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ABSTRACT 

This paper proposes a novel method for compressing 

digital image sequence based on iterative and 

parameterisable image models.  By using proposed image 

models, the reconstructed image approximates the input 

image progressively by repeatedly segmenting each 

residual image obtained from previous iteration and the 

input image into objects or domains. Parameters 

characterising segmented domains are then encoded and 

transmitted. The proposed image model utilises product 

codes in an attempt to further improve the quality of the 

input image. Finally, applications of proposed images 

models are extended to video coding, which exploit 

similarity between successful frames, in addition to self-

similarity within each frame.  

1 INTRODUCTION 

One of the major problems in current video coding 

standards, ITU-T H.261, H263, ISO/IEC MPEG-1 and 

MPEG-2 is that the image model used in motion 

compensation (MC) is inflexible. For each block in 

current frame, a matching block has to be searched in the 

corresponding reference frame and if suitable; its motion 

vector is substituted for the block during transmission. If 

not, those uncompensated blocks have to be transmitted in 

their entirety [1, 2] . 

 

We try to improve the video compression by using a 

combination of iterative refinement and parameterisation 

of the image model. The transmission of entire blocks in 

motion compensation is replaced with transmission of 

parameters which characterise those blocks. The approach 

we used shares many similarities with vector quantisation 

[3] and fractal coding [4]. 

 

This paper is organized as follows. In section 2, we 

present the proposed image model with its simplicity and 

application. In section 3, the application of proposed 

image models in attempt to solve the redundancy of 

residual signals in video coding is discussed. Finally, we 

summarise some of the results presented in this paper 

along with contributions. 

  

2 PROPOSED IMAGE MODELS IN INTRA-

FRAME CODING 

Image compression generally relies on being able to 

predict the image based on the models of the image. Some 

of these models are unable to capture all the necessary 

details of the image so that a separate residual signal must 

be encoded to make up for the failure of the model. In this 

work, we attempt to use a component based model that 

can be iteratively applied to reduce the amount of the 

residual that needs to be encoded.  

 

We first establish a generalized fractal-like image 

model (GI) with iterative and parameterisable features, 

where the reconstructed image approximates the original 

image progressively over iterations.   

 

The design of encoding scheme is described as 

follows: 

 

Encoder: 

1. Generate a codebook of image vectors that will 

be used to reconstruct image. C= {c0, c1,…, cn-1}. 

 

2. Create an initial reconstructed black image Ri, 

and set iteration counter i=0. 

 

3. Generate a difference image Ei from the 

reconstructed image Ri in previous iteration and 

original image I. Difference image Ei is defined 

as 
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where T is predetermined threshold.  

4. Determine boundary rectangles of areas, or 

domains D= {d0, d1,…, dn-1} in difference image 

with quad-tree split techniques. 

 

5. Map each domain di with affined transformed 

codeword Wj(Ck).  

 

6. Create a reconstructed image Ri+1 with a set of 

inverse affine transformations, 
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7. Calculate PSNR of reconstructed image Ri+1, if 

PSNR is higher than reconstructed image Ri in 

previous iteration , then encode current affine 

transformations W, and go back to step 3 with 

increment of iteration counter i by 1 .Otherwise, 

stops. 

 

Decoder: 

1. Create an initial reconstructed black image Ri, 

and set iteration counter i=0. 

 

2. For each domain Di, map each inverse affine 

transformation 1−

jW  to reconstructed domain 

R(Dj) and paste each reconstructed domain back 

to Ri, by  which the  new reconstructed image 

Ri+1 is created. The process continues repeatedly 

until iteration counter, i, reaches the same value 

of iteration counter in encoding. 

 

In this work, we developed a vector space partitioning 

method to generate the codebook, where the number of 

codewords is pre-determined. Our space partitioning is 

applied on a space consisting of vectors of pixels or 

codewords. We iteratively split the space into smaller 

spaces along the dimension of highest variance. 

 

The algorithm of our space partitioning is described as 

follows. 

 

1. Begin with a set of spaces, D = {d1, d2, d3.. , dm} . 

Initially, only one space E is in the set, which 

contains all the training vectors x in space E and 

number of spaces, m =1. 

 

2. For each  space d in set D, find the space di, 

which has the largest variance R(di) at 

dimension l among all the sub-spaces in the set 

D.  

 

3. Split the space di into two subspaces dj and dk, 

based on the median value among all vectors in 

space di at dimension, l. If pixel value of input 

vector at specified dimension l is less than or 

equal to the median, then current vector is 

placed into first partitioned space dj. Otherwise, 

current vector is placed into second partitioned 

space dk. 

