
An Efficient Algorithm For Solving Dynamic Complex DCOP Problems

Sankalp Khanna∗†, Abdul Sattar∗, David Hansen† and Bela Stantic∗
∗Institute for Integrated and Intelligent Systems

Griffith University, QLD 4111. Australia
Email: S.Khanna@griffith.edu.au, A.Sattar@griffith.edu.au, B.Stantic@griffith.edu.au

†The Australian e-Health Research Centre
71/918,RBWH, Herston, QLD 4029. Australia

Email: David.Hansen@csiro.au

Abstract—Multi Agent Systems and the Distributed Con-
straint Optimization Problem (DCOP) formalism offer several
asynchronous and optimal algorithms for solving naturally dis-
tributed optimization problems efficiently. There has been good
application of this technology in addressing real world prob-
lems in areas like Sensor Networks and Meeting Scheduling.
Most of these algorithms however exploit static tree structures
and are thus not well suited to modeling and solving problems
in rapidly changing domains. Also, while in theory most
DCOP algorithms can be extended to handle complex local
sub-problems, we argue that this generally results in making
their performance sub-optimal, and thus their application less
suitable. In this paper we present new measures that emphasize
the interconnectedness between each agent’s local and inter-
agent sub-problems and use these measures to guide dynamic
agent ordering during distributed constraint reasoning. The
resulting algorithm, DCDCOP, offers a robust, flexible, and
efficient mechanism for modeling and solving dynamic complex
problems. Experimental evaluation of the algorithm shows that
DCDCOP significantly outperforms ADOPT, the gold standard
in search-based DCOP algorithms.

I. INTRODUCTION

Despite being a relatively young research area, with
the first asynchronous Distributed Constraint Satisfaction
Problem (DisCSP) algorithm proposed in 1992 [1], and the
first complete Distributed Constraint Optimization Problem
(DCOP) algorithm, ADOPT, proposed in 2003 [2], the
Distributed Constraint Reasoning formalism has developed
rapidly to offer efficient and sophisticated algorithms to
model and solve a variety of naturally distributed multi-
agent problems. Several notable DCOP approaches employ-
ing techniques from search (e.g. ADOPT and its several
variants), dynamic programming (e.g. DPOP [3] and its
several variants) and cooperative mediation (e.g. APO [4])
have emerged and are being successfully used to model and
solve problems in sensor networks, meeting scheduling, etc.

This research was motivated by our effort to model and
solve naturally distributed complex optimization problems in
the health domain, a typical example being the scheduling
of elective surgery in a large public hospital. The problem
involves several departments, each with its own complex
scheduling problem. The departments need to negotiate
with each other to build, and maintain, the elective surgery

schedule in the face of a dynamic health landscape. Allo-
cation of airport slots to airlines, or public infrastructure
to utilities companies, are examples of similar problems in
relatively dynamic environments where several agents, each
with complex sub-problems, are negotiating in a privacy
preserving manner, to optimize a common cost function.

Working towards this aim, the first natural observation is
that most current algorithms are based on tree structures,
which are static in nature and would continually need to be
rebuilt in dynamic environments. Also, given the nature of
the problem domain, partial centralization based strategies
would not be a good fit here because of obvious privacy and
decision control concerns. We also note that the metrics used
to compare algorithms are questioned by most researchers.
Silaghi and Yokoo [5] have shown that it is possible to
construct problems that can be exploited by algorithms such
as ADOPT and DPOP to exhibit their superiority. Also,
Maheswaran et al. [6] show that the performance of ADOPT
in solving real world problems is significantly worse than in
solving similar-sized map coloring problems.

We draw from Zhou’s work [7] in the DisCSP field and
generalize the novel measures of constraint density (not to
be confused with the traditional measure, i.e. ratio of actual
number of constraints to possible number of constraints), to
introduce new DCOP measures of Dynamic Cost Density
(DCD) and Degree of Unsatisfaction (DU), and then use
these measures to dynamically guide agent ordering in our
new Dynamic Complex Distributed Constraint Optimization
Problem (DCDCOP) algorithm. We compare DCDCOP’s
performance to ADOPT, the current standard in DCOP
search, and show that the new algorithm offers a significant
improvement over ADOPT.

