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Abstract—Particle Swarm Optimisation (PSO) is increasingly
being applied to optimisation of problems in engineering design
and scientific investigation. While readily adapted to single-
objective problems, its use on multi-objective problems is
hampered by the difficulty of finding effective means of guiding
the swarm in the presence of multiple, competing objectives.
This paper suggests a novel approach to this problem, based
on an extension of the concepts of spatial social networks using
a model of the behaviour of locusts and crickets. Compari-
son is made between neighbouring particles based on Pareto
dominance, and a corresponding repulsion between particles
added to previously suggested attractive forces. Computational
experiments demonstrate that the new, spatial, social network
optimisation algorithm can provide results comparable to a
conventional MOPSO algorithm, and improved coverage of the
Pareto-front.

I. INTRODUCTION

Particle Swarm Optimisation (PSO) is a relatively new

class of optimisation algorithms, introduced by Kennedy and

Eberhart in 1995 [9]. This technique is based upon the social

interaction of members of a population or swarm, usually

referred to as particles. Applied to optimisation, the swarm of

particles travels through the problem parameter space, each

particle being given a computed velocity based upon its own

performance and the performance of another selected guide
particle. In most cases the guide particle is chosen to be the

current best performing particle in the swarm.

These methods have been widely applied to problems

involving a single objective [12], [7]. Recent efforts have

been made in developing PSO algorithms for multi-objective

optimization problems requiring the simultaneous solution of

a multiple set of objectives [11], [4]. In the multi-objective

PSO (MOPSO), choosing the guide particle has become

more complex, as the output of a MOPSO algorithm consists

of a set of solutions defining the trade-off between the

different objectives. Several different methods of choosing

guide particles have been investigated [10], [8] but it is

believed no selection scheme will give adequate performance

on all test problems.

This paper suggests a novel approach to this problem,

based on an extension of the concepts of spatial social

networks [6]. PSO algorithms are based on social interaction,

modeling the swarming behaviour of some species of animals

and insects. Individuals, or particles, implicitly communicate

with each other, exchanging information about the objective

function landscape in neighborhoods around the particles. In
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the general PSO this communication is via information about

the guide particles. In social networks the information ex-

change within neighborhoods is explicit, and defined by the

network structures. Communication is between neighbours

within the structures, which are most commonly constructed

on the basis of particle indices.

Suganthan proposed neighbourhoods be formed on the

basis of Euclidian distance between particles in the parameter

space [16]. Braendler and Hendtlass proposed a variation

where particles move toward neighbouring particles that have

found a good solution [2]. The proposed new algorithm, mod-

elled on the behaviour of locusts and crickets, extends this

idea to the multi-objective optimisation problem by making

comparison between neighbouring particles based on Pareto

dominance, and adding a corresponding repulsion to the

previously suggested attraction. By confining influences on

individual particles to Pareto-dominance interactions between

nearest neighbours only, guide particles for the swarm are

dispensed with altogether.

The remainder of this paper is organised as follows.

Section II gives a brief summary of the mechanics of

the general Particle Swarm Optimisation algorithm while

Section III describes the interactions used in Spatial Social

Networks. Section IV outlines the proposed new algorithm,

its application to multi-objective optimisation problems and

the extension based on locust behaviour modelling. The com-

putational results of the new system are given in Section V

and finally, the conclusions and future research directions are

presented in Section VI.

II. PSO ALGORITHMS

The PSO algorithm utilises a population of potential solu-

tions, or particles, which move around the design parameter

space with every iteration. The movement of these particles

is governed by two equations:

vij(t + 1) = wvij(t) + c1r1j(t)[yij(t) − xij(t)]
+ c2r2j(t)[ŷij(t) − xij(t)] (1)

xij(t + 1) = xij(t) + vij(t + 1) (2)

Here, vij(t) is the velocity of particle i in dimension j at

time t and xij(t) is the position of particle i in dimension

j at time t. The velocity of a particle depends on both the

best position that particle has found to time t, yij(t), and the

best solution the entire swarm has found has found to time

time t, ŷij(t). The inertial component is scaled by constant

w, and c1 and c2 are constants, usually defined between 0.5

and 3.0, used to control the impact of the local and global
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components in velocity equation 1. The vector r is a vector

of random numbers evenly distributed between zero and one

generated for each particle at each time step t. Once new

particle velocities have been calculated, the position of each

particle is updated as in equation 2.