 

4. Remove di from the set D and add two split 

spaces dj and dk to the set D. increment number 

of spaces m by 1. 

 

5. If number of spaces m in set D is greater than 

the desired number of codewords, stop, else, go 

to step 2. 

 

6. Calculate the centroid x  in every space di of set 

D as a codeword. 

 

Fractal compression suffers from long encoding time. 

In our proposed encoding algorithm, we have organised 

the codebook into a binary tree structure to perform a 

quick search for each given domain block. The common 

sequential search in fractal compression has been replaced 

by the binary search within a small codebook, which runs 

in logarithmic time. Thus, the sum of all search times, is 

O(KNLog(C)),where K, N and C are  number of 

iterations, domains found in each iteration and codewords 

respectively. Similar to fractal compression, proposed 

algorithms allow fast decoding simply by mapping each 

inverse affine transformed domain back to previous 

reconstructed image over iterations. 

 

To improve the quality of image, two types of product 

codes, the mean removed product code, and the mean-

gain removed product code are utilised with proposed 

image model [5]. The algorithm of the proposed image 

coding with product code is actually very similar to the 

no-product code one (GI) except for the following 

differences. 

 

In the case where mean removed product code is used 

(MPCI), the mean of each domain di is removed to match 

against each mean-removed codeword. If we define a 

domain as a k-dimensional input vector D = {d1, d2,… 

dk}, we compute the vector md, and shape sd, as 
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While in the case where the mean-gain removed 

product code is used (MGPCI), the mean md, and the gain 

σd of each domain are successively removed to match 

against each mean-gain removed codeword. Note the 

shape domain sd has zero mean and unit gain. 

1
11

1

D
k

d
k

m
k

i

id == ∑
=

 where 1 = { 1, 1, …, 1}T 

∑
=

−=

k

i

did md
1

22 )(σ
 

d

di
d

md
s

σ

1−
=

   Equation 3 

 
 bird house Lenna peppers 

 BPPPSNR BPP PSNR BPP PSNR BPP PSNR

GI 1.28 31.89 1.50 29.91 1.84 26.45 1.91 24.39 

MPCI 1.66 35.61 2.02 33.47 2.59 29.03 2.80 27.19 

MGPCI2.53 33.94 2.98 32.17 3.58 29.24 3.76 26.64 

Table 1. Iterative-Parametric Image Coding Performance 

Table 1 presents experimental results of 256x256 grey 

scale test images, which are encoded with three types of 

proposed iterative algorithms in terms of compression 

rate, bpp and image quality, PSNR. Typical fractal-like 

image compression methods can achieve compression 

ratio between 4:1 to 25:1 for grey scale images and 8:1 to 

50:1 for colour images. The bit rates in bpp listed in table 

1 are high since we are storing uncompressed codebook in 

the compressed file. 
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The effect of varying the number of codewords upon 

the PSNR of a reconstructed image, lenna, as shown in 

figure 1(each individual PSNR-bpp point in figure 1 is 

obtained by incrementing codebook size by 32 each step, 

from 64 to 256, given fixed codeword size 4x4 and 

threshold 8) illustrates two points. The first, is that 

utilization of product codes can achieve higher image 

quality than no-product code one at the cost of lower 

compression rate. The second point, is that increasing the 

number of codewords beyond a certain point, yields little 

improvement in the PSNR of reconstructed image, which 

can be seen in figure 1 that slopes of curves decrease. 

 

One of the key factors which limit the performance of 

iterative algorithms is the number of parameters which 

characterise each domain. In GI, four parameters, the x, y 

locations, scaling factor s, and codeword index i are 

required to characterise a domain. If each input vector in 

VQ is treated as a not scaled, pre-ordered domain, there is 

only one parameter associated with each domain. 

However, in motion compensated video compression, the 

benefits of encoding less parameter in VQ based coding 

in comparison to iterative-parametric coding do not exist 

any more since the two extra parameters, x, y coordinates 

must be associated with each vector and encoded. 
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Figure 1.  The effect of varying codebook size upon 

PSNR for the “Lenna” 

3 PROPOSED IMAGE MODELS IN INTER-

FRAME CODING 

Our video coder implementation based on the image 

model proposed in section 2 overcomes the shortcoming 

of transmitting entire uncompensated blocks in MC 

compression.  Similarly to other fractal-like inter-frame 

compression techniques [6, 7], we segment the frame 

difference between the current frame and previously 

reconstructed frame into the background where the 

prediction is successful and a foreground where the 

prediction failed. As the background is already known to 

the decoder, only the foreground is encoded using the 

iterative and parameterised intra frame coding discussed 

in section 2. 

