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ABSTRACT10

11

A plankton food web model is analysed using interaction parameter values appropriate to the 12

upper mixed layer of the high latitude oceans. The dynamics of this four-variable system are 13

analysed in terms of the dynamics of much simpler two-variable predator-prey subsystems. 14

Thus, the food web’s robust, periodic, four-dimensional dynamics are explained by means of 15

two-dimensional spirals and limit cycles. These dynamical subsystems are coupled by means 16

of an omnivore that transfers control of the dynamics between the two predator-prey 17

subsystems. The food web may substantially decouple the predator-prey subsystems so that the 18

oscillating phytoplankton/zooplankton blooms exhibit population collapses when bacterial 19

‘breathers’ briefly dominate after growing dramatically from low background levels. This 20

regular bloom/breather behaviour becomes benignly chaotic when the system is mildly forced 21

by the annual cycle of the sun’s irradiance.22
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1

1. INTRODUCTION2

3

Marine plankton ecosystems are being increasingly recognised as a potentially important 4

influence on global climate (Le Quere et al. 2005). Marine plankton ecosystems are an integral 5

component of biogeochemical cycling in the oceans and may have important climate effects 6

due to their ability to draw down carbon dioxide from the atmosphere and store it in the deep 7

ocean (Falkowski et al. 2000) and for their potential to affect cloud formation by producing 8

gases that are eventually transferred to the atmosphere (Charlson et al. 1987). The evaluation 9

of the potential of both of these climatically important processes to affect climate depends 10

critically on understanding the interactions between members of ocean plankton ecosystems, 11

that is, the dynamics of the ecosystem.12

13

Generally, the veracity of plankton ecosystem models is evaluated by numerically integrating 14

the models and determining how well they can reproduce observed variables (Le Quere et al. 15

2005). Typically, ecosystem models are ‘calibrated’ (the values of parameters describing 16

feeding rates, etc are selected from within a measured range) by comparing model outputs with 17

measured data until the best ‘fit’ is obtained. The models are then ‘validated’ by comparing the 18

predictions of the calibrated model with an independent data set. However, a survey of 19

plankton ecosystem models by Arhonditsis and Brett (2004) noted that 95% of plankton 20

ecosystem modelling publications did not report on the model’s performance in reproducing all21

state variables and only 30% quantified the comparison between observed and modelled data. 22

Arhonditsis and Brett observed that about half of modelling papers report that the models were 23

subjected to sensitivity analysis, with a similar proportion validated with independent data. 24
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Complex ecosystem models present special problems for this approach, as they often have 1

more parameters than can be constrained by data (Matear 1995). 2

3

The application of plankton ecosystem models in climate modelling has placed additional 4

demands on modellers to develop ever more complex models. (Here we use ‘complex’ to 5

explicitly mean ‘large and complicated’, rather than in the context of ‘complex systems 6

science’ where it is often interpreted to mean irreducible.) Ecosystem models are commonly 7

expressed mathematically as coupled ordinary differential equations (odes) and are often 8

written in a single ‘currency’, for example in terms of a limiting nutrient such as atomic 9

nitrogen. However, the demands of climate modelling for resolution of the fate of climatically-10

important gases such as carbon dioxide and dimethyl sulphide in seawater means that these 11

models must also include currencies of carbon and sulphur (Cropp et al. 2004). Similarly, there 12

is increasing evidence that the utilisation of available nitrogen may be limited by the 13

availability of iron, suggesting that iron may also need to be included. If bacterial processes are 14

important, then more than one form of nitrogen may need to be included. The resolution of 15

important processes such as the sinking and export to the deep ocean may require plankton 16

functional types to be included (and consequently even more nutrients explicitly represented), 17

as biogeochemical cycling in marine systems appears closely coupled to particular plankton 18

groups (Anderson 2005). Complex plankton ecosystem models may therefore include 70 state 19

variables (Baretta et al. 1995, Lancelot et al. 2000, Arhonditsis & Brett 2004).20

21

Mathematical analysis of the dynamics of complex ecosystem models becomes especially 22

difficult when there are three or more state variables and numerical methods must often be 23

employed. Sophisticated numerical integrators are now available that can approximate the 24

dynamics and long-term states of complex ode models; however, vagaries in the 25
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implementation of numerical solvers can lead to different results for the same model 1

implementation (Seppelt & Richter 2005), emphasising the importance of more qualitative 2

assessments of ecosystem models. Sensitivity and uncertainty analysis can provide some 3

increased level of confidence in model results by evaluating the sensitivity of the results to 4

variations in the input parameter values. However, sensitivity analysis techniques require many 5

model evaluations, and the computational expense of a global sensitivity analysis of a complex 6

ecosystem model can be prohibitive.7

8

There is a rich literature attesting to the sensitivity of the dynamics of ode models of 9

ecosystems to small variations in parameter values when, for example, steady states may 10

become oscillatory (Edwards & Brindley 1999). This sensitivity to small parameter variations 11

is especially important for ecosystem models that are coupled to global climate models (Earth 12

System Models) to incorporate ocean biogeochemistry into global climate predictions. The 13

warming of the oceans associated with climate change can affect the parameters of plankton 14

ecosystems in many ways. When simulating ecosystem responses to climate change then, the 15

fact that the models can reproduce current states is no guarantee that the models will correctly 16

predict future climates – the susceptibility of the dynamics of model ecosystems to parameter 17

variations is well-known, and minor parameter changes can lead to significant changes in 18

dynamical behaviours (Kuznetsov & Rinaldi 1996).19

20

An analytic explication of the factors driving the ecosystem model dynamics can therefore 21

provide a valuable adjunct to numerical techniques. However, nonlinear dynamical systems 22

theory is mostly established for ode models with only two state variables; few theorems extend 23

to three or more variables. An early but often overlooked example of the application of 24

nonlinear dynamical systems theory to ecosystem models is the work of Kolmogorov (1936) in 25
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which he developed conditions that ensure that a particular class of two-dimensional predator-1

prey models, that have come to be called “Kolmogorov systems”, have either a stable 2

equilibrium or a stable limit cycle. May (1973) discussed the ecological interpretation of 3

Kolmogorov’s theorem, that oscillations in ecosystems either constantly repeat periodically or 4

die out to a stable equilibrium, and noted that it applied to many ecological models then in use. 5

Kolmogorov systems have attracted substantial mathematical interest as they include many 6

types of predator-prey models (Huang & Zhu 2005), but they have been largely ignored by 7

ecologists (Holling 1973). 8

An important issue in ecology is to understand the dynamics of complex trophic systems as a 9

result of the direct interactions between pairs of species. Predator-prey interactions (or, more 10

generally, the interactions between consumers and their resources) are the defining modules in 11

aquatic food webs but it is an open question whether analyses of small subsets of species can 12

provide insights that are relevant to larger communities and ecosystems. In this paper, we 13

explore the insights into the factors controlling the dynamics of complex ecosystems that may 14

be gained by breaking a complex ecosystem model down into its constituent smaller food-web 15

models. Neutel et al. (2002, 2007) used an analogous approach to categorise the properties of 16

real soil micro-organism food-webs, but their subsystems were not self-sustaining. In contrast, 17

we consider only subsystems that are self-sustaining, that is each subsystem we consider could 18

survive as an autonomous unit in the absence of the other organisms in the full food web.19

20

We examine a moderate complexity marine plankton ecosystem model based on one developed 21

by Moloney et al. (1986) that we have calibrated with parameter values demonstrated to be 22

valid for simulating plankton dynamics in the Barents Sea (Gabric et al. 1999). This model is 23

based on commonly used functional relationships between bacteria (B), zooflagellates (F), 24
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phytoplankton (P) and zooplankton (Z), and includes a limiting nutrient (N). The key features 1

of this model are that it is a ‘Kolmogorov system’ and that it conserves mass. 2

3

Many contemporary ecosystem models (Spitz et al. 2001, Franks 2002, Vallina et al. 2008)4

may be classed as Kolmogorov systems, as they are of the general form:5


ui  fi u1,u2 ,K ,un ui , i  1,2,K ,n , (1)6

where 

u 

du

dt
for t  0 , and the functions fi are bounded and continuously differentiable in 7

their variables u1,u2 ,K ,un . We make the distinction here between a Kolomogorov system, 8

which is any system that may be written in the form of (1), and Kolmogorov conditions, which 9

describe the conditions on a Kolmogorov system that ensure ecologically realistic dynamics 10