III. SPATIAL SOCIAL NETWORKS

In the velocity equation of the general PSO, the motion of

individual particles is determined by an inertial component,

the cognitive component that contributes information about

the best position a particle has found for itself, and the

social component that contributes information about the best

position the swarm as a whole has found. In social-based

PSO algorithms some subset of the whole swarm defined

by the social network structure shares information about

a neighborhood, typically a subset of the space the whole

swarm inhabits. The most common way information is shared

is to replace the best solution for the swarm as a whole, ŷij

in equation 1 with some fraction of the best solution for the

set of neighbours, depending on the distance the particle is

from this “local guide”.

In standard social networks, neighborhoods are based on

particle indices. For example, the neighborhood of a particle

with index i might include the particles with indices i − 1, i
and i + 1. This has the advantages that:

• no distance calculations are required to form the neigh-

borhoods, so this approach is computationally inexpen-

sive, and

• information is spread throughout the population irre-

spective of particle location in the search space.

In spatial social networks, neighborhoods are formed

based on Euclidian distance in search space. The neigh-

borhood of a particle with index i is defined as the set of

(some given number of) particles with the smallest value of

E(�xi, �xi′), the Euclidian distance between particles i and i′.
For fitness-based spatial neighborhoods this is amended to

include a fitness term for the particles in the neighborhood,

i.e. E(�xi, �xi′) × f( �xi′).
Spatial social networks are computationally more expen-

sive because at each iteration the Euclidian distances must be

calculated. However, they have the advantage that neighbor-

hoods can be overlapping and change dynamically. In many

cases where optimisation is applied to real-world problems,

the computation necessary to derive objective function values

can far outweigh the distance calculation overheads, the

computational cost of the optimisation algorithm becoming

effectively negligible.

IV. A MULTI-OBJECTIVE MODEL

The social network algorithms described so far are quite

adequate for problems in which a single objective must be

optimised, but when the problem involves multiple objectives

the question of what constitutes a suitable guide for the

swarm becomes problematic. To address this difficulty, it

is proposed that a solution found in a neighborhood be

considered “better” based on Pareto dominance. For solution

vectors �xi and �xi′ , when the following conditions are met:

• �xi is at least as good as �xi′ for all the objectives, and

• �xi is strictly better than �xi′ for at least one objective

then �xi is said to “dominate” �xi′ (denoted �xi ≺ �xi′ ). In the

case where �xi and �xi′ dominate other solution vectors but

not each other they are deemed mutually optimal solutions

and referred to as Pareto-optimal.

It may be sufficient to adapt the fitness-based spatial social

network by replacing the fitness term, f( �xi′) with a term

that takes into account Pareto dominance, but it is unclear

how this might be scaled: the Pareto dominance gives no

information about relative degree of dominance. A different

approach might be more effective.

PSO algorithms are based on observation of animal be-

haviour, with simple rules abstracted from this observation

giving rise to sophisticated emergent behaviour. Braendler

and Hendtlass proposed that particles move toward neigh-

bouring particles that have found good solutions. Simpson

et al. [15] have observed cannibalism in cricket swarms

and concluded that “band members must continually move

to avoid being eaten by similarly [nutrient] deprived con-

specifics”. This suggest that a motion vector away from a

particle that has not found a good solution may be just as

important as one toward good solutions.

From this inspiration the vector equation 1 was reformu-

lated:

vij(t + 1) =
{

wvij(t) + c1r1j( �xi′ (t) − �xi(t)) : �xi′ (t) ≺ �xi(t)

wvij(t) − c1r1j( �xi′ (t) − �xi(t)) : �xi′ (t) �≺ �xi(t)
(3)

i.e. motion is toward a neighbour if it is Pareto-dominant,

and away otherwise. Note that in the case the particles

are mutually non-dominating the default is for generally

dispersive motion. This is in direct contrast to algorithms

incorporating a congregative function (e.g. [14].) The inter-

actions considered are between nearest neighbour pairs only,

i.e. between the particle with index i and its neighbouring

particle, i′, where E(�xi, �xi′) is a minimum. An outline of the

operation of the resulting algorithm is given in Algorithm 1.

While the use of neighbourhoods, of which this is the

limiting case of size nN = 2, has been widely explored, this

formulation of a repulsive motion vector is novel. The closest

analogues are the repulsion phases of multi-phase PSO [1],

[13] but these employ a time-varying switching of the sign

of the c1 and c2 coefficients of equation 1. This causes the

whole swarm, or sub-swarms, to move away from global best

position, ŷij , and sometimes also the local best position, yij ,

in order to promote swarm diversity. Note that these motions

require these positions to be defined, a problematic exercise

in multi-objective problems as has already been discussed.

