the users decide which is
preferable.

(a) (b) (c) (d)

Figure 7: Results form the synthetic data set with multiple
overlapping biclusters. (a) The data matrix, (b), (c) and (d)
The three biclusters found by the proposed method.

5. Conclusions

We have developed a new high dimensional geometric
method for gene expression data biclustering. Our
algorithm is significantly different from the available
algorithms. We illustrate that a biclustering algorithm can
be decomposed into two independent steps and this not only
helps it to build up a hierarchical structure but also provides
coarse-to-fine mechanism to overcome the effect of the
noise in gene expression data. The simulated experiments
demonstrated that our algorithm is very promising.

Acknowledgements

The work described in this paper was fully supported
by an interdisciplinary grant (Project 9010003) and a
strategic research grant (Project 7001706) from City
University of Hong Kong.

References

[1] Tanay,A., Sharan,R., and Shamir,R. (2002)
Discovering statistically significant biclusters in gene
expression data. Bioinformatics,18(Suppl.1),
S136-S144.

[2] Busygin,S., Jacobsen,G. and Kramer,E. (2002) Class
discovery in gene expression data. Proc. 5th Annual
Intl. Conf. on Computational Biology, 5, 31-38

[3] Hartigan,J.A (1972) Direct clustering of a data matrix.
Journal of the American Statistical Association (JASA),
67(337),:123-129.

[4] Getz,G., Levine,E., and Domany,E. (2000) Coupled
two-way clustering analysis of gene microarray data.
Proceedings of the Natural Academy of Sciences USA,
97, 12079-12084.

[5] Sheng,Q., Moreau,Y., and Moor,B.D.(2003)
Biclustering microarray data by Gibbs sampling.
Bioinformatics, 19(Suppl. 2), ii196-ii205.

[6] Segal,.E., Taslar,B., Gasch,A., Friedman,N., and
Koller,D. (2001) Rich probabilistic models for gene
expression. Bioinformatics, 17, S243-S252.

[7] Lazzeroni,L., and Owen,A. (2000) Plaid models for
gene expression data. Technical report, Stanford
University.

[8] Wang,H., Wang,W., Yang,J., and Yu, P.S. (2002)
Clustering by pattern similarity in large data sets.
Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, 394-405.

[9] Yuval,K., Basri,R., Chang, J.T., and Gerstein.,
Spectral biclustering of microarray data: coclustering
genes and conditions. Genome Research, 13, 703-716,
2003.

[10] Madeira,S.C., and Oliveira,A.C. (2004) Biclustering
algorithms for biological data analysis: a survery.
IEEE/ACM Transactions on Computational Biology
and Bioinformatics.

[11] Ballard,D.H., and Brown,C.M., (1982) Computer
Vision, Prentice Hall, Englewood Cliffs, NJ.

[12] Li,H., Lavin,M.A., and Master,R.J.L. (1986) Fast
Hough Transform: a hierarchical approach. Computer
Vision, Graphics, and Image Processing, 36,139-161.

3393

Authorized licensed use limited to: GRIFFITH UNIVERSITY. Downloaded on October 15, 2009 at 22:34 from IEEE Xplore. Restrictions apply.