(Kolmogorov 1936). We observe, as did May (1973), that Kolmogorov’s conditions may be 11

relaxed whilst still ensuring reasonable dynamics.12

13

The fi in equation (1) describe the net growth and mortality of each species, functional type, 14

guild or trophic level, that is fi  growth  predation  mortality i , and are often nonlinear 15

functions of u1,u2 ,K ,un . There are many options for the fi but in accordance with 16

Kolmogorov’s (1936) criteria for ecologically realistic dynamics, we choose simple 17

ecologically realistic functions such that the autotrophs are the only variables that can grow at 18

low population concentrations (i.e. fa 0,0  0 and fp 0,0  0 ) where a denotes autotrophs 19

and p denotes predators and all other non-autotrophs. Further, increasing population density 20

while maintaining constant ratios of the predators and prey has different effects for predators 21

and prey. The prey is less able to thrive while the predator is more able to thrive as populations 22

increase. In mathematical parlance this is described as u fa  0  u fp (May 1973). 23
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Ecological realism may also be seen with relation to the fa  0 and fp  0 isoclines (for 1

example, Figure 1). Here, we want the fp isocline to intersect the fa isocline only once, and to 2

intersect in the manner of the diagram, where for positive  , ,  we have that fa ,0  0 , 3

fa 0,  0 and fp  ,0  0 imply    as per Rescigno and Richardson (1967) and May 4

(1973). Note the different scales of intersections in the first two diagrams of the upper panel 5

compared to that of the third: this reflects the different scale of the B processes.6

7

Conservation of mass, or ‘closure’, depends on there being a currency in terms of which we 8

can measure the concentrations of both the predator and the prey. Here we call this nutrient, 9

and closure means that the total amount of nutrient in the system (the sum of both inorganic 10

and organic forms) remains constant for all time in spite of the complicated interactions 11

between biota. Such conservation of mass is explicit in many models of plankton dynamics 12

(Franks 2002, Gibson et al. 2005), and we also observe that some models that do not explicitly 13

conserve mass fit observed data best when the nutrient uptake and loss fluxes approximately 14

balance (Spitz et al. 2001). Conservation of mass within the mixed layer is also a commonly 15

observed property of marine planktonic ecosystems, that typically cycle nutrient very tightly 16

within the mixed layer of the ocean, and is referred to as regenerated production (Dugdale & 17

Goering 1967). Pragmatically, enforcing conservation of mass in an ecosystem model that is 18

not a Kolmogorov system can in many cases allow it to be written as a Kolmogorov system, 19

allowing the extension of this approach to many other models for the special case where 20

nutrient inputs equal nutrient losses.21

22

Mathematically, conservation of mass means that, when the scaled variables u1,u2 ,K ,un are 23

expressed in terms of the nutrient (N) that the variables either feed on or decay into, the total 24
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amount of nutrient is conserved and does not change with time; that is 1

u1  u2 K  un  N  NT . This provides a further equation to our Kolmogorov system; 2

although this final equation is not in Kolmogorov form, it is technically redundant as it may be 3

derived directly from the closure of mass condition:4

N  NT  u1  u2 K  un  &N  &u1  &u2 K  &un . (2)5

For a suitably scaled model where the total mass is one unit, the amount of inorganic nutrient 6

(N) present at any time is given by N  1 u1  u2 K  un ; when  N  0 on N  0 for up  07

this condition defines an ecologically feasible ‘state space’ where 0  u1,u2 ,K ,un  1 and 8

u1  u2 K  un  1 N  0 . The dynamics of the system are then confined to the part of a 9

multi-dimensional Cartesian co-ordinate space where each axis represents the (suitably scaled) 10

concentration of the predator or prey and all the variables are positive and less than one. The 11

condition ui  1
i1

n

 provides a tighter ‘lid’ on the dynamics. As described by May (1973), such 12

Kolmogorov systems are realistic descriptions of basic ecological models in that populations 13

oscillate for ever or their oscillations gradually decay to come to a stable equilibrium.14

15

We shall consider a complex food-web system that involves the interconnection of two 16

archetypal predator-prey subsystems, each of which is a Kolmogorov system. The predator-17

prey subsystems are linked by the omnivorous properties of one of the autotrophs. We observe 18

that our moderate-complexity food web has a very robust stable limit cycle with successive 19

blooms of the biota. The limit cycle is comprised of decaying oscillations (‘blooms’) of one 20

predator-prey interaction interspersed with occasional outbreaks, that we call ‘breathers’, of 21

bacteria that are rapidly controlled by their predator. The most interesting aspect of our model, 22

however, is that it demonstrates that the dynamical behaviours of certain realistic complex 23
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models can be inferred from the dynamical behaviours of the predator-prey subsystems that 1

comprise them.2

3

2. THE PLANKTON MODEL4

5

We consider, as an explicit example, a model based on the plankton ecosystem model 6

developed by Moloney et al. (1986). This four-dimensional closed Kolmogorov system was 7

developed from consideration of the allometry of plankton, and has been applied in studies to 8

simulate the response of marine ecosystems to climate change and to model their potential to 9

mitigate the extent of global warming (Gabric et al. 2003). The version of the model we 10

consider has four trophic groups; bacteria (B), zooflagellates (F), phytoplankton (P) and 11

zooplankton (Z) and is written in a currency of the limiting nutrient nitrogen (N). The model, 12

which we shall refer to as the BFNPZ model, is comprised of four equations that define the 13

concentration of nutrient contained in each of the biota at any time. The populations of the 14

biota are therefore described in terms of the atomic nitrogen that they contain, rather than 15

numbers of individuals or biomass.16

17

Each of the model equations is composed of terms that represent each organisms’ growth, from 18

consuming inorganic nutrient or other organisms; losses to grazing by their predators; and 19

mortality, including both senescence and losses to predation by higher predators that are only 20

implicitly represented in the model (i.e. are not represented by an equation explicitly describing 21

how their population varies over time). These processes are represented in the model using 22

functional forms commonly utilised in ecosystem models: Michalis-Menten (also called 23

Holling type II) terms for substrate-limited processes such as nutrient uptake or grazing, Lotka-24

Volterra terms for some grazing functions, and linear mortality terms. The isoclines of these 25
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functions are shown in Figure 1. We note that there exists a rich literature describing the 1

dependence of ecosystem model dynamics upon the forms of these terms. However, our 2

predator-prey subsystems contribute all the ecologically-realistic dynamics possible in 3

predator-prey systems, that is both stable spiral equilibrium points and stable limit cycles. We 4

could use other formulations to build our predator-prey subsystems, but this would not 5

contribute predator-prey subsystems with qualitatively different dynamics. Therefore, our 6

specific example reveals some quite general properties7

8

The four equations of the BFNPZ model are:9

dB

dt
 fBB 

k1 1 k11 P
P  k2


k25 1 k11 N

N  k26


k8F

B  k9

 k10









B , (3)10

dF

dt
 fFF 

k8 1 k14 B
B  k9

 k13









F , (4)11

dP

dt
 fPP 

k23N

N  k24


k1B

P  k2

 k4Z








P , (5)12

dZ

dt
 fZ Z  k4 1 k20 P  k19 Z . (6)13

The closure of mass condition provides an extra model equation describing the concentration 14

of inorganic nutrient:15

dN

dt
 k10B  k11 k25

N

N  k26







B  k1

P

P  k2







B








  k13F  k8k14

B

B  k9







F

k19Z  k4k20PZ  k23

N

N  k24







P  k25

N

N  k26







B

. (7)16
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As noted above, this equation (7) is not Kolmogorov form but is technically redundant as it 1

may be derived directly from the closure of mass condition:2

N  NT  B  F  P  Z 
dN

dt
 

dB

dt


dF

dt


dP

dt


dZ

dt
, (8)3

where NT is the total amount of nutrient contained in the system. Note that we could eliminate 4

