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ABSTRACT

In this paper, we apply the switched split vector quantiser (SSVQ)
for coding short-term spectral envelope information in wideband
speech coding to compare and contrast two LPC parameter repre-
sentations: line spectral frequencies (LSFs) and immittance spec-
tral pairs (ISPs). The SSVQ is the hybrid of a switch vector quan-
tiser and split vector quantiser, which has been shown in previous
studies to be more efficient, in terms of rate-distortion, as well as
possessing lower computational complexity, than the split vector
quantiser (SVQ). On the TIMIT database, the five-part SSVQ re-
quires 43 and 44 bits/frame to transparently code LSFs and ISPs,
respectively. This 1 bit/frame difference between LSFs and ISPs is
also observed in five-part SVQ. The split-multistage vector quan-
tiser (S-MSVQ) with MA predictor from the AMR-WB speech
coder (ITU-T G.722.2) is also used as a basis of comparison where
we find the SSVQ, which is a memoryless quantisation scheme, to
be competitive at 46 bits/frame.

1. INTRODUCTION

The quantisation of linear predictive coding (LPC) parameters in
CELP coders for narrowband speech (300–3400 Hz) has been thor-
oughly investigated in the literature, where product code vector
quantisers operating on vectors of 10 line spectral frequency (LSF)
parameters [9], generally require 24 bits/frame for transparent qual-
ity [14, 10]. With the introduction of high-speed data services in
wireless communication systems, wideband speech (50–7000 Hz)
can now be accommodated [2]. Wideband speech has improved
naturalness and intelligibility due to the added bandwidth. How-
ever, wideband CELP coders typically require 16 LPC parameters
for representing the speech spectral envelope, hence vector quan-
tisers need to operate at higher bitrates and on vectors of larger
dimension.

Harborg et al. [8] quantised 16 to 18 log-area-ratio coeffi-
cients at 60 to 80 bits/frame using non-uniform scalar quantisers.
Lefebvre et al. [11] and Chen et al. [5] used a seven-part split
vector quantiser operating at 49 bits/frame to quantise 16 LSF pa-
rameters. Transparent results were reported by Biundo et al. [4]
for a four and five part split vector quantiser at 45 bits/frame. Be-
cause successive LSF frames are highly correlated [7], better quan-
tisation can be achieved by exploiting the interframe correlation.
Ubale and Gersho [20] used a seven-stage tree-searched multistage
vector quantiser [10] with a moving average (MA) predictor at 28
bits/frame, while Biundo et al. [4] reported transparent results us-
ing an MA predictive split-multistage vector quantiser (S-MSVQ)
at 42 bits/frame. Guibé et al. [7] achieved transparent coding us-

ing a safety-net vector quantiser at 38 bits/frame, while the Adap-
tive Multi-Rate wideband (AMR-WB) speech codec [2, 1] uses
an S-MSVQ with MA predictor at 46 bits/frame. Other quantisa-
tion schemes recently reported include the predictive Trellis-coded
quantiser [15], the HMM-based recursive quantiser [6], and the
multi-frame GMM-based block quantiser [18], which achieve a
spectral distortion of 1 dB at 34, 40, and 37 bits/frame, respec-
tively.

So and Paliwal [17] showed how the losses in the shape and
memory advantages [13] incurred by the split vector quantiser,
are compensated by the switched split vector quantiser (SSVQ),
which result in better rate-distortion performance for narrowband
LSF quantisation [16]. Another characteristic of SSVQ is the low
computational complexity, which comes at the expense of an in-
crease in memory requirements. In this paper, we evaluate the per-
formance of the SSVQ on the two popular LPC parameter repre-
sentations used in wideband speech coders: line spectral frequen-
cies (LSFs) [9] and immittance spectral pairs1 (ISPs) [3]. We also
compare the SSVQ with the split vector quantiser (SVQ) and split-
multistage vector quantiser (S-MSVQ) with moving average (MA)
predictor from the AMR-WB speech coder.