V. COMPUTATIONAL EXPERIMENTS AND RESULTS

In order to evaluate the performance of the proposed algo-

rithm, it was compared to a conventional MOPSO algorithm

with Sigma update[10]. Each algorithm had a population

of 50 and separate runs, with different random seeds, were

performed for increasing numbers of iterations on standard

test functions, to examine relative performance at different
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Algorithm 1 LoCost

Initialise population

repeat
for all particles in the population do

Evaluate the particle fitness

end for
for all particles in the population do

Find nearest neighbour particle

if Neighbour is dominant then
Adjust the motion vector toward neighbour, using

Eq. 3

else
Adjust the motion vector away from neighbour,

using Eq. 3

end if
Update the archive

Update the particle positions, using Eq. 2

end for
until Termination condition met

Return archive

TABLE I
TEST FUNCTIONS

Test Function Constraints
ZDT1 g(x2, · · · , xn) = 1 + 9(

Pn
i=2 xi)/(n − 1) xi ∈ [0, 1]

h(f1, g) = 1 − p
f1/g i = 1, 2, . . . , n

f1(x1) = x1 n = 2
f2(�x) = g(x2, · · · , xn) · h(f1, g)

ZDT2 g(x2, · · · , xn) = 1 + 9(
Pn

i=2 xi)/(n − 1) xi ∈ [0, 1]
h(f1, g) = 1 − (f1/g)2 i = 1, 2, . . . , n
f1(x1) = x1 n = 2
f2(�x) = g(x2, · · · , xn) · h(f1, g)

ZDT3 g(x2, · · · , xn) = 1 + 9(
Pn

i=2 xi)/(n − 1) xi ∈ [0, 1]

h(f1, g) = 1 − p
f1/g − (f1/g) sin(10πf1) i = 1, 2, . . . , n

f1(x1) = x1 n = 2
f2(�x) = g(x2, · · · , xn) · h(f1, g)

ZDT4 g(x2, · · · , xn) = 1 + 10(n − 1)
+

Pn
i=2(x2

i − 10cos(4πxi)) x1 ∈ [0, 1]

h(f1, g) = 1 − p
f1/g xi ∈ [−5, 5]

f1(x1) = x1 i = 2, . . . , n
f2(�x) = g(x2, · · · , xn) · h(f1, g) n = 2

times during the progress of the optimisation. A number of

well known test functions were used in this work, taken from

[17]. The test functions used have a variety of convex, non-

convex, discontinuous and multimodal Pareto-fronts and are

shown in Table I. The dimension of parameter space, N , was

2 for all test functions. Following the arguments by Deb et al.
[5] test functions with two objectives are sufficient to evaluate

a multi-objective optimisation method and results from such

tests are also valid for higher dimensional problems.

Figure 1 to 4 show the attainment surfaces, the approxima-

tions to the Pareto-front, achieved by the archive members of

the proposed algorithm, LoCost, and the MOPSO algorithm

after 40 iterations for ZDT1, ZDT2, ZDT3 and ZDT4 test

functions.

By inspection of the figures it may be seen that the

proposed, new LoCost algorithm has performed quite com-

parably to the conventional MOPSO algorithm. A qualitative

comparison appears to show that LoCost has an appreciably

Fig. 1. Approximate Pareto-front for the ZDT1 test function at 40 iterations.
(MOPSO shown as “+”, LoCost as “o”)

Fig. 2. Approximate Pareto-front for the ZDT2 test function at 40 iterations.
(MOPSO shown as “+”, LoCost as “o”)

greater coverage of the approximation to the Pareto-front

than the MOPSO algorithm, “filling the gaps” in a number of

places. In particular, LoCost has consistently found Pareto-

optimal solutions for higher values of the second objective

than MOPSO. Given the form of the test functions, where

f1(x) = x1, this series of functions is notorious for the ease

with which Pareto-optimal results can be found in the region

where f1 approaches 0, but the difficulty of obtaining results

with small f2. LoCost appears to have a significant advantage

in this region, compared to MOPSO.

From Figures 1 to 4 it would appear there is little to

choose between the algorithms in terms of convergence:

each algorithm reaches a similar degree of convergence

at the same time. As has already been noted, however,

there are subjective differences in the coverage achieved.