The rest of this paper is organized as follows. In section II,
we describe our case study of the elective surgery scheduling
problem at a large Australian public hospital. Section III
presents our proposed Multi-Agent System (MAS) architec-
ture for modeling and solving this class of problems. Section
IV follows with a discussion of the DCOP formalism and
the shortcomings of the current state of the art in DCOP
algorithms in addressing real world dynamic complex prob-
lems. In section V, we present the new measures of DCD

2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology

978-0-7695-3801-3/09 $26.00 © 2009 IEEE

DOI 10.1109/WI-IAT.2009.175

339

2009 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology - Workshops

978-0-7695-3801-3/09 $26.00 © 2009 IEEE

DOI 10.1109/WI-IAT.2009.175

339

and DU , and the DCDCOP algorithm, and explain these
with a simple example. Section VI reports on the empirical
evaluation of the algorithm as compared to ADOPT. Lastly,
in section VII, we present our main conclusions and discuss
ongoing work.

II. SCHEDULING ELECTIVE SURGERY AT THE PRINCESS
ALEXANDRA HOSPITAL - A CASE STUDY

Elective surgery is a planned, non-emergency surgical pro-
cedure, which can be scheduled at the patient’s and surgeon’s
convenience. The escalating demand for elective surgery is
however compounded by a shortage of trained surgeons,
anaesthetists and nurses. Recent Queensland statistics show
that, as of 1 April 2009, 33, 993 patients were waiting for
elective surgery of which almost 18% had waited longer than
a clinically desirable time [8].

We conducted an extensive study of scheduling processes
followed at the Princess Alexandra Hospital (PAH), a large
public hospital in Queensland’s capital city of Brisbane.
PAH offers 21 operating theaters that can be utilized by
various departments for elective surgery. For the process of
scheduling, the theater schedule is divided into AM and PM
slots of 3.5 hours each. These slots are allocated to various
doctors or departments but can be utilized for trauma or
emergency if urgently required.

Each department connected (i.e. allocating staff or other
resources) to the surgery carries out their individual schedul-
ing activity. The bookings department books patients into the
Bookings Schedule in consultation with the relevant surgical
teams, and records these bookings into the Operating Room
Management Information System (ORMIS). The different
departments can access this information by looking into
ORMIS or accessing the latest Bookings Schedule on the
shared drive, where it is updated everyday at 3PM.

Every Thursday, the managers of the different departments
meet and review bookings for the week ahead (Figure II).
Each session is discussed and conflicts in the departmental
schedules are worked out by negotiation. Unexpected emer-
gencies, variation in patients’ health state, sudden perturba-
tions in staffing, and surgeon availability etc. lead to further
changes being often required. However, all changes made
to the system after this meeting are dealt with individually
by the departments, and resolved on a case-by-case basis
using conventional communication such as telephone and
emails, or even by face-to-face meetings. In keeping with the
dynamics of the domain, the schedule needs to be updated
quickly and efficiently. This is often not possible, because of
delays in inter-departmental communication, and this leads
to the adoption of an easy but inefficient solution resulting
in a compromised schedule. For example, if a procedure is
canceled at the last minute, because new medical reports
say it is no longer required, the bookings department would
want to offer the slot to another procedure. They may
however be unable to confirm availability of specialist staff

(a) Current Model

(b) Proposed Model

Figure 1. Scheduling Elective Surgery at the Princess Alexandra Hospital

or equipment, because the charge nurse or theater manager
were temporarily unavailable, which would lead to the slot
being unused.