2. SWITCHED SPLIT VECTOR QUANTISATION

The basic idea of SSVQ is to populate the vector space with many
local split vector quantisers, while switching to one of them based
on a nearest-neighbour criterion and quantising the vector using
the respective codebook. Correlation that exists across all dimen-
sions of the vector space can be exploited as these local SVQs
are positioned via an optimal vector quantiser, which we refer to
as the switch vector quantiser, that is designed using the Linde-
Buzo-Gray (LBG) algorithm [12] on all the vectors. Furthermore,
this positioning of local SVQs via the LBG algorithm allows for
a better matching of the source probability density function (PDF)
shape [17]. For each local SVQ, the 16-dimensional LPC param-
eter vector is split into five parts with (3, 3, 3, 3, 4) division, as is
done in [4]. Bits are uniformly distributed to each part where-ever
possible, with preference given to higher frequency LSFs or ISPs,
when the number of bits is not divisible by five.

2.1. The Line Spectral Frequency and Immittance Spectral
Pair Representation

Most narrowband speech coders, such as the FS-1016 4.8 kbps
CELP coder and AMR speech coder, use the line spectral fre-

1ISPs are used in the AMR-WB (ITU-T G.722.2) speech coder.
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Figure 1: Original and reconstructed power spectral envelope es-
timates for 16th order LPC analysis: (a) Shifting the 16th LSF
by 142 Hz (SD=0.583 dB); (b) Shifting the 16th ISF by 142 Hz
(SD=0.684 dB). The solid and dashed vertical lines show the orig-
inal and shifted parameters (LSF and ISF), respectively.

quency (LSF) representation [9] for representing the short-term
spectral envelope. LSFs are quantised instead of the linear pre-
diction (LP) coefficients, as they possess desirable qualities such
as localisation in frequency of quantisation errors and simple ver-
ification of synthesis filter stability [14, 19].

The line spectral frequencies are defined as the roots of the
following polynomials:

P (z) = A(z) + z
−(p+1)

A(z
−1

) (1)

and
Q(z) = A(z)− z

−(p+1)
A(z

−1
) (2)

where p is the order of the LPC analysis and A(z) is the LPC syn-
thesis filter. These two polynomials, P (z) and Q(z), are paramet-
ric models of the acoustic tube in two extremal states, where the
(p+1)th stage (representing the glottis) is either completely closed
or completely opened, respectively [19]. Consequently, LSFs have
the following properties [19]:

1. All zeros of P (z) and Q(z) lie on the unit circle;

2. zeros of P (z) and Q(z) are interlaced with each other; and

3. the minimum phase property of A(z) is easily preserved
after quantisation of the LSFs if the first two properties are
satisfied.

Therefore, p LPC coefficients, [a1, a2, . . . , ap], can be converted
to p line spectral frequencies, [ω1, ω2, . . . , ωp].

The immittance spectral pairs (ISP) representation was intro-
duced by Bistritz and Peller [3]. It consists of the poles and zeros
of the following immittance function at the glottis [3]:

Ip(z) =
A(z)− z

−p
A(z

−1
)

A(z) + z−pA(z−1)
(3)

as well as the pth reflection coefficient, kp. The poles and zeros of
the immittance function possess the same properties as the LSFs.
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Figure 2: SSVQ Codebook Training

Therefore, p LPC coefficients, [a1, a2, . . . , ap], can be converted
to p − 1 immittance spectral pairs and a reflection coefficient,
[cos ω1, cos ω2, . . . , cos ωp−1, kp] [3]. Because the reflection co-
efficient is a different variable from the first p − 1 ‘frequencies’
(since they lie on the unit circle), it possesses different quantisa-
tion sensitivities, as shown in Fig. 1. The AMR-WB speech coder
quantises the frequency form of ISPs, which are also known as
the immittance spectral frequencies (ISFs). ISFs are expressed as
[ω1, ω2, . . . , ωp−1,

1

2
cos

−1
kp] [1]. The arc-cosine tends to flatten

the sensitivity curve of the pth reflection coefficient.