N from equations (3) - (6) by replacing it with NT  B  F  P  Z , however, we will retain N5

in the notation for simplicity. Then equations (3)-(6) are four equations in the four variables 6

BFPZ of Kolmogorov form, with 0  B  F  P  Z  1 when 0  B,F,P, Z  1 for all time.7

8

Equations (3) - (6) contain 16 parameters, values for which are based on field measurements 9

that have been validated by simulating plankton dynamics in the Barents Sea (Gabric et al. 10

1999). The model is non-dimensionalised for our analysis; we used the maximum 11

phytoplankton growth rate k23 to define a characteristic time scale and define a total nutrient 12

NT  50 to convert concentrations to proportions of the total. The measured parameter values 13

are then replaced by their scaled equivalents:14

km
' 

km

k23

for m  1,8,10,13,19,23 and 25, (9)15

km
' 

km

NT

for m  2,9,24 and 26, (10)16

k4
' 

k4 NT

k23

, (11)17

km
'  km for m  11,14 and 20. (12)18
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The measured parameter values and their non-dimensional equivalents are given in Table 1. 1

The general constraints on valid parameter values for the model are that km  0  m with the 2

slightly more restrictive constraint for the assimilation efficiency parameters that 0  km  13

for m  11, 14 and 20 . The model is therefore a Kolmogorov system, in that it may be written 4

in the form 

ui  fi u1,u2 ,K ,un ui , i  1,2,K ,n , and also meets Kolmogorov’s criteria for 5

ecologically realistic dynamics of the BFN and NPZ predator-prey subsystems when 6

parameterised as above.7

8

3. REDUCTION TO SUBSYSTEMS9

10

The food web described by equations (3) - (6) is depicted in Figure 2 (top centre) with the 11

autonomous food (sub-) webs that comprise it (Figure 2 centre and bottom rows). These 12

subsystems may be obtained from the BFNPZ model by setting various state variables 13

identically to zero in equations (3) - (6). The BFNPZ system, in that it is composed of the 14

merged BFNP and BNPZ subsystems. The BFNP subsystem is in turn comprised of BFN and 15

BNP subsystems, while the BNPZ subsystem is in turn comprised of BPN and NPZ16

subsystems. Diagrams of the trivial autotroph-nutrient systems BN and NP are not shown 17

separately but are included in the two-variable subsystems. We similarly do not discuss the 18

degenerate food webs (the BNZ, FNP and FNZ subsystems) that are technically possible but 19

cannot survive in nature, and begin our considerations at the level of the three ‘active’ 20

subsystems BFN, BNP and NPZ. We note that the autotrophs B and P are the ‘drivers’ of the 21

ecosystem dynamics while the predators F and Z are ‘passive’ in that their oscillations and 22

general dynamical behaviour follow that of their prey. Our claim will be that understanding the 23

critical points, and their eigenvalues and eigenvectors, of these subsystems gives us significant 24
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insight into the behaviour of the full system. In contrast, we require only of the fully interior 1

point of the full system that it be unstable (which it is for measured parameter values).2

3

We present vector fields and long-term system trajectories for the BFNPZ model and 4

subsystems in Figure 3. This figure demonstrates two important properties of the model:5

 that the dynamics of the models are mostly confined to near the boundaries 6

(vertices, edges and faces) of the state spaces, and7

 and that the dynamics of each model can be inferred from the dynamics of its 8

subsystems.9

We reiterate that the BFN and NPZ models display the full spectrum of behaviours defined by 10

Kolmogorov (1936) as possible for realistic predator-prey models: a stable limit cycle (BFN) 11

and a stable spiral (NPZ). While we might explore different process representations in the 12

models and generate different dynamics, the BFNPZ model contains all the dynamics that can 13

realistically exist in ecosystem models under Kolmogorov’s criteria. Although the vector fields 14

in Figure 3 are specific to the BFNPZ model and its sub-models, and to the parameter values 15

used in these models, the dynamics exhibited are general in that the orientation of the arrows of 16

the vector fields in the regions of the spiral critical points is related to, and follows from, the 17

Kolmogorov conditions that encapsulate much intuitive ecological thinking on appropriate 18

predator-prey interaction behaviour. We would therefore expect similar behaviours to be 19

exhibited by the models under parameter variations that maintained the validity of the 20

Kolmogorov conditions, and the interaction omnivore behaviour, and kept the geometry of the 21

fields similar to that shown. Note that the dynamics associated with the unstable predator-prey 22

saddle point and the two stable autotroph nodes of the coupling (BNP) model, whilst a 23

Kolmogorov system, do not comply with Kolmogorov’s functional form criteria and hence do 24

not exhibit predator-prey dynamics.25
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1

2

4. CRITICAL POINTS3

4

We now examine the critical points of the BFNPZ model and note that these are also critical 5

points of the appropriate subsystems. We will therefore refer to each critical point in bold 6

italics according to the system for which it is an ‘internal’ point, for example the critical point 7

that has B,F, N  0 and P,Z  0 will be denoted as the BFN critical point because it is 8

internal in that system, but a boundary point in the BFNP and BFNPZ systems to which it also 9

belongs. Note that because this nomenclature includes N for convenience, each critical point 10

technically lies in a dimension one less than its name (i.e. the N point is a point of a zero 11

dimension system at the origin of the Kolmogorov system, the BFN point is an interior point 12

of a two-dimensional system, etc). Similarly, we report only the eigenvalues appropriate for the 13

number of Kolmogorov dimensions for each point (i.e. the BFN point will have two 14

eigenvalues in the BFN subsystem, but four in the full BFNPZ system).15

16

We observe the heuristic that the fi  0 of each ‘feasible’ subsystem (that is, not subsystems 17

such as the BNZ, FNZ, FNP, BFNZ or FNPZ systems that cannot survive in nature) contribute 18

a unique expression that identifies an interior point. This expression may have one or several 19

roots, implying that the point may have simultaneously multiple locations in the state space. 20

Often only one of these possibilities lies within the ecologically feasible region of the state 21

space while the others lie outside. This is the case for all the critical points in our model system 22

with the exception of the BNPZ point, which for the parameter set used, has only one root and 23

this root lies outside the ecologically feasible state space. This point is described in the 24

appendix but is not considered in the analysis as it does not influence the dynamics.25
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1

Analytic expressions for the critical points and their associated eigenvalues (where available) 2

are listed in the appendix with their numerical values calculated from the analytic expressions 3

for the parameter set in Table 1, or derived numerically if analytic expressions for the 4

eigenvalues are not available. The analytic expressions for the critical points and their 5

eigenvalues (where available) reveal the dependency on key parameters. A summary of the 6

critical point locations and their eigenvalues is given in Table 2.7

8

Table 2 reveals several striking features attesting to the consistency of the system with its 9

subsystems:10

(i) the critical points are consistent in each system, in that each system contains an 11

internal critical point plus all the critical points of its subsystems12

(ii) the eigenvalues (and hence the eigenvectors) of each critical point are the same in 13

each system, that is knowledge of an eigenvalue of a point in a simple system 14

allows that eigenvalue to be inferred for that point of the full system15

(iii) the addition of extra species (dimensions) to a subsystem adds an eigenvalue to 16

existing critical points that may be inferred from a simpler system, and adds a 17

further internal critical point that may be similar to a subsystem critical point, but 18

for which no information can be inferred a priori from the simpler systems19

(iv) the eigenvalues of nearby critical points are similar, that is, the vector fields near 20

the critical points are smooth.21

We observe that features (iii) and (iv) together result in the complex eigenvalues of the BFN22

and NPZ predator-prey systems dominating as extra biota are added to form the higher 23

dimension systems.24

25
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1

5. DYNAMICS2

3

The consistencies of the critical points of the BFNPZ system and its subsystems leads to 4

consistencies in the dynamical behaviours of the BFNPZ system and its subsystems (Figure 3). 5