 

Encoding Process 

1. Begin with an initial reconstructed frame Ri (i = 

0) with each pixel value at zero. 

 

2. For each frame Ii in the image sequences I = {I1, 

I2,…, In }, 

Generate a difference image Di between 

current frame Ii and previous reconstructed 

frame Ri and Di is defined as 
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where T is predetermined threshold. 

 

Encode a set of affine transformations Wi 

from difference image Di with proposed 

iterative-parametric intra frame approach. 

  

Reconstruct a frame Ri+1 with affine 

transformations W. 

 

Decoding Process 

 

1. Begin with an initial reconstructed frame Rm, 

with each pixel value at zero and frame counter, 

m = 0. 

 

2. While the counter m is less than n, the number of 

frames in original sequence  

Reconstruct frame Rm+1 with a set of 

affine transformations Wm, based on 

previous reconstructed image Rm-1. 

Increment frame counter m by 1. 

 

Similarly to the intra frame coding, two types of 

product codes, mean-removed product code (MPCI) and 

mean-gain-removed product code (MGPCI) are utilised in 

inter frame coding. 

 
 GI MPCI MGPCI 

 BPS PSNR BPS PSNR BPS PSNR 

Miss_am 39k 31.41  100k 33.40 148k 34.50 

Salesman 37k 26.88 179k 28.84 228k 29.28 

Carphone 73k 26.26 246k 28.75 351k 29.74 

Container 26k 24.42 114k 26.38 146k 26.71 

Table 2. Iterative-Parametric Video Coding Performance. 

Table 2 gives general information and overall results 

how the respective sequences perform with three type 

iterative proposed algorithms. The video test sequences 

are coded with 256 4x4 codewords with threshold at 8. 

 

The average bps is calculated as:  

Average bps =  

∑ size of compressed frames in bits / duration in seconds   

     Equation 5 

 

Table 2 demonstrates that the performance of product 

code iterative-parametric coding in terms of PSNR is 

much better than no-product code one, GI. On average, 

the visual quality of frames in MPCI is 2dB higher than 

that in GI and in MGPCI, it is 3dB higher than that in GI. 

Similar to image coding, one of the reasons that 

utilisation of product code in proposed iterative-
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parametric video coding is that in no-product code 

algorithm, such as GI, beyond a certain codebook size, 

any further increase in number of codewords has the only 

effect of increasing the bit rate with almost no 

improvement in the PSNR. MPCI and MGPCI can 

improve average PSNR significantly over frames at the 

cost of higher data rates.  

 

The instantaneous data rates of all algorithms for 

video test sequence “Miss America”, are shown in figure 

2. Curves in figure 2 have very similar shapes. The peaks 

in graphs can be explained by a significant movement and 

some blurring. It can be found that data rates in motion 

compensation are higher than others, given same test 

settings. Besides, the variations of bps in motion 

compensation are larger than those encoded with iterative 

algorithms. The MPCI is preferred to others for its low 

data rate, small variation of data rate, and moderate 

average image quality. 
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Figure 2. Instantaneous BPS for “Miss America” 

Sequence.  

The instantaneous bps is calculated as: 

Instant bps = ∑ size of compressed frame in bits per 

second     Equation 6 

 

The effect of varying threshold upon PSNR of 

reconstructed video sequence “Miss America” is shown in 

Figure 3. The curves are plotted by varying threshold (the 

maximum pixel difference) from 8 to 24, with increment 

by 2 each step, given fixed codeword size 4x4, and fixed 

codebook size 256. The RMSE-value threshold in block-

based motion compensation is the square of each 

threshold. 
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Figure 3.  The effect of varying threshold upon the PSNR 

for the encoded sequence of “Miss America”. 

Figure 3 also indicates that proposed iterative-

parametric algorithms are more suitable than motion 

compensation type algorithms due to the higher quality 

encoded sequence in iterative-parametric video coding. 

4 SUMMARY 

In this paper, a novel iterative-parametric image model 

has been proposed, which shares the self-similarity 

feature in fractal image coding but reduces the complexity 

of domain-range mappings with domain-codeword 

mappings over iterations. The proposed image models 

also utilises product code techniques, which improves the 

quality of images. 

 

With the proposed image model and product codes, 

the main deficiency of transmitting uncompensated 

blocks in motion compensated video compression 

diminishes by iteratively fractal-like and parametrically 

encoding the frame difference. After presenting the details 

of the proposed algorithms, the experimental results 

obtained from video sequences are given. The results 

indicate the proposed algorithms achieve lower bit rate 

and less variation of bit rate in comparison to the motion 

compensation technique. In addition, the proposed 

algorithm is simple and easy to implement.  
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