2.2. SSVQ codebook training

Fig. 2 shows a block diagram of the SSVQ codebook training. The
LBG algorithm [12] is first applied on all vectors to produce m

centroids (or means) {µi}
m
i=1. In the Euclidean distortion sense,

these centroids are the ‘best’ representation of all the vectors in
that Voronoi region. Hence, we can use them to form the switch VQ
codebook which will be used for switch-direction selection. All
the training vectors are classified based on the nearest-neighbour
criterion:

j = argmin
i

d(x, µi) (4)

where x is the vector under consideration, j is the cluster (or,
switching direction) to which the vector is classified, and d(x, x̂)

is the mean squared error between x and x̂. With the training vec-
tors classified to the m clusters, local SVQ codebooks are designed
for each cluster (or, switching direction) using the corresponding
training vectors.

2.3. SSVQ coding

Fig. 3 shows a block diagram of SSVQ coding. Each vector to
be quantised is first switched to one of the m possible directions
based on the nearest-neighbour criterion defined by (4), using the
switch VQ codebook, {µi}

m
i=1, and then quantised using the cor-

responding SVQ.

3. DISTORTION MEASURES FOR LPC PARAMETERS

In order to objectively measure the distortion between a coded and
uncoded LPC parameter vector, the spectral distortion is often used
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Figure 3: SSVQ Coding

in narrowband speech coding [14]. For the ith frame, the spectral
distortion (in dB), Di, is defined as:

Di =

√

1

Fs

∫ Fs

0

[

10 log
10

Pi(f)− 10 log
10

P̂i(f)
]2

df (5)

where Fs is the sampling frequency and Pi(f) and P̂i(f) are the
LPC power spectra of the coded and uncoded ith frame, respec-
tively. The conditions for transparent speech from narrowband
LPC parameter quantisation are [14]:

1. The average spectral distortion (SD) is approximately 1 dB,

2. there is no outlier frame having more than 4 dB of spectral
distortion, and

3. less than 2% of outlier frames are within the range of 2–4
dB.

According to Guibé et al. [7], listening tests have shown that these
conditions for transparency, which are often quoted in the narrow-
band speech coding literature, also apply to the wideband case.

4. EXPERIMENTAL SETUP

The TIMIT database was used in the training and testing of the
SSVQ, where speech is sampled at 16 kHz. We have used the
preprocessing and LPC analysis of the AMR-WB speech codec
(floating point version) [1] to produce linear prediction coefficients
which are then converted to LSFs and ISFs. The training set con-
sists of 333789 vectors while the evaluation set, which consists of
speech not contained in the training, has 85353 vectors.

We have also tested the split-multistage vector quantiser (S-
MSVQ) from the AMR-WB speech codec on the database, so that
it can be used for comparison.

5. RESULTS AND DISCUSSION

Table 1 shows the average spectral distortion, computational com-
plexity, and memory requirements of the five-part SSVQ at vary-

Table 1: Average spectral distortion (SD), computational complex-
ity, and memory requirements (ROM) of the five-part switched
split vector quantiser as a function of bitrate and number of switch
directions on wideband LSF (top half) and ISF (bottom half) vec-
tors from the TIMIT database

m
Bits/ Avg. SD Outliers (in %) kflops/ ROM
frame (in dB) 2–4 dB > 4 dB frame (floats)

8 46 0.919 0.54 0.00 27.1 53376
45 0.953 0.64 0.00 24.1 47232
44 0.984 0.79 0.00 21.0 41088
43 1.018 0.90 0.00 19.5 38016
42 1.066 1.37 0.00 15.4 34944

16 46 0.903 0.48 0.00 24.6 94464
45 0.932 0.60 0.00 21.5 82176
44 0.964 0.73 0.00 20.0 76032
43 1.007 0.97 0.00 18.4 69888
42 1.050 1.19 0.01 17.7 66816

