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Monitoring the fluorescent radiation of an atom unravels the master equation evolution by col-
lapsing the atomic state into a pure state which evolves stochastically. A robust unraveling is one
that gives pure states that, on average, are relatively unaffected by the master equation evolution
(which applies once the monitoring ceases). The ensemble of pure states arising from the maximally
robust unraveling has been suggested to be the most natural way of representing the system [H.M.
Wiseman and J.A. Vaccaro, Phys. Lett. A 250, 241 (1998)]. We find that the maximally robust un-
raveling of a resonantly driven atom requires an adaptive interferometric measurement proposed by
Wiseman and Toombes [Phys. Rev. A 60, 2474 (1999)]. The resultant ensemble consists of just two
pure states which, in the high driving limit, are close to the eigenstates of the driving Hamiltonian
Ωσx/2. This ensemble is the closest thing to a classical limit for a strongly driven atom. We also
find that it is possible to reasonably approximate this ensemble using just homodyne detection, an
example of a continuous Markovian unraveling. This has implications for other systems, for which
it may be necessary in practice to consider only continuous Markovian unravelings.
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I. INTRODUCTION

Some states of open quantum systems are more ro-
bust than others. That is, they are less perturbed by
the system dynamics. This fact has been the subject of
a long-running and active research program [1–7]. Re-
cently, one of us and Vaccaro have introduced into this
program a formalism with a number of distinctive fea-
tures [8,9]. This formalism consists of finding the max-
imally robust unraveling (MRU) for the open quantum
system. Its introduction was motivated by a desire to
better understand the rich dynamics of open quantum
systems in general [8], and that of the atom laser in par-
ticular [9].

The use of the term “robust unraveling” rather than
“robust state” encapsulates two of the distinctive features
of the work of Refs. [8,9]. An unraveling is a way of mea-
suring the environment of an open quantum system such
that the system state can be described by a pure state
undergoing stochastic evolution. This is always possible
in principle if the unmonitored system obeys a Marko-
vian master equation, which we will assume to have a
unique stationary state. In the long time limit, the “un-
raveled” system will be in a pure state drawn at random
from a particular ensemble of pure states defined by the
unraveling. It is from the consideration of such an en-
semble of pure states that the two distinctive features of
our approach are met. The first is that it is not indi-
vidual pure states whose robustness are to be calculated,
but rather a whole ensemble of pure states, the average
robustness of which is calculated. The second is that the
pure states in this ensemble are physically realizable in
the sense that they are the states of the system known
to an experimenter using the appropriate measurement
scheme on the system’s environment.

As noted above, the principle application of the max-
imally robust unraveling formalism has been to a model

for an atom laser (a continuously damped and replen-
ished gaseous Bose-Einstein condensate). This work is
a specialized application in two ways. First, the system
itself has a high excitation number and so is a quantum
system in the classical limit. Second, only a subset of
the set of all possible unravelings was considered. This
subset (which is still infinite) contains those unravelings
that lead to continuous and Markovian evolution of the
system state vector [10]. This restriction was necessary
to make the problem tractable and was justified by the
classicality of the system.

In this work we apply the formalism of MRU to a sys-
tem with no classical limit (in the usual sense at least),
a resonantly-driven fluorescent two-level atom. This sys-
tem is one of the canonical examples of an open quan-
tum system, and has surprisingly complex dynamics for
its size. It is therefore worth investigating in its own
right. But, even more importantly, it is simple enough
that the maximally robust unraveling can be found ana-
lytically. It turns out that this MRU is neither continuous
nor Markovian. This enables us to investigate the ques-
tion of how closely one can approximate the ensemble of
this MRU if one is restricted to considering continuous
Markovian unravelings. The answer to this question has
implications for the general usefulness of the MRU for-
malism, since for typical systems it would be necessary
to impose this restriction in order to make the formalism
practical.

The structure of this paper is as follows. In Sec. II we
briefly review the MRU formalism. In Sec. III we intro-
duce the two-level atom model and derive an expression
for the ensemble average survival probability (which is
used to quantify the robustness) in terms of moments of
the ensemble of state vectors. In Sec. IV we look at one
simple (but not maximally robust) unraveling, that re-
sulting from direct detection of the atom’s fluorescence,
for comparison with other, more robust, unravelings. In
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Sec. V we present the most robust unraveling and its en-
semble of (in this case, just two) state vectors. In Sec. VI
we find the most robust unraveling from within the set
of continuous Markovian unravelings. We compare this
ensemble to the MRU of Sec. V in Sec. VII. We con-
clude with a discussion of the implications of our results
in Sec. VIII.