The BFN subsystem in Figure 3 (bottom left) exhibits a stable limit cycle, one of the two 6

behaviours permitted under Kolmogorov’s conditions. This subsystem includes the N saddle 7

point at the origin, the BN autotroph point (a saddle in this subsystem) and the unstable spiral 8

BFN predator-prey point (labelling as per Table 2). Note that the N and BFN critical points are 9

located very near each other in the state space. In this case the unstable predator-prey critical 10

point near the origin forces the orbits onto the stable limit cycle, the shape of which is 11

determined by the eigenvectors of the other two critical points on the boundaries. The resultant 12

dynamics are the coexisting populations cycling forever.13

14

The NPZ subsystem (Figure 3, bottom right) demonstrates a (spirally) stable critical point, the 15

alternative behaviour permitted under Kolmogorov’s conditions. Again this subsystem includes 16

the N saddle point at the origin, the NP autotroph point (a saddle in this subsystem), and the 17

stable spiral NPZ predator-prey point. This stable spiral point dominates the dynamics in the 18

internal space of this subsystem, while the critical points on the boundaries direct the dynamics 19

into the spiral. This behaviour is that of two species approaching an equilibrium (somewhat 20

slowly in this case) by repeated, but decaying, oscillations.21

22

The BNP subsystem (Figure 3 bottom centre) is not consistent with the Kolmogorov criteria (it 23

remains however a Kolmogorov system) as the co-existence internal predator-prey point is not 24

stable and the system must end up at one of the two stable autotroph points. This interesting 25
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dynamic situation is due to B acting in this subsystem as an omnivore, that is, simultaneously 1

both an autotroph feeding on N and a predator feeding on P. This system includes the N saddle 2

point at the origin, the BN autotroph point, the NP autotroph point and a BNP predator-prey 3

point. In this subsystem, the NP and BNP critical points are nearby. The interior BNP4

predator-prey point is a saddle and the two autotroph points (BN and NP) are both 5

asymptotically stable. The dynamics of the system are therefore that either B or P dominates 6

the system. The separating surface that determines whether B or P dominates the subsystem 7

will be discussed below.8

9

The dynamics of the BFNP subsystem (Figure 3 centre left) may be inferred by combining the 10

dynamics of the BFN and BNP subsystems. This subsystem contains all the critical points (and 11

eigenvalues) of the BFN and BNP subsystems (N, BN, NP, BFN and BNP) plus the further 12

BFNP unstable spiral internal point. The critical points in this subsystem form groups, with the 13

N and BFN points paired, and the NP, BNP and BFNP points forming a triple. The dynamics 14

of the BFNP subsystem include the stable limit cycle dynamics of the BFN subsystem, but 15

these successive B, F blooms are quickly overwhelmed by a P bloom that initiates when the 16

system passes near the origin (the N saddle point) after which the subsystem is attracted along 17

the axis to, and remains at, the stable NP autotroph point. Clearly, the separating surface near 18

the origin that determines whether B or P blooms is critical to these dynamics.19

20

Consideration of the dynamics of the NPZ and BNP subsystems similarly provides insight into 21

the dynamics of the BNPZ subsystem (Figure 3 centre right). This subsystem contains all the 22

critical points of the NPZ and BNP subsystems (N, BN, NP, NPZ and BNP) plus the further 23

BNPZ saddle internal point (actually outside the state space in this example). Again the N and 24

BFN points are paired, as are the NP and BNP points. In this case, the stable spiral of the NPZ25
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subsystem is rendered unstable by the presence of B and instead of remaining at this point, the 1

system is initially attracted to it but is eventually directed away from it to the stable BN2

autotroph point. In contrast to the BFNP subsystem, the dynamics in this subsystem occur 3

along the unstable eigenvector of the NPZ predator-prey point associated with B.4

5

Finally, the dynamics of all the subsystems are evident in the full BFNPZ system (Figure 3 6

top). This system includes all the critical points of all the subsystems, although none of these 7

critical points are now stable. In particular, the autotroph critical points BN and NP that 8

formed the endpoints for the dynamics of the BFNP and BNPZ subsystems are now both 9

unstable because they both now have grazers feeding on them. Mathematically, the fi10

associated with these grazers are positive at these points, and each contributes an unstable11

eigenvector to the system. Therefore, rather than the dynamics starting with BFN dynamics and 12

ending at NP as in the BFNP subsystem, or starting in NPZ dynamics and finishing at BN as in 13

the BNPZ subsystem, the BFNPZ alternates between BFN and NPZ dynamics in a very robust 14

and stable limit cycle. The shape of this limit cycle is tightly controlled by the eigenvectors and 15

separating surfaces of the subsystems, as will be discussed below.16

17

We also note that if we consider instead the reduction of the BFNPZ system to its subsystems, 18

we are confronted with somewhat counter-intuitive impacts of removing some species. For 19

example, if we remove F from the BFNPZ system to give the BNPZ system we effectively 20

initiate the extinction of the P and Z populations, as the BN critical point is now stable. 21

Similarly, if we remove Z from the BFNPZ system to give the BFNP system we effectively 22

initiate the extinction of the B and F populations, as the NP critical point is now stable.23

24
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6. THE SIGNPOSTS1

2

The eigenvectors of the critical points on the boundaries of the state space of the BFNPZ3

system, that is the critical points of the subsystems, provide ‘signposts’ that control the shape 4

of the limit cycle of the system. There are four such signposts; the N, BN, NP and NPZ critical 5

points. We observe that two of these critical points (N and NP) are located at vertices of the 6

state space, one (BN) is located on an edge and one (NPZ) is located on a face, clearly 7

explicating the role that the subsystems play in determining the full system dynamics. These 8

roles are revealed by the vector fields of the BFNPZ system in the vicinities of these points 9

(Figures 4 – 7); this will be further discussed below.10

11

We also note that the one fully internal point of the system (the BFNPZ point) is important to 12

the dynamics in a different context, in that it (somewhat weakly) repels the system from the 13

interior of the state space so that the vector fields on the boundaries determine the dynamics. 14

Further, the BFN critical point associated with the BFN subsystem also plays a subtle role on a 15

face of the state space by similarly repelling trajectories and forcing the system to pass very 16

close to the N critical point.17

18

The vector field at the origin of the state space (Figure 4) shows that trajectories will be 19

attracted to the origin (the N critical point) and then repelled out along the unstable 20

eigenvectors that lie along the B and P axes. (Note that the eigenvectors lie along the axes of 21

the Kolmogorov state space but are shown in the non-Kolmogorov BNP state space.) The 22

eigenvector along the P axis has an eigenvalue about 5 times that of the eigenvector along the 23

B axis, indicating that P will grow faster than B in the region of the origin. Note also that the 24
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BFN critical point has a repelling eigenvector, arising from the P competition, pointing into 1

the state space pushing trajectories towards the eigenvector along the P axis.2

3

The vector field along the P axis from the origin maintains trajectories along the axis until this 4

eigenvector joins the corresponding attracting eigenvector, also lying along the P axis, at the 5

NP critical point (Figure 5). This is the largest eigenvalue of the 32 eigenvalues of the entire 6

system and is over double the magnitude of the next largest. This is therefore a very influential 7

point in determining the dynamics of the system. The stable eigenvectors of this point all lie 8

along axes of the Kolmogorov state space (the B, F and P axes). The unstable eigenvector 9

points inwards onto the PZ plane towards the NPZ critical point.10

11

The imaginary eigenvectors of the spiral NPZ critical point (Figure 6) attract the trajectory 12

from the NP critical point while the repelling eigenvectors of the BFNPZ critical point and the 13

attracting real eigenvector of the NPZ critical point force the trajectory onto the PZ plane. The 14

trajectory only leaves this plane when it is pushed out along the unstable real eigenvector of the 15