III. PROPOSED MAS ARCHITECTURE

Given the naturally distributed nature of problems like
elective surgery scheduling, an intelligent agent based ap-
proach is a promising paradigm for modeling the environ-
ment. We propose a methodology where intelligent agents,
trained with the constraints, preferences, priorities etc. of
the administrators, optimize schedules for their respective
departments (Figure II). They then negotiate in a privacy-
preserving manner (i.e. without sharing more information
than is essential) to resolve inter-agent constraints. The
architecture of each agent (see Figure 2) incorporates an
interface module to handle internal and external communi-
cation, an intelligence module to handle decision making
and learning, and a DCOP engine to drive the optimization.

The agents thus incorporate learning from domain-expert
interaction, and have the ability to use intelligent reasoning
to translate environmental changes and negotiation requests

340340

Figure 2. Proposed Architecture for Agent

to constraints for the DCOP engine. Using an appropriate
DCOP algorithm the agents optimize their local solution,
and then collaborate with each other to resolve inter-agent
constraints and align themselves.

The DCOP algorithm thus needs to be robust enough to
handle the complexity of each agent’s sub-problems and
perform inter-agent negotiation in a truly distributed manner,
efficient enough to solve the problem in a timely and optimal
manner, and flexible enough to adapt to the dynamics of
the environment. Additionally, by shielding the local solver
mechanism from the inter-agent negotiation process, each
agent can use a local solver strategy to suit its own need.

IV. RELATED WORK

We start with discussing the DCOP formalism and some
of the current approaches to solving DCOPs. We then
revisit real world dynamic complex problems and discuss
the shortcomings of current approaches in addressing these.

A. The DCOP formalism

In solving a DCOP, the goal for each agent is to assign val-
ues to its variables such that a given global objective function
is minimized. The cost functions in DCOP are analogous
to constraints in DisCSP, and DCOP is thus regarded as a
generalization of the DisCSP formalism. For simplicity, we
use the term constraints and cost functions interchangeably.
Formally, we can define a DCOP as consisting of:

1) A finite ordered set of Agents A =
{A1, A2, A3, ..., An|n ∈ Z+}, where, for each
Agent A there exists :

a) A finite ordered set of variables V =
{V1, V2, ..., Vn|n ∈ Z+},

b) A domain set D = {D1, D2, ..., Dn}, containing
a finite and discrete domain Di for each Vi,

c) A constraint set C = {C1, C2, ..., Cm},m ∈ Z+,
where each Cj , ∀j ∈ [1,m] is defined as a cost

function on a pair of variables, fi,i′ : DiDi′ →
N, ∀Vi, Vi′ ∈ V , and

d) An ordered solution set S =
{v1, v2, v3, ..., vn|vi ∈ Di, ∀i ∈ [1, n]}
where the aggregate cost F (A) =∑

(xi,xi′∈V) fii′(di, di′), xi ← di, xi′ ←
di′ ∈ A.

2) The solution set of the DCOP S? is defined as the set
of the solution sets of each agent.

In keeping with the norm, it is assumed that all constraints
are binary, and optimization functions are associative, com-
mutative, and monotonic [2]. In dealing with complex
DCOPs however, we do not make the general assumption
of one variable per agent.

B. Current State of the Art

Several DCOP algorithms and their variants have been
introduced by recent research. Due to space constraints, we
focus on the following key algorithms, each representing
a significantly different approach. Also, we do not critique
each variant as they all still have the same shortcomings
when applied to dynamic complex problems.

Asynchronous Distributed OPTimization, or ADOPT [2],
is a complete and asynchronous DCOP algorithm. In
ADOPT, agents are first prioritized into a Depth First Search
(DFS) tree, whereby each agent maintains lower and upper
bounds for the subtree rooted at their node. The agents then
use opportunistic best-first search to assign their variables
such that the lower bound is minimized. Cost messages
propagate up the tree and threshold and value messages are
sent down the tree, iteratively tightening the lower and upper
bounds until the lower bound of the minimum cost solution
is equal to its upper bound. If an agent detects this condition,
and its parent has terminated, then an optimal solution is
found and it may also terminate. The other key idea in
ADOPT is to store lower bounds as a threshold and discard
partial solutions before they are proven to be definitely
suboptimal, thus maintaining linear space complexity at each
agent. In the worst case, ADOPT may require an exponential
number of messages to arrive at a solution.