II. MAXIMALLY ROBUST UNRAVELINGS

A. The Master Equation

Open quantum systems generally become entangled
with their environment, and this causes their state to
become mixed. In many cases, the system will reach an
equilibrium mixed state in the long time limit. This is
the sort of system for which our approach to robustness,
of finding the maximally robust unraveling (MRU), can
be applied without modification.

If the system is weakly coupled to the environmental
reservoir, and many modes of the reservoir are roughly
equally affected by the system, then one can make the
Born and Markov approximations in describing the ef-
fect of the environment on the system [11]. Tracing over
(that is, ignoring) the state of the environment leads to
a Markovian evolution equation for the state matrix ρ of
the system, known as a quantum master equation. The
most general form of the quantum master equation that
is mathematically valid is the Lindblad form [12]

ρ̇ = −i[H, ρ] +
M
∑

µ=1

D[cµ]ρ ≡ Lρ, (2.1)

where for arbitrary operators A and B,

D[A]B ≡ ABA† − (A†AB +BA†A)/2. (2.2)

If the master equation has a unique stationary state
(as we will assume it does), then that is defined by

Lρss = 0. (2.3)

This assumption requires that L be time-independent. In
many quantum optical situations, such as resonance flu-
orescence, one is only interested in the dynamics in the
interaction picture, in which the free evolution at optical
frequencies is removed from the state matrix. Indeed, if
one treats the driving field as classical, as we will do, it
is necessary to move into such an interaction picture in
order to obtain a time-independent Liouvillian superop-
erator L.

The stationary state matrix ρss can be expressed as an
ensemble of pure states as follows:

ρss =
∑

k

℘k|ψk〉〈ψk|, (2.4)

where the |ψk〉 are normalized state vectors and the ℘k

are positive weights summing to unity. The (possibly
infinite) set of ordered pairs,

E = {(|ψk〉, ℘k) : k}, (2.5)

we will call an ensemble E of pure states. Note that there
is no restriction that the states be mutually orthogonal.
This means that there are continuously infinitely many
ensembles E that represent ρss. The aim of finding the
MRU is to find the “best” or “most natural” representa-
tion for ρss.

B. Unravelings

As explained in the Introduction above, the first crite-
rion for our most natural ensemble is that it be physically
realizable by monitoring the environment of the system.
In the situation where a Markovian master equation can
be derived, it is possible (in principle) to continually mea-
sure the state of the environment on a time scale large
compared to the reservoir correlation time but small com-
pared to the response time of the system. This effectively
continuous measurement is what we mean by “monitor-
ing”. In such systems, monitoring the environment does
not disrupt the system–reservoir coupling and the system
will continue to evolve according to the master equation
if one ignores the results of the monitoring.

By contrast, if one does take note of the results of mon-
itoring the environment, then the system will no longer
obey the master equation. Because the system–reservoir
coupling causes the reservoir to become entangled with
the system, measuring the former’s state produces infor-
mation about the latter’s state. This will tend to undo
the increase in the mixedness of the system’s state caused
by the coupling.

If one is able to make perfect rank-one projective (i.e.
von Neumann) measurements of the reservoir state, the
system state will usually be collapsed towards a pure
state. However this is not a process that itself can be
described by projective measurements on the system, be-
cause the system is not being directly measured. Rather,
the monitoring of the environment leads to a gradual (on
average) decrease in the system’s entropy.

If the system is initially in a pure state then, under
perfect monitoring of its environment, it will remain in a
pure state. Then the effect of the monitoring is to cause
the system to change its pure state in a stochastic and (in
general) nonlinear way. Such evolution has been called
a quantum trajectory [13], and can be described by a
nonlinear stochastic Schrödinger equation for the system
state vector [14–16]. The nonlinearity and stochasticity
are present because they are a fundamental part of mea-
surement in quantum mechanics.

On average, the system still obeys the master equa-
tion. That is, if the increment in |ψ〉 under the SSE is
|dψ〉 then
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E[|dψ〉〈ψ| + |ψ〉〈dψ| + |dψ〉〈dψ|] = LE[|ψ〉〈ψ|]. (2.6)

Here E denotes the ensemble average with respect to the
stochasticity of the SSE. This stochasticity is evidenced
by the necessity of retaining the Itô term |dψ〉〈dψ| [17].