NPZ critical point. This eigenvector arises from the B predation on P, and directs the system 16

through the interior of the state space towards the BN critical point. This is the only time the 17

limit cycle of BFNPZ system passes through the interior of the Kolmogorov state space.18

19

The trajectory of the system is rapidly attracted across the state space by the large negative 20

eigenvalues of the BN critical point and then directed across the BF plane to the F axis by the 21

large positive eigenvector pointing in that direction. This eigenvector does not point to a 22

critical point, but the trajectories of the system are ‘gathered’ by the F axis and the vector field 23

indicates they are then directed along the F axis back to the origin where the cycle starts again.24
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The importance and subtlety of the origin in determining the dynamics of the full system, in 1

particular whether B or P blooms is revealed in the next section.2

3

4

7. SEPARATING SURFACE AT N CRITICAL POINT5

6

The vector field of the BNP subsystem (Figure 8, main panel) reveals the general nature of this 7

‘coupling’ subsystem that links the BFN and NPZ subsystems. The sample trajectories shown 8

by the solid lines in Figure 8 reveal the influence of the strong negative eigenvalues of the 9

BNP critical point in drawing the trajectories to near the boundary of the state space where P10

dominates the system. The separatrix (dashed line), which separates trajectories that end up at 11

the BN critical point from those that end up at the NP critical point, suggests that most 12

trajectories of the system will end up at the BN critical point. In fact, for almost all cases (in 13

fact for 99% of the state space), B will eventually out-compete P and dominate the long-term 14

state of the system. This figure implies that most initial conditions will result in a B bloom 15

rather than a P bloom. However, the robust limit cycle we observe for the system, in which P16

consistently blooms at the N critical point, and B consistently blooms only at the NPZ critical 17

point suggests that there is more to this story than is revealed by the main panel of Figure 8.18

19

The region near the origin of Figure 8 is expanded in the inset, which also shows the separating 20

surface (dashed line) that divides the region of the state space where the system will go to the 21

BN critical point from the region that will go to the NP critical point. We observe that the fates 22

of trajectories that pass near the origin of this state space are very different from those that do 23

not, because the separatrix near the origin asymptotes to the B axis in the vicinity of 24

B  0.006 . This reveals that for all concentrations of B lower than this level P will inevitably 25
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dominate the system and bloom. The ‘signature’ dynamics of the system, with robustly 1

alternating P blooms and B breathers, is therefore critically dependant on the dynamics that 2

occur in the very small region of the state space close to the origin. The separating surface near 3

the N critical point therefore provides a useful insight into the scale of the interactions that are 4

important in understanding the dynamics of this system.5

6

7

8. BLOOMS AND BREATHERS8

9

We now examine an interesting characteristic that arises from the coupling of the BFN system 10

and the NPZ system. We will use the term ”bloom” to describe the usual dynamics of P rapidly 11

increasing from small levels to dominate the system, and introduce the term “breather” to 12

describe the B outbreaks. This term has been associated with phenomena that emerge from 13

exponentially small states to briefly dominate the system in partial differential equation 14

models. The blooms of B that occur in the BFNPZ system for our measured parameter set can 15

be described as breathers as they typically arise from extremely low concentrations. An 16

interesting property of breathers is that they are effectively undetectable at almost all times; in 17

a real ecosystem they would exist at levels that were unmeasurable or of the order of the 18

measurement error. If the breather populations could be detected at times other than during an 19

outbreak, their populations would be observed to be changing very slowly, and an outbreak 20

could not be predicted from sparse knowledge of their changes in population over time.21

22

To emphasise the bloom and breather dynamics, we now essentially decouple the dynamics of 23

the BFN subsystem from those of the NPZ subsystem by calibrating the BFNPZ system with P24

parameter values that are typical of those used to fit P dynamics to Southern Ocean satellite 25
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chlorophyll dynamics (Gabric et al. 2003). These parameter values result in an NPZ system 1

that is highly resilient (i.e. attracts to its NPZ spiral point very rapidly) and remains there for a 2

long time before B blooms. We then force this system with a sinusoidal cycle that emulates the 3

annual cycle of irradiance in the high latitudes of the Southern Ocean where phytoplankton 4

dynamics are closely related to the annual cycle of irradiance.5

6

The resulting dynamics of the periodically forced system (Figure 9) reveal the presence of B7

and F breathers every 9 – 13 years, interrupting the P and Z blooms that occur annually. The 8

system now exhibits somewhat benign chaos, where the timing and amplitude of the P, Z9

blooms are mostly regular and predictable, but the B, F breathers are irregular and effectively 10

unpredictable.11

12

An important implication for the capacity of systems such as the BFNPZ system to generate 13

breathers is a fundamental difference between numerical solvers for ordinary (ode) and partial 14

(pde) differential equations. While robust numerical solvers are available that can accurately 15

solve ode systems and resolve extremely small population sizes, the same cannot be said of 16

numerical solvers for pde systems. The constraints imposed by the requirements of resolving 17

spatial variation in the pde solvers make it difficult to resolve species concentrations to better 18

than one part in a million; whereas breathers typically require a resolution of at least one part in 19

a billion. We therefore observe that the endogenous dynamics that we observe in this analysis, 20

and which are an intrinsic property of the system equations, would not necessarily be observed 21

in models that resolve spatial variation. In particular, the breather dynamics that are evident 22

when populations recover from very low levels would not be reproduced in spatially resolved 23

models by pde solvers.24

25
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9. DISCUSSION1

2

This research has demonstrated the robust periodic dynamics of a moderate complexity 3

plankton ecosystem model. These dynamics are comprised of regular ‘blooms’ of 4

phytoplankton and zooplankton followed by ‘breathers’ of bacteria and zooflagellates that 5

explode from exponentially small levels to briefly dominate the system. We examined the 6

subsystems that comprise this system and noted counterintuitive behaviours. For example, 7

removing the predator (F) of one prey (B) might reasonably be expected to permit the prey 8

population to increase; however, it was not expected that such action would lead to the 9

extinction of a whole related component of the food web (P and Z) leading to the effective 10

collapse of the system. Similarly, removing Z from the system resulted in the dominance of P11

and the extinction of B and F.12

13

The crucial point of the paper, however, is that we can understand the dynamics of the full 14

system, the blooms and breathers, the robustly repeating cycles of the various individuals’ 15

struggle for life, as Rescigno and Richardson (1967) called it, in terms of the key two-variable 16

subsystems. Our results indicate that the behaviour of a complex system can be inferred from 17

the addition of the behaviours of its subsystems.18

19

A key feature of our full dynamical system is that it is Kolmogorov in that each species change 20

in time is proportional to its concentration in the sense that ui  fiui . This property is 21

automatically inherited by the subsystems when certain variables uj  0 . However, we note 22

that we require further properties to achieve our realistic dynamics, that is, we need appropriate 23

shapes or functional forms for the various fi . May (1973) reiterated this point, first made by 24

Kolmogorov (1936), and initiated a tradition of constraining ecosystem models to ‘reasonable’ 25
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functional forms by specifying various derivative conditions, of which we focus on 1

uafa  0  upfp , where a denotes an autotroph and p denotes a predator. Further conditions, 2

which might be specified in terms of isocline intersections (Rescigno & Richardson 1967), are 3

needed so that the key subsystems have only stable spiral attracting points or stable limit 4

cycles, where the populations oscillate eternally. Our BFN and NPZ systems behave in this 5

manner, and we focus on the mass closure property to help render our full system in this 6

category.7

8

It is expected that the instability of the interior critical point of the full system means that the 9

dynamics can never rest in its neighbourhood. What is perhaps a little surprising is that other 10

than this, our robust, stable periodic orbit appears not to be directly influenced by the 11

eigenvalues and eigenvectors of this interior point. Instead, our orbit spends most of its time 12

near vertices, edges and faces of the full system state space; i.e. near the N critical point (the13

origin, N  1), the NP autotroph point ( P  1), the NPZ predator-prey point ( P  P*, Z  Z * ) 14

and the BN autotroph point  ( B  B* ). Physically, this dynamical systems behaviour manifests 15

itself as successive blooms of P and Z interspersed with occasional breathers of B and F. Each 16

population has its turn, even though each regularly decays to levels below 10-6 of the total at 17

some point in its life cycle. However, P and Z dominate the system most of the time.18