Distributed Pseudotree Optimization Procedure, or DPOP
[3], is a complete dynamic programming algorithm that
involves a three phase process. Similar to ADOPT, the
first phase involves the formation of the DFS tree. Phase
two involves calculating and propagating the utility (cost)
bottom-up, i.e. from the leaves upwards to the root. Phase
three involves a downward value propagation, initiated by
the root node. Each agent then calculates its optimal value
based on the utility message received from its subtree and the
value message received from its parent. DPOP thus generates
only a linear number of messages, but the message size
grows with every traversal up the tree and the algorithm thus
requires large amounts of memory, up to space exponential
in the induced width of the problem.

341341

Optimal Asynchronous Partial Overlay (OptAPO) [4] is
an alternative approach to DCOP that utilizes partial cen-
tralization to solve difficult portions of a DCOP problem.
While partial centralization offers an excellent mechanism to
solve DCOPs in several scenarios, it is generally unsuitable
in the kind of problems we seek to address. In most such
cases, negotiating agents would normally refuse to share
information or relinquish decision making control of their
private sub-problems.

C. Solving Dynamic Complex Problems

Since both ADOPT and DPOP utilize static DFS tree
structures, changes to the constraints would often result in
the need for the tree to be rebuilt. Also, since ADOPT dis-
cards no-goods to maintain linear space complexity, changes
to the constraints would result in bounds being discarded and
the search restarted.

Both ADOPT and DPOP also offer variants to deal with
dynamic environments. Modi [9] offers a formalism for
mapping and solving dynamic resource allocation problems
but this is applied in the DisCSP domain. This is extended to
map over-constrained problems into DCOP but can handle
only static problems as the author concedes to the lack of an
effective DCOP algorithm for dynamic problems. Petcu et al.
[10][11] propose S-DPOP and RS-DPOP, which utilize self
stabilizing DFS trees to guarantees optimal solution stability
in distributed continuous-time combinatorial optimization
problems. Lass et al. [12] deal with the complicating factor
of dynamism by wrapping ADOPT in an Adapter that
receives and handles dynamic event requests.

In dealing with the issue of complex sub-problems, al-
gorithms can theoretically utilize decomposition or compi-
lation. In practice however, decomposition results in failure
to exploit the inherent benefit of domain centralization, and
also blows the distributed problem size out of proportion.
Burke and Brown [13] show that the compilation outper-
forms decomposition in case of large local sub problems
but only small domain size, whereas decomposition is more
appropriate when the number of inter-agent constraints and
domain size is large but only for small problems. Several
ADOPT variants use techniques such as decomposition [9],
compilation [14], interleaving and relaxation [15], to name
a few, to deal with complex sub-problems. All of the above
variants however still suffer from working off a static tree
structure that needs rebuilding from time to time.

Further, applying decomposition to DPOP would result in
a significant increase in the message sizes, while compilation
would need a novel mechanism of calculating the agent util-
ity for different combinations of local variable assignments.
It would however be interesting to evaluate the effect of
utilizing our measure of DU as the utility metric on DPOP.

We thus conclude that while the above DCOP algorithms
are optimal in a static environment, there is need for a more

flexible robust algorithm, which can model the complexity
and adapt better to a dynamic environment.

V. THE DCDCOP ALGORITHM

We present the new measures of DCD and DU and a
new Dynamic Complex Distributed Constraint Optimization
Problem (DCDCOP) algorithm and explain these measures,
and algorithm execution, with a simple example.

A. Defining DCD and DU

Zhou [7] offers innovative measures of Dynamic Con-
straint Density (DCD) and Degree of Unsatisfaction (DU)
(a measure of how far an agent’s instantiation is from
reaching a consistent state) and presents algorithms based on
these to handle complex and dynamic constraint reasoning
problems efficiently. These however are suited only to satis-
faction and constraint relaxation approaches as the measure
does not take varying constraint costs into account.