Because the ensemble average of the system still obeys
the master equation, the stochastic Schrödinger equa-
tion) is said to unravel the master equation [13]. It is
now well-known that there are many (in fact continuously
many) different unravelings for a given master equation
[18], corresponding to different ways of monitoring the
environment.

Each unraveling U gives rise to an ensemble of pure
states

EU = {(|ψU
k 〉, ℘U

k ) : k}, (2.7)

where |ψU
k 〉 are the possible pure states of the system

at steady state, and ℘U
k are their weights. For master

equations with a unique stationary state ρss, the SSE is
ergodic over EU [19] and ℘U

k is equal to the proportion
of time the system spends in state |ψU

k 〉. The ensemble
EU represents ρss in that

∑

k

℘U
k |ψU

k 〉〈ψU
k | = ρss, (2.8)

as guaranteed by Eq. (2.6).

C. Survival Probability

Imagine that the system has been evolving under a
particular unraveling U from an initial state at time −∞
to the stationary ensemble at the present time 0. It will
then be in the state |ψU

k 〉 with probability ℘U
k . If we now

cease to monitor the system then the state will no longer
remain pure, but rather will relax toward ρss under the
evolution of Eq. (2.1).

This relaxation to equilibrium will occur at different
rates for different states. For example, some unravel-
ings will tend to collapse the system into a pure state
that is very fragile, in that it changes into a very dif-
ferent (and mixed) state as it relaxes to equilibrium. In
this case the ensemble would rapidly become a poor rep-
resentation of the observer’s expected knowledge about
the system. Hence we can say that such an ensemble is
a “bad” or “unnatural” representation of ρ. Conversely,
an unraveling that produces robust states would remain
an accurate description for a relatively long time. We ex-
pect such a “good” or “natural” ensemble to give more
intuition about the dynamics of the system. The most
robust ensemble we interpret as the “best” or “most nat-
ural” such ensemble.

We quantify the robustness of a particular state |ψU
k 〉

by its survival probability SU
k (t). This is the probability

that the system would be found (by a hypothetical pro-
jective measurement) to still be in the state |ψU

k 〉 at time
t. It is given by

SU
k (t) = 〈ψU

k |eLt
[

|ψU
k 〉〈ψU

k |
]

|ψU
k 〉. (2.9)

Since we are considering an ensemble EU we must de-
fine the average survival probability

SU(t) =
∑

k

℘U
k S

U
k (t). (2.10)

In the limit t→ ∞ the ensemble-averaged survival prob-
ability will tend towards the stationary value

SU(∞) = Tr[ρ2
ss]. (2.11)

This is independent of the unraveling U and is a measure
of the mixedness of ρss.

There are many possible figures-of-merit that may be
obtained from the survival probability SU(t), as discussed
in Ref. [9]. Here we choose the simplest one, also adopted
in [9]: the time it takes for SU(t) to fall half-way to its
equilibrium value. That is,

τU = min{t : SU(t) = (1 + Tr[ρ2
ss])/2}. (2.12)

This survival time τU quantifies the robustness of a par-
ticular unraveling U .

Let the set of all unravelings be denoted J . Then the
subset of maximally robust unravelings JM is

JM = {R ∈ J : τR ≥ τU ∀U ∈ J}. (2.13)

Even if JM has many elements R1,R2, . . ., these different
unravelings may give the same ensemble ER = ER1 =
ER2 = . . .. In this case we claim ER is the most natu-
ral ensemble representation of the stationary solution of
a given master equation. Different definitions of survival
time [8,9] will obviously lead to different numerical values
for τR. We are less concerned with such numerical val-
ues than with the robust ensemble ER, which has been
found [9] to depend little on the precise definition used.

III. THE TWO-LEVEL ATOM

A. The Resonance Fluorescence Master Equation

Consider an atom with two relevant levels {|g〉, |e〉}.
Let there be a dipole moment between these levels so
that the coupling to the continuum of electromagnetic
field modes in the vacuum state will cause the atom to
decay at rate γ. So that the atom does not simply decay
to the state |g〉, add driving by a classical field (such as
that produced by a laser) of Rabi frequency Ω. We work
in the interaction picture with respect to the free Hamil-
tonian H0 = h̄ω0|e〉〈e| so that the classical driving at
frequency ω becomes time-independent. The evolution
of the atom’s state matrix can then be described by the
resonance fluorescence (RF) master equation
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ρ̇ = −iΩ
2