19

The addition of an ‘annual’ forcing, analogous to the effects of seasonal changes in irradiance 20

on phytoplankton, to the system adds a benign chaos to the system. Now, rather than appearing 21

at regular intervals, the breathers become unpredictable, appearing every 9 – 13 ‘years’ for our 22

parameter values, chosen to be representative of Southern Ocean values. The precise 23

magnitudes of the various breathers are similarly unpredictable, although the blooms occur 24

with (reasonably) predictable magnitude at regular intervals. The regular bloom and breather 25
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behaviour exhibited by the BFNPZ system exemplifies the resilience ideas of Holling (1973)1

where the instability of interior critical points leads to highly resilient systems that are able to 2

robustly persist.3

4

Finally, we note that the endogenous dynamics of the BFNPZ system that we have observed by 5

integrating the ordinary differential equations describing the biotic interactions will not 6

necessarily be evident when spatial variation is included and the partial differential equations 7

are solved. This is a result of intrinsic differences between ordinary and partial differential 8

equation solvers. We therefore suggest that when complex ecosystem models are coupled to, 9

for example, ocean circulation models, and when the timing and characteristics of bloom 10

events are critical, then particular care is taken to ensure that the numerical schemes correctly 11

handle small population levels.12

13
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1

11. FIGURES AND TABLES2

3

Figure Legends4

5

Figure 1. Isoclines (upper panels) and function surfaces (lower panels) of the BFN (left), BNP6

(middle) and NPZ (right) subsystems. The prey isoclines are shown as solid lines and the 7

predator isoclines as dotted lines in the upper panel.8

9

Figure 2. Food web of the BFNPZ model (top diagram) with the autonomous food webs that 10

may be derived from it: BFNP model (middle left); BNPZ model (middle right); BFN model 11

(bottom left); BNP model (bottom centre) and NPZ model (bottom right).12

13

Figure 3. Vector fields on the faces and dynamics of the BFNPZ (top), BFNP (middle left), 14

BNPZ (middle right), BFN (bottom left), BNP (bottom centre) and NPZ (bottom right) models.15

We have used N as a surrogate for F and Z in the BFNPZ model (top). When the dynamics are 16

in the vicinity of the BN (left vertical) plane N effectively represents F, while when in the 17

vicinity of the PN (right vertical) plane N effectively represents Z. The dynamics on the 18

vertical planes in the top figure are therefore inverted from those of the lower figures.19

20

21

Figure 4. Critical points, vector field and eigenvectors in the vicinity of the N critical point of 22

the BFNPZ system. A part of the BFNPZ system limit cycle is also shown.23

24
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Figure 5. Critical points, vector field and eigenvectors in the vicinity of the P critical point of 1

the BFNPZ system. A part of the BFNPZ system limit cycle is also shown.2

3

Figure 6. Critical points, vector field and eigenvectors in the vicinity of the NPZ critical point 4

of the BFNPZ system. A part of the BFNPZ system limit cycle is also shown.5

6

Figure 7. Critical points, vector field and eigenvectors in the vicinity of the BN critical point of 7

the BFNPZ system. A part of the BFNPZ system limit cycle is also shown.8

9

Figure 8. Critical points, vector field and separating surface in the vicinity of the N, P and BNP10

critical points of the BFNPZ system. The dashed line marks the separating surface between 11

initial conditions that go to the P critical point (below the dotted line) and those that go to the 12

BN critical point (above the dotted line). The solid lines are example trajectories of the system. 13

The region near the origin is blown up in the upper right, lines as for the larger figure.14

15

Figure 9. Blooms and breathers in the BFNPZ system. To create this figure, k13 was reduced to 16

0.05 to increase the time between blooms while k19 and k20 were varied to 0.50 and 0.38 17

respectively to more rapidly dampen the P and Z oscillations. The P maximum growth term 18

was forced with an equivalent annual cycle of irradiance k23
"  k23  0.5sin 0.02t .19

20

21

Tables22

23

24

Table 1: Parameter values used for the BFNPZ model.25
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1

PAR PROCESS UNITS RAW SCALED REFERENCE

k1 Max rate of N uptake by B d-1 0.31 1.148 Muller-Niklas and Herndl (1996)

k2 Half-sat const for B uptake of N mgNm-3 34.65 0.693 Moloney et al. (1986)

k4 Z grazing rate (per ind) on P m3mgN-1d-1 0.01 1.852 Gabric et al. (1999)

k8 Max rate of B uptake by F d-1 1.67 6.185 Hansen et al. (1996)

k9 Half-sat const for F uptake of B mgNm-3 9.10 0.182 Fenchel (1982)

k10 B specific excretion rate d-1 0.07 0.259 Moloney et al. (1986)

k11 Prop of N uptake excreted by B - 0.63 0.63 Moloney et al. (1986)

k13 F specific excretion rate d-1 0.05 0.1851 Moloney et al. (1986)

k14 Prop of N uptake excreted by F - 0.65 0.65 Moloney et al. (1986)

k19 Z specific N excretion rate d-1 0.05 0.1852 Moloney et al. (1986)

k20 Prop of N uptake excreted by Z - 0.40 0.40 Moloney et al. (1986)

k23 Max rate of N uptake by P d-1 0.27 1 Gabric et al. (1999)

k24 Half-sat const for P uptake of N mgNm-3 12.60 0.252 Slagstad and Stole-Hansen (1991)

k25 Max rate of N uptake by B d-1 0.31 1.148 Muller-Niklas and Herndl (1996)

k26 Half-sat const for B uptake of N mgNm-3 3.45 0.069 Billen and Becquevort (1991)

NT Total nutrient as nitrogen mgNm-3 50 1 Gabric et al. (1999)

2

3
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Table 2. Critical point values and associated eigenvalues.

CP SYS B* F* N* P* Z* 1 2 3 4 ST1

N

BN 0 - 1 - - 0.1383 - - - US

NP - - 1 0 - - - 0.7987 - US

BFN 0 0 1 0.1383 -0.1851 - - SAD

BNP 0 - 1 0 - 0.1383 - 0.7987 - US

NPZ - - 1 0 0 - - 0.7987 -0.1852 SAD

BFNP 0 0 1 0 - 0.1383 -0.1851 0.7987 - SAD

BNPZ 0 - 1 0 0 0.1383 - 0.7987 -0.1852 SAD

BFNPZ 0 0 1 0 0 0.1383 -0.1851 0.7987 -0.1852 SAD

BN

BN 0.8919 - 0.1081 - -0.8364 - - - AS

BFN 0.8919 0 0.1081 - - -0.8364 1.6129 - - SAD

BNP 0.8919 - 0.1081 0 - -0.8364 - -1.1783 - AS

BFNP 0.8919 0 0.1081 0 - -0.8364 1.6129 -1.1783 - SAD

BNPZ 0.8919 - 0.1081 0 0 -0.8364 - -1.1783 -0.1852 AS

BFNPZ 0.8919 0 0.1081 0 0 -0.8364 1.6129 -1.1783 -0.1852 SAD

NP

NP - - 0 1 - - - -3.9683 - AS

BNP 0 - 0 1 - -0.0081 - -3.9683 - AS

NPZ - - 0 1 0 - - -3.9683 0.9260 SAD

BFNP 0 0 0 1 0 -0.0081 -0.1851 -3.9683 - AS

BNPZ 0 0 0 1 0 -0.0081 - -3.9683 0.9260 SAD

BFNPZ 0 0 0 1 0 -0.0081 -0.1851 -3.9683 0.9260 SAD

BFN

BFN 0.0170 0.0044 0.9785 - - 0.0057  0.1527i - - US

BFNP 0.0170 0.0044 0.9785 0 - 0.0057  0.1527i 0.7670 - US

BFNPZ 0.0170 0.0044 0.9785 0 0 0.0057  0.1527i 0.7670 -0.1852 SSAD

BNP
BNP 0.0091 - 0.0016 0.9894 - 0.0079 - -3.9365 - SAD

BNPZ 0.0091 - 0.0016 0.9894 0 0.0079 - -3.9365 0.9145 SAD
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BFNPZ 0.0091 0 0.0016 0.9894 0 0.0079 -0.0852 -3.9365 0.9145 SAD