We generalize the definitions of Zhou to define the
following new static measures of Intra-Agent Cost Density
(IACD) and Inter-Agent Cost Density (I ACD) :

IACDi =

0, if |intraVi|=0

∑|intraCi|
j=1 (δm(intraCj

i))
|intraVi| ,otherwise

(1)

I ACDi =

0, if |interVi|=0

∑|interCi|
j=1

(
δm(interCj

i)+
∑|κC

j
i
|

l=1 (δm(intraCl
i))

)

|interVi|
,otherwise

(2)
where intraCi is the set of intra-agent constraints for

agent i, δm represents the maximum cost of the constraint,
intraCj

i is the jth intra-agent constraint of agent i, intraVi

is the set of variables constrained by intraCi, interCi is
the set of inter-agent constraints for agent i, interCj

i is the
jth inter-agent constraint of agent i, κCj

i is the set of intra-
agent constraints belonging to i and connected to interCj

i ,
and interVi is the set of variables constrained by interCi

and controlled by agent i.
The measure of I ACD takes into account the intercon-

nectedness of the variables that are attached to an inter-agent
constraint. The higher the cost of intra-agent constraints
attached to the variable, the greater the impact of the variable
on the cost density. This is justified as changing the value
of this variable would attract a much higher effort towards
optimizing the problem. Also, the measures of IACD and
I ACD both equate to zero if there are no intra-agent or
inter-agent variables connected to constraints respectively.
Thus no variables, and a consequent cost density of 0, would
imply that this component of the problem does not need to
be solved further. Using these measures, we can now define
Static Cost Density (SCD).

342342

Static Cost Density of an agent is defined as the sum
of the maximum possible Intra-Agent and Inter-Agent Cost
Densities.

SCDi = IACDi + I ACDi (3)

In equations 1 and 2 we replace δm by δc, which gives
us the current cost of the constraint, to get our dynamic
measures of IntraUnsat (IU), and InterUnsat (I U), which
represent the dynamic intra-agent and inter-agent cost den-
sities respectively. We utilize these to define the measure of
Dynamic Cost Density (DCD).

IUi =

0, if |IACDi|=0

∑|intraCi|
j=1 (δc(intraCj

i))
|intraVi| ,otherwise

(4)

I Ui =

0, if |I ACDi|=0

∑|interCi|
j=1

(
δc(interCj

i)+
∑|κC

j
i
|

l=1 (δc(intraCl
i))

)

|interVi|
,otherwise

(5)
Dynamic Cost Density of an agent is defined as the sum

of the current Intra-Agent and Inter-Agent Cost Densities.

DCDi = IUi + I Ui (6)

We can now also redefine the measure of Degree of
Unsatisfaction for agent i (DUi).

Degree of Unsatisfaction of an agent is defined as the
ratio of the Dynamic(current) to Static Cost Densities.

DUi =
DCDi

SCDi
(7)

DU provides a measure of how far away an agent’s current
instantiation is from reaching an optimal state. It does not
provide a direct measure to compare the level of complexity
to two agents’ problems or the time it may take to solve
them. However, unlike a simple summation of max cost or
current cost, it attaches a higher cost to the changing of more
interconnected constraints, thus providing a more realistic
measure of the complexity of the solution.

B. An Example of Calculating DU

To better understand the above measures, we utilize a
simple example as shown in Figure 3(a). Here, we calculate
the values of SCD, DCD and DU for agent D, which has
four variables, three intra-agent constraints and three inter-
agent constraints. The max cost of each constraint (from the
cost table shown in the figure) is 1. In calculating the static
measures for the problem, we have:

(a) Step 1

(b) Step 2

(c) Step 3

Figure 3. Example of DCDCOP Execution

IACDD =
(1 + 1 + 1)

4
= 0.75

I ACDD =
((1 + (1)) + (1 + (1)) + (1 + (1)))