To quantitatively evaluate the coverage of each method a

new performance measure Ψ was introduced. For a two-

dimensional problem, one of the objectives is selected and
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Fig. 3. Approximate Pareto-front for the ZDT3 test functions at 40
iterations. (MOPSO shown as “+”, LoCost as “o”)

Fig. 4. Approximate Pareto-front for the ZDT4 test function at 40 iterations.
(MOPSO shown as “+”, LoCost as “o”

the respective dimension of the objective space is split into

a number of equally sized intervals ψn, where the number

of intervals is defined as the maximum of the size of the

swarm and the size of the archive. Each of these intervals

is inspected to see if a non-dominated solution lies between

the upper and lower bounds of the interval. If at least one

such particle exists, the interval is scored 1, otherwise its

score is set to 0. The metric is given by the percentage of of

“occupied” intervals. It is thus a measure of the total extent of

the Pareto-front covered, and the uniformity of the coverage.

For the purposes of the comparison between two algorithms,

where the true Pareto-front is not assumed to be known,

the coverage is measured relative to the total, aggregated

approximation to the Pareto-front of the two archives.

The calculation of the metric can be formalised as:

Ψ =
100

max{|A|, |S|}
max{|A|,|S|}∑

n=1

ψn (4)

where A and S represent the size of the archive and the size

of the swarm respectively. The individual “buckets” ψn are

then defined as

ψn

{
1, if ∃�f(�x) ∈ PF , βn−1 ≤ f1(�x) < βn

0, else
(5)

with f1 being one of the objectives and βn defining the upper

boundary for bucket n. Any objective can be chosen to be

f1 but the same objective has to be used for all the buckets

for obvious reasons. The upper boundaries for the buckets

βn are defined as

βn = L1 + n · U1 − L1

max{|A|, |S|} (6)

where U and L mark the upper and lower boundaries of

the analysed portion of the Pareto-front based on the chosen

objective f1. The lower boundary for bucket n is defined as

βn−1.

The values of the coverage metric for each algorithm

on each test function are shown in TableII. It can be seen

that for test functions ZDT1 and ZDT2 LoCost did achieve

significantly improved coverage. On the ZDT3 test case,

MOPSO returns somewhat better coverage results, despite

missing one of the Pareto-front segments entirely, the one

for low values of f2, which LoCost has found. For ZDT4

the MOPSO algorithm appears to deliver significantly better

coverage but, as can be seen from Figure 4, it is at the

expense of convergence, MOPSO having been trapped by

the deceptive, multimodal fronts of this test function. On

all test functions, while MOPSO may deliver more, densely-

packed solutions on the attainment surface, LoCost has given

better dispersion and coverage, albeit with sparsely scattered

points..

TABLE II
COVERAGE METRIC, Ψ, FOR ALL TEST FUNCTIONS AT 40 ITERATIONS

Test Function

ZDT1 ZDT2 ZDT3 ZDT4

LoCost 75 45 40 30
MOPSO 65 35 45 50

For the purposes of comparison, the hypervolume metric

for each algorithm on all test functions is shown in Table III.

For test functions ZDT1 and ZDT4, the performance of both

algorithms as measured by the hypervolume is comparable.

On ZDT2 LoCost has a significantly better performance than

MOPSO, as might have been expected from inspection of

Figure 2 where the extent of its coverage can be seen to be

significantly better, particularly for solutions with low values

of f2. On ZDT3 MOPSO performs a little better, which may

be attributable to the greater number of points it tends to

accumulate along the attainment surface.
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TABLE III
HYPERVOLUME METRIC FOR ALL TEST FUNCTIONS AT 40 ITERATIONS

Test Function
ZDT1 ZDT2 ZDT3 ZDT4

LoCost 0.33 0.70 0.07 0.35
MOPSO 0.32 0.09 0.11 0.32

VI. CONCLUSIONS

The experiments described in this paper have demonstrated

that a new, spatial, social network optimisation algorithm

inspired by the swarming behaviour of crickets and locusts

can provide results comparable to a conventional MOPSO

algorithm, and improved coverage of the Pareto-front. It

achieves these results without the use of any guide particles,

thus avoiding the difficulties of selecting suitable particles

for this purpose in multi-objective optimisation problems.

The results reported in this paper are preliminary, but

promising. Future work will include detailed investigation

of the behaviour of the algorithm and its dependence on a

number of factors, particularly including the effect of swarm

size. Buhl et al. have identified a critical density for the

transition from disordered to ordered behaviour in locust

swarms [3] which suggests that this may be an important

factor in models of behaviour of this type. The statistical

significance of the results obtained in this study should

be verified, and the algorithm’s performance on a greater

range of test functions assessed. In addition, the scaling of

motion vectors and randomisation coefficients need further

investigation, and the algorithm should be compared with

a wider variety of competing algorithms to investigate its

relative performance.
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