NPZ

NPZ - - 0.4794 0.1667 0.3539 - - 0.0393 0.3882i SS

BNPZ 0 - 0.4794 0.1667 0.3539 0.1947 - 0.0393 0.3882i US

BFNPZ 0 0 0.4794 0.1667 0.3539 0.1947 -0.1851 0.0393 0.3882i SSAD

BFNP2
BFNP 0.0170 0.0002 0.0030 0.9798 - 0.0076  0.0340i -3.9017 - SSAD

BFNPZ 0.0170 0.0002 0.0030 0.9798 0 0.0076  0.0340i -3.9017 0.9037 SSAD

BFNPZ2 BFNPZ 0.0170 0.0062 0.4707 0.1667 0.3394 0.0079  0.1799i 0.0384  0.3839i SSAD

1 SAD denotes a saddle point (unstable in at least one dimension), SSAD denotes a spiral saddle point, AS 

denotes an asymptotically stable point, SS denotes a spirally stable point and US denotes an unstable node.

2 Eigenvalues were calculated numerically for the BFNP and BFNPZ  points except for 4 of the BFNP

point for which an analytic expression was obtained (see appendix).
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13. APPENDIX

N critical point

In common with all Kolmogorov models, the BFNPZ model has a critical point at the origin of 

the system where no biota are extant:

N
N
*  1, (13)

B
N
* , F

N
* , P

N
* ,Z

N
*  0 . (14)

The eigenvalues of the Jacobian at this point are:


N 1


k

25
1 k

11 
1 k

26

 k
10
 0.1383, (15)


N 2

 k
13
 0.1851 , (16)


N 3


k

23

1 k
24

 0.7987 , (17)


N 4

 k
19
 0.1852 . (18)

The eigenvectors associated with these eigenvalues all point along the species axes, with the 

unstable autotroph eigenvectors associated with N 1 and N 3 pointing along the B and P

axes respectively.
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BN critical point

The first autotroph critical point of the BFNPZ model is given by:

B
BN
*  1

k
10

k
26

k
25

1 k
11  k

10

 0.8919 , (19)

N
BN
* 

k
10

k
26

k
25

1 k
11  k

10

 0.1081, (20)

F
BN
* , P

BN
* ,Z

BN
*  0 . (21)

The eigenvalues of this point are:


BN 1

 k
25

1 k
11  N

BN
* 2  k

26
N

BN
*  B

BN
* 

N
BN
*  k

26 2













 k

10
 0.8364 , (22)


BN 2

 k
8

1 k
14  B

BN
*

B
BN
*  k

9









  k

13
 1.6129 , (23)


BN 3

 k
23

N
BN
*

N
BN
*  k

24









 

k
1

k
2







B

BN
*  1.1783, (24)


BN 4

 k
19
 0.1852 . (25)

The eigenvectors associated with these eigenvalues again all point along the species axes, with 

the exception of the unstable eigenvector associated with BN 2 which points internally 

towards the F axis. Note that the N 1 eigenvector pointing away from the N critical point 
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joins the BN 1 eigenvector pointing into the BN critical point. A B bloom initiated at the 

origin must therefore end up at the BN critical point.

  

NP critical point

The second autotroph-only critical point of the model is:

P
NP
*  1, (26)

B
NP
* , F

NP
* , N

NP
* ,Z

NP
*  0 . (27)

The eigenvalues of this point are:


NP1


k

1
1 k

11 
1 k

2

 k
10
 0.0081, (28)


NP2

 k
13
 0.1851, (29)


NP3

 
k

23

k
24

 3.9683 , (30)


NP4

 k
4

1 k
20  k

19
 0.9620 . (31)

Once again, the eigenvectors associated with these eigenvalues again all point along the 

species axes, with the exception of the unstable eigenvector associated with NP4 which 

points along a separatrix into the NPZ plane. Note in this case that the N 3 eigenvector 

pointing away from the N critical point joins the NP3 eigenvector pointing into the NP

critical point. A P bloom initiated at the origin must therefore end up at the NP critical point.
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BFN critical point

The first predator-prey critical point of the BFNPZ model is at:

B
BFN
* 

k
9
k

13

k
8

1 k
14  k

13

 0.0170 , (32)

F
BFN
* 

k
25

k
8

1 k
11  B

BFN
*  k

9  N
BFN
*

N
BFN
*  k

26









 

k
10

k
8

B
BFN
*  k

9  0.0044 , (33)

N
BFN
* 

1

2

 k
26
 B

BFN
* 

B
BFN
*  k

9

k
8









 k

25
1 k

11  k
10 1













k
26
 B

BFN
* 

B
BFN
*  k

9

k
8









 k

25
1 k

11  k
10 1











2

4k
26

B
BFN
* 1 k

10

B
BFN
*  k

9

k
8



















































 0.9785 , (34)

P
BFN
* ,Z

BFN
*  0 . (35)

The eigenvalues at this point are:

Re 
BFN 1,2  k

8

B
BFN
*

B
BFN
*  k

9 2













 k

25
1 k

11  k
26

N
BFN
*  k

26 2














B
BFN
*  0.0057 , (36)
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Im 
BFN 1,2  

k
8

B
BFN
*

B
BFN
*  k

9 2














F
BFN
*  k

25
1 k

11  k
26

N
BFN
*  k

26 2














B
BFN
*

















2



4 k
25

1 k
11  k

26

N
BFN
*  k

26 2














B
BFN
*  k

8

B
BFN
*

B
BFN
*  k

9




























k
8

1 k
14  k

9

B
BFN
*  k

9 2














F
BFN
*

















 0.1527i,

(37)


BFN 3

 k
23

N
BFN
*

N
BFN
*  k

24









 

k
1

k
2







B

BFN
*  0.7670 , (38)


BFN 4

 k
19
 0.1852 . (39)

The unstable eigenvectors of this point push orbits towards the origin, from where the orbit is 

directed to the NP autotroph critical point.

BNP critical point

The second predator-prey critical point (technically an omnivore-prey critical point as B

consumes both N and P) is given by:

BBNP
* 

k23 PBNP
*  k2 NBNP

*

k1 NBNP
*  k24   0.0091, (40)

NBNP
* 3  NBNP

* 2  NBNP
*    0  NBNP

*  0.0016 , (41)

PBNP
* 

k2 k10 NBNP
*  k26  k25 1 k11 NBNP

* 
k1 1 k11  NBNP

*  k26  k25 1 k11 NBNP
*  k10 NBNP

*  k26  0.9894 , (42)
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F
BNP
* ,Z

BNP
*  0 , (43)

where:  k1 k1  k25  k10  k11 k1  k25   , 

  k1

k11 k25 1 k24  k2  k1 1 k24  k26  k2k23  k1 k24  k26 1 
k10 k26  k2  k24 1  k2k23  k25 k2  k24 1 












,

  k1

k1 k26 k24 1 k11  k24  k11k24 1 k26  
k24k25 1 k2  k11 1  k10k26 1 k2 
k2k23k26 1 k11  k10k24 1 k2  k26 



















,

  k1 k24k26 k10 k2 1  k1 1 k11    .