2
= 3

SCDD = 0.75 + 3 = 3.75

343343

Now, assuming a snapshot view of the scenario, where
each agent knows each other’s instantiation, we can calculate
the dynamic measures:

IUD =
(0 + 0 + 0)

4
= 0

I UD =
((1 + (0)) + (0 + (0)) + (0 + (0)))

2
= 0.5

DCDD = 0 + 0.5 = 0.5

DUD =
0.5
3.75

= 0.13

Note that the constraint between variables 1 and 2 of
agent D is counted twice in the calculation of I ACDD

and I UD. The calculated value of DU = 0.13 will be sent
to neighbors A and E. Other agents will similarly calculate
and send their DU values to neighbors.

C. Details of Algorithm

The DCDCOP algorithm is implemented as follows :
• All agents start by calculating the values of IACD,

I ACD and SCD. Then they instantiate their local
variables using a Branch and Bound algorithm [16],
thus ensuring that the current cost is the minimum al-
lowed by its current context. Each agent then calculates
its dynamic measures of DCD and DU and sends DU
and the related context to its neighbors (i.e. those agents
with whom it shares a constraint).

• All agents start to receive on incoming links. When
a message is received, its context is checked to ensure
that it is compatible with the agent’s CurrentContext.
If not, the message is discarded and the agent con-
tinues to listen on incoming links. If compatible, the
messageContext is added to CurrentContext and
messageDU is compared with the agent’s DU . If
DU is higher, the agent will reassign its variables,
recalculate its dynamic measures and resend messages
on outgoing links. If DU is lower than messageDU ,
it will not reassign its variables, but if relevant, it will
recalculate its dynamic measures and resend messages
on outgoing links. In the event that messageDU =
DU , the agent with a higher predefined ordering will
reassign its variables, recalculate its dynamic measures
and send messages on outgoing links.

• The search stops when each agent has achieved a stable
state and no more messages are transacted. In the case
of a solvable problem, this happens when the agent,
and all its neighbors, arrive at DU = 0. In the case of
an optimization problem, this happens when the agent
with a higher DU no longer changes its local solution
as doing so would raise the cost of its solution.

The pseudo code of the algorithm is shown in Figure 4.
Each negotiation is handled in one of the following ways: if
the values of DU are not identical, the agent with a higher

value of DU will change its value; if the values of DU are
identical, the agents will follow a fixed predefined ordering
between them to decide who changes their value. When an
agent with a higher DU finds no better instantiation for its
local variables, it will return the same, thus reaching a steady
state until it receives a context message from other agents
causing it to reevaluate its cost function. Note that the agent
with a lower DU can force the agent with a higher DU
to negotiate by raising the cost attached to the inter-agent
constraint.

Figure 4. The DCDCOP Algorithm

D. Example of DCDCOP Execution

In continuing the example from section V-B, assuming
agents A B and C are first to receive their messages, A
and C will both reassign their variables and send out new
messages, as they have received DU messages less than
theirs. This results in the state shown in Figure 3(b).

Now assume D and E receive both messages together.
Acting on the newer messages, both D and E will attempt
to reassign their variables because their last calculated DU
is higher than the messageDU from A and C respectively,
but with the updated values from A and C, both will arrive
at the same local solution as being the lowest cost. Similarly,
B will arrive at the same local solution as being the lowest
cost and they will send out their DU messages (Figure 3(c)).
Since all agents will detect that they have a DU of 0, the
algorithm will terminate.