[σx, ρ] + γD[σ]ρ. (3.1)

In this equation we have used the Pauli matrices

σx = |e〉〈g| + |g〉〈e| (3.2)

σy = −i|e〉〈g| + i|g〉〈e| (3.3)

σz = |e〉〈e| − |g〉〈g| (3.4)

σ = |g〉〈e| =
1

2
(σx − iσy) (3.5)

σ† = |e〉〈g| =
1

2
(σx + iσy) (3.6)

In terms of these, any state of the atom can be written
as a 3-vector (x, y, z) satisfying

x2 + y2 + z2 ≤ 1, (3.7)

with equality only for a pure state. From this Bloch vec-
tor the state matrix is defined by

ρ =
1

2
(I + xσx + yσy + zσz) . (3.8)

The linear equations of motion for the Bloch vector
that result from Eq. (3.1) are known as the Bloch equa-
tions. The solution satisfying the initial condition

x(0) = u , y(0) = v , z(0) = w (3.9)

is

x(t) = ue−(γ/2)t, (3.10)

y(t) = c+e
λ+t + c−e

λ
−

t + yss, (3.11)

z(t) = c+
γ − 4iΩ̃

4Ω
eλ+t + c−

γ + 4iΩ̃

4Ω
eλ

−
t + zss. (3.12)

Here c± are constants given by

c± =
1

8iΩ̃

[

∓4Ω(w − zss) ± (γ ± 4iΩ̃)(v − yss)
]

. (3.13)

The eigenvalues λ± are defined by

λ± = −3

4
γ ± iΩ̃. (3.14)

Here

Ω̃ =
√

Ω2 − (γ/4)2 (3.15)

is a real modified Rabi frequency for Ω > γ/4, and is
imaginary for Ω < γ/4. The stationary solutions appear-
ing in the above equations are

xss = 0, (3.16)

yss =
2γΩ

γ2 + 2Ω2
, (3.17)

zss =
−γ2

γ2 + 2Ω2
. (3.18)

B. The Survival Probability

Using the Bloch vector representation of the atomic
state matrix it is easy to show that the survival proba-
bility for a pure state |ψk〉 with projector

|ψk〉〈ψk| =
1

2
(1 + ukσx + vkσy + wkσz) (3.19)

is

Sk(t) =
1

2
(1 + xk(t)uk + yk(t)vk + zk(t)wk) , (3.20)

where (x, y, z)k(t) is the Bloch vector at time t with
the initial condition (x, y, z)k(0) = (u, v, w)k as in
Eqs. (3.10)–(3.12). From that solution it is evident that
Sk(t) will contain terms that are constant, linear, and
bilinear in the vector components (u, v, w)k of the initial
state.

As explained in the preceding section we are interested
in the survival probability not for a single state but for
an ensemble of states. This is the ensemble average of
Eq. (2.10). After some work, the survival probability in
this case is found to be simply

S(t) =
∑

k

℘kSk(t) (3.21)

=
1

2
(1 + y2

ss + z2
ss) +

1

2
(3.22)

×
[

(1 − y2
ss − z2

ss)e
−(γ/2)t + Vvf+(t) + Vwf−(t)

]

,

where

f±(t) = −e−(γ/2)t + e−(3γ/4)t

(

cos Ω̃t± γ

4Ω̃
sin Ω̃t

)

.

(3.23)

In Eq. (3.22), all the information about the ensemble is
contained in the moments

Vv ≡ E[v2] − E[v]2 =
∑

k

℘kv
2
k −

(

∑

k

℘kvk

)2

, (3.24)

Vw ≡ E[w2] − E[w]2 =
∑

k

℘kw
2
k −

(

∑

k

℘kwk

)2

. (3.25)

This is possible because we have used the following rela-
tions:

E[(u, v, w)] = (xss, yss, zss), (3.26)

E[u2] = 1 − E[v2] − E[w2]. (3.27)

To find the robustness of any particular unraveling we
thus need to find simply the two ensemble averages Vv

and Vw.
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IV. UNRAVELING BY DIRECT DETECTION

The most obvious way to unravel the RF master equa-
tion is by direct detection. This requires detecting all of
the atom’s fluorescence by unit-efficiency photodetectors.
This is beyond current technology, but not by so much
that the experiment should be considered unphysical. As
we will find, unraveling by direct detection is actually not
very robust (by the definition of Sec. II) but it is never-
theless useful to consider as a point of comparison with
more robust unravelings.