The eigenvalues at this point are:

BNP1 
       2  4  

2
 0.0079 , (44)

BNP2  k8 1 k14  BBNP
*

BBNP
*  k9






 k13  0.0852 , (45)

BNP3 
       2  4  

2
 3.9365 , (46)

BNP4  k4 1 k20 PBNP
*  k19  0.9145 , (47)

where
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  k
1

1 k
11  P

BNP
*

P
BNP
*  k

2









  k

25
1 k

11  N
BNP
*

N
BNP
*  k

26











k
25

1 k
11  k

26

N
BNP
*  k

26 2














B
BNP
*  k

10
,

(48)

  k
23

N
BNP
*

N
BNP
*  k

24









  k

23

k
24

N
BNP
*  k

24 2














P
BNP
*  k

1

k
2

P
BNP
*  k

2 2














B
BNP
* ,(49)

  k
23

k
24

N
BNP
*  k

24 2














P
BNP
*  k

1

P
BNP
*

P
BNP
*  k

2









 , (50)

  k
1

1 k
11  k

2

P
BNP
*  k

2 2














B
BNP
* . (51)

NPZ critical point

The third predator-prey critical point of the model is given by:

B
NPZ
* , F

NPZ
*  0 , (52)

N
NPZ
* 

1

2
 k

24
 P

NPZ
* 

k
23

k
4

1






 k

24
 P

NPZ
* 

k
23

k
4

1







2

 4k
24

P
NPZ
* 1 

















 0.4794

, (53)

P
NPZ
* 

k
19

k
4

1 k
20  0.1667 , (54)
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Z
NPZ
* 

k
23

k
4

N
NPZ
*

N
NPZ
*  k

24









  0.3539 . (55)

The eigenvalues at this point are:

NPZ1  k1 1 k11  PNPZ
*

PNPZ
*  k2






 k25 1 k11  NNPZ

*

NNPZ
*  k26






 k10  0.1947 ,(56)


NPZ 2

 k
13
 0.1851 , (57)

Re 
NPZ3,4   k

23
P

NPZ
*

2

k
24

N
NPZ
*  k

24 2















 0.0393, (58)

Im 
NPZ 3,4  

1

2

k
23

P
NPZ
* k

24

N
NPZ
*  k

24 2






























2

4k
4

1 k
20  k

23

k
24

N
NPZ
*  k

24 2















 k

4














P

NPZ
* Z

NPZ
*

 0.3882i . (59)

The unstable eigenvector associated with NPZ 1 points toward the BN autotroph critical point.

BFNP critical point

The first higher-dimension food web critical point, where four of the five state variables are 

non-zero, is given by:
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B
BFNP
* 

k
9
k

13

k
8

1 k
14  k

13

 0.0170 , (60)

F
BFNP
* 

k
25

k
8

1 k
11  B

BFNP
*  k

9  N
BFNP
*

N
BFNP
*  k

26









 

k
10

k
8

B
BFNP
*  k

9  0.0002 , (61)

N
BFNP
* 4  N

BFNP
* 3 k

26
 k

24
1 k

2
 B

BFNP
*  k

10
   1

k
2








 













N
BFNP
* 2

k
26

k
24
1 k

2
 B

BFNP
*  k

10
   1

k
2
















 k

24

k
24

1 k
2
 B

BFNP
*  k

10
  k

24
   



















N
BFNP
* k

24
2  k

26
k

24
 k

24
1 k

2
 B

BFNP
*  k

10
    k

24 



 k

24
2 k

26
 0

 N
BFNP
*  0.0030,

(62)

P
BFNP
* 

k
1

k
23

N  k
24

N







B

BFNP
*  k

2
 0.9798 , (63)

Z
BFNP
*  0 , (64)

where  
k

1
B

BFNP
*

k
23

,  
B

BFNP
*  k

9

k
8

,   k
25

1 k
11 ,   k

2
k

23

k
1
B

BFNP
*

and   k
1

1 k
11  and only 

the positive roots are ecologically feasible.

Analytic expressions for most of the eigenvalues at the BFNP point are not useful, and these 

eigenvalues will be calculated numerically. However, the analytic expression for the 

eigenvalue associated with the Z dimension is informative:

BFNP4  k4 1 k20 PBFNP
*  k19  0.9037 . (65)
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We note from comparison with the numerically calculated eigenvalues listed in Table 3 that the 

BFNP4 eigenvalue is the most unstable direction at this critical point, by a factor of about 100.

BNPZ critical point

The second higher-dimension food web critical point, where four of the five state variables are 

non-zero, is given by:

BBNPZ
* 

PBNPZ
*  k2  1 NBNPZ

*  PBNPZ
* 

k23

k4

NBNPZ
*

NBNPZ
*  k24

















PBNPZ
*  k2 

k1

k4

 2.4959 , (66)

F
BNPZ
*  0 , (67)

NBNPZ
* 

k26 k1 1 k11 PBNPZ
*  k10 PBNPZ

*  k2  
PBNPZ

*  k2  k10  k25 1 k11    k1 1 k11 PBNPZ
*

 0.0492 , (68)

PBNPZ
* 

k19

k4 1 k20   0.1667 , (69)

ZBNPZ
* 

k23

k4

NBNPZ
*

NBNPZ
*  k24








k1

k4

BBNPZ
*

PBNPZ
*  k2






 1.7118 . (70)

Analytic expressions for most of the eigenvalues at the BNPZ point are not useful, and these 

eigenvalues will be calculated numerically. However, the analytic expression for the 

eigenvalue associated with the F dimension is informative:

BNPZ 2  k8 1 k14  BBNPZ
*

BBNPZ
*  k9






 k13  1.8326 . (71)
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Note that for the parameter values used in the model, this point lies outside the ecologically 

feasible region of the state space, and the eigenvalues do not have any influence on the 

dynamics of the system. We further note that this point may be brought into the feasible state 

space with subtle variations of certain parameter values.

BFNPZ critical point

The final critical point of the BFNPZ model, that is not shared by any of the sub-models, the 

only critical point to have all positive, non-zero state variables (i.e. the only ‘interior’ point of 

the full model) is:

B
BFNPZ
* 

k
9
k

13

k
8

1 k
14  k

13

 0.0170 , (72)

F
BFNPZ
* 

B
BFNPZ
*  k

9

k
8









 k

1
1 k

11  P
BFNPZ
*

P
BFNPZ
*  k

2









  k

25
1 k

11  N
BFNPZ
*

N
BFNPZ
*  k

26









  k

10













 0.0062,

(73)

N
BFNPZ
* 3  N

BFNPZ
* 2 P

BFNPZ
*  B

BFNPZ
*       k

24
 k

26
    1  

N
BFNPZ
* k

24
k

26
 k

24
 k

26  P
BFNPZ
*  B

BFNPZ
*      1  k

24
  k

26






k
24

k
26

P
BFNPZ
*  B

BFNPZ
*      1  0

 N
BFNPZ
*  0.4707,

(74)

P
BFNPZ
* 

k
19

k
4

1 k
20  0.1667 , (75)

Z
BFNPZ
* 

k
23

k
4







N

BFNPZ
*

N
BFNPZ
*  k

24









 

k
1

k
4







B

BFNPZ
*

P
BFNPZ
*  k

2









  0.3394 , (76)
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where   k
1

1 k
11  P

BFNPZ
*

P
BFNPZ
*  k

2











B
BFNPZ
*  k

9

k
8









 ,   k

25
1 k

11  B
BFNPZ
*  k

9

k
8









 , 

  k
10

B
BFNPZ
*  k

9

k
8









 ,  

k
23

k
4

and  
k

1

k
4

B
BFNPZ
*

P
BFNPZ
*  k

2









 and only the positive root is 

considered. The eigenvalues at this point were calculated numerically and are all found to be 

complex conjugates, with one pair (weakly) unstable.
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