344344

(a) Log(Number of Messages) (b) Log(Number of Cycles) (c) Log(Time in Seconds)

Figure 5. Performance of ADOPT vs DCDCOP (LD = 2)

(a) Log(Number of Messages) (b) Log(Number of Cycles) (c) Log(Time in Seconds)

Figure 6. Performance of ADOPT vs DCDCOP (LD = 3)

VI. EXPERIMENTAL EVALUATION

Given the need for agents to negotiate in a privacy pre-
serving manner, otherwise optimal approaches like OptAPO
are not suitable in this context. And while DPOP and its
variants are good DCOP algorithms, we choose ADOPT
for our experimental evaluation because, like DCDCOP, it
is based on constraint-guided search and thus provides a
more realistic comparison. Further, ADOPT’s source code
can handle multiple variables per agent (using compilation)
without any modification to the algorithm, and is thus well
suited to a fair and accurate comparison. To further ensure
a reasonable comparison, DCDCOP is developed within the
original ADOPT source code [17] and evaluated on the same
graph coloring problems that were used to report ADOPT’s
performance in [9] and come bundled with the source
code. Also, ADOPT’s original messaging and performance
evaluation procedures are utilized for the evaluation.

The original graph coloring problem data (8-40 variables)
is evenly distributed between 3-5 agents. Also as in the
original evaluation, we analyze the performance of both
algorithms on problems with link density (LD) of 2 and
3. The performance is compared using three measures:
number of messages, number of concurrent cycles, and
time(secs). To prevent a large disparity between the results,
the algorithms are run with a maximum time, timeMax of

30 mins. Also, given the large performance gain exhibited by
DCDCOP, we employ a logarithmic scale for a meaningful
display of results (Figures 5 and 6).

We observe that DCDCOP outperforms ADOPT signif-
icantly on all three scales of measurement. The speedup
can be attributed partly to the algorithm exploiting domain
centralization and performing each local reassignment within
one cycle, and partly to the novel dynamic measures used
to guide the inter-agent negotiation part of the algorithm.

The results allow for some extremely interesting observa-
tions. We observe that the difference in DCDCOP’s perfor-
mance for LD = 2 and LD = 3 is not as significant as in
the case of ADOPT. This can be attributed to computational
superiority over I/O speeds, the factor also responsible for
DPOPs performance gains over ADOPT [3]. We also note
that the performance of DCDCOP with 40 variables (in 5
agents), is reasonably similar that of ADOPT with 8 agents
(and 1 variable per agent). Further, the performance of DCD-
COP does not deteriorate much as we increase the problem
size from 8 variables (in 3 agents) to 40 variables (in 5
agents). This further asserts the computational superiority of
the centralized optimization algorithms such as Branch and
Bound, and reinforces common belief that communication
is the bottleneck in distributed problem solving.

We thus observe how problems that cannot be solved
efficiently by DCOP algorithms can benefit greatly if there is

345345

a component of domain centralization that they can exploit.
Further, a flexible robust algorithm like DCDCOP can help
model the departmental centralization structure of large real
world optimization problems, not only offering a natural
mapping from real world problem solving structure to DCOP
problem solving structure, but also exploiting this to provide
an order of magnitude improvement in performance.

VII. CONCLUSION

Several real world optimization problems translate to
agents with complex sub-problems in a dynamic environ-
ment, that need to negotiate in a manner where privacy and
decision making authority is preserved. The current state of
the art in DCOP deals with such problems by offering ex-
tensions to algorithms best suited for optimization of single-
variable agents in static environments and this often lead
to sub-optimality. We present a flexible, robust algorithm,
DCDCOP, that is capable of exploiting the inherent domain
centralization found in such problems, and uses a novel
measure, DU , to dynamically guide agent ordering during
optimization. Experimental evaluation shows that DCDCOP
significantly outperforms ADOPT, the current state of the
art DCOP search algorithm.

We are currently developing realistic and significant
benchmark problems based on scheduling process infor-
mation and data collected during our extensive interviews
and interactions with schedulers and domain experts at the
PAH. Further evaluation of DCDCOP and other DCOP
algorithms on these benchmarks, and investigating the use
of the measure of DU to guide agent based negotiation in
various DCOP algorithms, are proposed as future work.

ACKNOWLEDGMENT

We wish to thank Dr. Peter Moran and his colleagues at
the PAH for allowing us into their world, and sharing their
invaluable expertise with us over the last three years.