The stochastic evolution of an atom undergoing RF
with direct detection has been considered many times be-
fore [13,16]. It has one feature that enables an enormous
simplification over a generic unraveling. This is that im-
mediately following a detection, the atomic state is inde-
pendent of its state before, and is just the ground state
|g〉. Between these jumps to the ground state, the condi-
tioned atomic state evolves deterministically. At steady
state, when there has certainly been at least one detec-
tion, all members of the ensemble are therefore identified
simply by the time t since the last detection.

If there is a detection at time t0, then, until the next
detection occurs, the state of the atom at time t0 + t
evolves according to the equation [13,16]

d

dt
|ψ̃0(t)〉 = −

(

γ

2
σ†σ − i

Ω

2
σx

)

|ψ̃0(t)〉. (4.1)

The solution, satisfying the initial condition |ψ̃0(0)〉 = |g〉
is

|ψ̃0〉 = c̃e(t)|e〉 + c̃g(t)|g〉, (4.2)

where

c̃g(t) =

[

cos(Ω̌t/2) +
γ

2Ω̌
sin(Ω̌t/2)

]

e−(γ/4)t, (4.3)

c̃e(t) = −iΩ
Ω̌

sin(Ω̌t/2)e−(γ/4)t. (4.4)

Here

Ω̌ =
√

Ω2 − (γ/2)2 (4.5)

is a real modified Rabi frequency for Ω > γ/2 and is

imaginary for Ω < γ/2. Note that it is different from Ω̃
defined in Eq. (3.15).

The state in Eq. (4.2) is unnormalized, and the norm

〈ψ̃0(t)|ψ̃0(t)〉 represents the probability that there has
been no detection since time t0, given that there was
a detection at that time. Let us write this probability as

P0(t) = |c̃e(t)|2 + |c̃g(t)|2. (4.6)

We show in the appendix that this probability is related
to ℘(t), the probability that, at steady state, the last
detection was a time t ago, by

℘(t) =
P0(t)

∫∞

0 P0(s)ds
. (4.7)

As noted above, in steady state under direct detection
the possible atomic states are parametrized by the real
variable t, the time since the last detection. The state at
that time has projector

P̂ (t) =
|ψ̃0(t)〉〈ψ̃0(t)|
〈ψ̃0(t)|ψ̃0(t)〉

, (4.8)

and the weight for each of these members of the ensemble
is ℘(t)dt. Physically, all members of the ensemble exist
on the u = 0 great circle of the Bloch sphere, because that
is where the modified Rabi cycling of Eq. (4.1) takes the
ground state. This distribution is shown in Fig. 1(a).
For Ω̌ imaginary (that is, Ω < γ/2) the states never
reach the excited state. For Ω̌ real (that is, Ω > γ/2,
the states may undergo an arbitrary number of cycles.
For Ω ≫ γ the states are likely to undergo many cycles
before a spontaneous emission event occurs so that the
ensemble consists of all the states on the u = 0 great
circle, almost uniformly distributed.

From Eq. (4.8) it can be verified analytically that

∫ ∞

0

P̂ (t)℘(t)dt =
1

N

∫ ∞

0

dt|ψ̃0(t)〉〈ψ̃0(t)| = ρss, (4.9)

where

N =

∫ ∞

0

[

|c̃e(t)|2 + |c̃g(t)|2
]

dt. (4.10)

. Moreover we can easily find numerically the ensemble
averages necessary to find the ensemble average survival
probability, namely

Vv =
1

N

∫ ∞

0

[ic̃e(t)c̃
∗
g(t) − ic̃∗e(t)c̃g(t)]

2

|c̃e(t)|2 + |c̃g(t)|2
dt− y2

ss, (4.11)

Vw =
1

N

∫ ∞

0

[|c̃e(t)|2 − |c̃g(t)|2]2
|c̃e(t)|2 + |c̃g(t)|2

dt− z2
ss, (4.12)

In Fig. 2 we plot the survival probability for the direct
detection ensemble, for a variety of driving strengths Ω.
We see that for Ω < γ the survival probability decays ap-
proximately exponentially at rate of order γ. For Ω ≪ γ
the stationary state matrix is close to the ground state,
and most members of the direct detection ensemble are
also. For Ω ≫ γ the ensemble is equally spread over
the u = 0 great circle and consequently the variances Vv

and Vw are approximately equal to 1/2. Using this, the
survival probability is found to be approximately