8 46 0.931 0.53 0.00 27.1 53376
45 0.968 0.86 0.00 24.1 47232
44 0.999 1.07 0.00 21.0 41088
43 1.037 1.21 0.00 19.5 38016
42 1.080 1.68 0.00 15.4 34944

16 46 0.920 0.63 0.00 24.6 94464
45 0.948 0.77 0.00 21.5 82176
44 0.983 0.87 0.00 20.0 76032
43 1.032 1.30 0.00 18.4 69888
42 1.078 1.57 0.01 17.7 66816

ing bitrates and number of switch directions. The top half of the
Table are for LSFs and the bottom half are for ISFs. We can see
that by increasing the number of switch directions from 8 to 16,
lower spectral distortion is achieved at all bitrates. Also, we note
that the spectral distortion incurred when quantising LSFs is lower
than that when quantising ISFs. The number of outlier frames is
also higher with ISFs. Transparent coding has been achieved at 43
bits/frame for LSFs and 44 bits/frame for ISFs.

Table 2 shows the average spectral distortion, computational
complexity, and memory requirements of a five-part split vector
quantiser. The same vector partition sizes were used. We can see
that the five-part SVQ requires 46 bits/frame to achieve transpar-
ent coding for LSFs and 47 bits/frame for ISFs. Again, we ob-
serve better performance when quantising LSFs, amounting to a
1 bit/frame difference. Comparing these results with Table 1, we
observe a saving of up to 4 bits/frame for transparent coding with
the SSVQ over the SVQ. Also, the computational complexity of
the transparent SSVQ is less than 40% of the complexity of the
transparent SVQ.

Table 3 shows the average spectral distortion of the S-MSVQ
with MA predictor. Comparing this Table with the bottom half of
Table 1, we can see that the SSVQ achieves a slightly higher spec-
tral distortion than the S-MSVQ with MA predictor scheme at 46
bits/frame. This is to be expected as SSVQ does not exploit inter-
frame correlation. However, the SSVQ has produced less outlier
frames than the S-MSVQ with MA predictor, since it does not have
a predictive component, which tends to produce more outliers [7].

6. CONCLUSION AND FUTURE WORK

In this paper, we have applied the switched split vector quantiser
to compare line spectral frequencies and immittance spectral pairs
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Table 2: Average spectral distortion (SD), computational complex-
ity, and memory requirements (ROM) of the five-part split vector
quantiser as a function of bitrate on wideband LSF (top half) and
ISF (bottom half) vectors from the TIMIT database

Bits/frame Avg. SD Outliers (in %) kflops/ ROM
(in dB) 2–4 dB > 4 dB frame (floats)

46 1.012 0.68 0.00 40.96 10240
45 1.061 0.99 0.00 32.76 8192
44 1.092 1.10 0.00 29.69 7424
43 1.151 1.70 0.00 26.62 6656
42 1.200 2.31 0.00 23.55 5888

47 0.997 0.70 0.00 47.10 11776
46 1.030 0.88 0.00 40.96 10240
45 1.070 1.21 0.00 32.76 8192
44 1.106 1.32 0.00 29.69 7424
43 1.168 2.13 0.00 26.62 6656

Table 3: Average spectral distortion as a function of bitrate of the
split-multistage vector quantiser with MA predictor in AMR-WB
speech codec on wideband LSF vectors from the TIMIT database

Bits/frame Avg. SD (dB)
Outliers (in %)

2–4 dB > 4 dB

46 0.894 0.76 0.01
36 1.304 5.94 0.03

derived from wideband speech. Our results have indicated that
vector quantising LSFs is superior to ISFs by about 1 bit/frame.
This difference may be attributed to the reflection coefficient in
the ISP representation, which has different quantisation properties,
hence joint quantisation may not be optimal. An extended compar-
ative study of LSFs and ISFs in joint block and vector quantisation
will be presented in an upcoming paper. We have also shown that
SSVQ is more efficient than SVQ in terms of rate-distortion and
computational complexity, for wideband LPC parameter quantisa-
tion.
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