REFERENCES

[1] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara,
“Distributed constraint satisfaction for formalizing distributed
problem solving,” in International Conference on Distributed
Computing Systems, 1992, pp. 614–621.

[2] P. J. Modi, W. Shen, M. Tambe, and M. Yokoo, “An asyn-
chronous complete method for distributed constraint opti-
mization,” in Proceedings of the second international joint
conference on Autonomous agents and multiagent systems,
Melbourne, 2003, pp. 161–168.

[3] A. Petcu and B. Faltings, “A scalable method for multiagent
constraint optimization,” in Proceedings of the Nineteenth
International Joint Conference on Artificial Intelligence, Ed-
inburgh, Scotland, Aug. 2005, pp. 266–271.

[4] R. Mailler and V. Lesser, “Solving Distributed Constraint
Optimization Problems Using Cooperative Mediation,” in
Proceedings of the Third International Joint Conference on
Autonomous Agents and Multiagent Systems - Volume 1, New
York, 2004, pp. 438–445.

[5] M. C. Silaghi and M. Yokoo, “DFS Ordering in Nogood-
based Asynchronous Distributed Optimization (ADOPT-ng),”
in Sixth International Workshop on Distributed Constraint
Reasoning, Italy, 2006.

[6] R. T. Maheswaran, M. Tambe, E. Bowring, J. P. Pearce, and
P. Varakantham, “Taking DCOP to the real world: Efficient
complete solutions for distributed Multi-Event scheduling,” in
Proceedings of the Third International Joint Conference on
Autonomous Agents and Multiagent Systems - Volume 1, New
York, 2004, pp. 310–317.

[7] L. Zhou, J. Thornton, and A. Sattar, “Dynamic Agent Or-
dering in Distributed Constraint Satisfaction Problems,” in
Australian Conference on Artificial Intelligence, 2003, pp.
427–439.

[8] Queensland Health, “Quarterly Public Hospitals
Performance Report March Quarter 2009,”
http://www.health.qld.gov.au/surgical access, 2009.

[9] P. J. Modi, “Distributed constraint optimization for multiagent
systems,” Ph.D. dissertation, University of Southern Califor-
nia, USA, 2003.

[10] A. Petcu and B. Faltings, “S-DPOP: superstabilizing, fault-
containing multiagent combinatorial optimization,” in Pro-
ceedings of the Twentieth National Conference on Artificial
Intelligence, AAAI-05, Pittsburgh, Pennsylvania, USA, 2005,
p. 449–454.

[11] A. Petcu and B. Faltings, “Optimal solution stability in
dynamic, distributed constraint optimization,” in Proceedings
of the 2007 IEEE/WIC/ACM International Conference on
Intelligent Agent Technology. IEEE Computer Society, 2007,
pp. 321–327.

[12] R. N. Lass, E. A. Sultanik, and W. C. Regli, “Dynamic dis-
tributed constraint reasoning,” in Proceedings of the Twenty-
Third AAAI Conference on Artificial Intelligence, Chicago,
2008, pp. 1466–1469.

[13] D. A. Burke and K. N. Brown, “A comparison of approaches
to handling complex local problems in DCOP,” in Sixth
International Workshop on Distributed Constraint Reasoning,
Italy, 2006, p. 27–33.

[14] J. Davin and P. J. Modi, “Hierarchical variable ordering for
distributed constraint optimization,” in Proceedings of the
fifth international joint conference on Autonomous agents and
multiagent systems, Hakodate, Japan, 2006, pp. 1433–1435.

[15] D. A. Burke, “Exploiting problem structure in distributed
constraint optimisation with complex local problems,” Ph.D.
dissertation, Department of Computer Science, University
College Cork, Ireland, 2008.

[16] E. C. Freuder, “Partial constraint satisfaction,” in Proceedings
of the Eleventh International Joint Conference on Artificial
Intelligence, USA, 1989, p. 278–283.

[17] C. P. Portway, “USC DCOP Repository,”
http://teamcore.usc.edu/dcop, 2008.

346346