S(t) ≈ 1

2

(

1 + e−(3/4)γt cos Ω̃t
)

. (4.13)

The oscillations in the survival probability are due to
the Rabi oscillations. As noted above, the direct detec-
tion ensemble consists of states on the u = 0 great cir-
cle. Rabi cycling around the x-axis according to the RF
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master equation (3.1) rotates this circle around, rapidly
moving the states away from their initial positions and
then back close to their initial conditions after one cycle.
They do not return exactly to their initial states because
of the slow (at rate 3γ/4) decay towards the equilibrium
state. This behaviour is illustrated for a typical member
of the direct detection ensemble in Fig. 1(b).

The change from damped to oscillatory behaviour has
a dramatic effect on the survival time in Eq. (2.12). It
is plotted in Fig. 3 as a function of Ω. For Ω ≪ γ it is
given by

τ ≃ 2 ln 2γ−1, (4.14)

as in this limit the survival probability decays as e−γt/2.
For Ω ≫ γ, we can use Eq. (4.13) to get the approximate
expression

τ ≃ π

3
Ω−1. (4.15)

That is, the survival time is here determined by the
Hamiltonian evolution only. As shown in Fig. 3, this
is quite a good approximation even for moderate Ω.

V. THE MOST ROBUST UNRAVELING

A. The Most Robust Ensemble

It was stated above that the unraveling by direct de-
tection is not the most robust unraveling. In fact, from
an examination of the survival probability in Eq. (3.22)
we can see that it is one of the least robust unravelings
for Ω ≫ γ. That is because of the large variances in v
and w in this limit.

It is not difficult to show that the two functions f+(t)
and f−(t), defined in Eq. (3.23), are non-positive for all
Ω and for t > 0. Since the variances Vv and Vw are non-
negative, it is easy to see that to maximize the survival
probability, one would wish to minimize Vv and Vw. The
ideal limit would be Vv = Vw = 0. This corresponds to
an ensemble in which all members have the same Bloch
vector components v and w. Since the ensemble average
must equal ρss it follows then that for all members

v = yss , w = zss. (5.1)

Furthermore, since xss = 0, and since the members of the
ensemble must be pure, it follows that for all members

u = ±
√

1 − y2
ss − z2

ss, (5.2)

where the two alternatives are equally weighted. These
two members of the ensemble are shown in Fig. 1(c).

This ensemble is guaranteed to give the maximum sur-
vival probability

S(t) =
1

2
(1 + y2

ss + z2
ss) +

1

2

[

(1 − y2
ss − z2

ss)e
−(γ/2)t

]

,

(5.3)

which is plotted in Fig. 5. It gives the maximum survival
time

τ = 2 ln 2γ−1, (5.4)

which is independent of Ω. There is no Rabi cycling be-
cause the states defined by the Bloch vector (u, v, w) have
v and w already equal to their stationary values. Under
the master equation evolution u simply decays towards
its stationary value of zero and v and w remain constant.
This decay of the Bloch vector to equilibrium at rate γ/2
is shown in Fig. 1(d).

B. Adaptive Interferometric Detection

The most robust ensemble defined here would be a
mere curiosity if it were not for the fact that there is a
detection scheme that realizes it. This scheme, proposed
by one of us and Toombes [20], involves interfering the
light from the atom with a resonant local oscillator before
detection. This is done using a highly transmitting beam
splitter as shown in Fig. 4. In the limit of a large local os-
cillator, this is known as homodyne detection. However
we require a very weak local oscillator, with reflected in-
tensity comparable to the intensity of the light from the
atom. Furthermore, we require the local oscillator ampli-
tude to be continually adjusted by a real-time feedback
loop. To be specific, the field detected should be propor-
tional to

σ + µ(t), (5.5)

where the field from the atom is proportional to σ, the
atomic lowering operator as usual, and the local oscilla-
tor field is represented by the complex number µ(t). This
complex number is given by

µ(t) = ±1

2
, (5.6)

where the sign is changed every time a detection occurs.

Remarkably, this relatively simple detection scheme
has the consequence that, after initial transients have
died away, a driven atom jumps between the states with
projector P̂±, where

P̂± =
1

2

(

I ±
√

1 − y2
ss − z2

ssσx + vssσy + wssσz

)

, (5.7)

every time a detection occurs. The rate of detections
moreover is independent of which of these states the atom
is in, and is equal to γ/4. Thus in the long time limit the
atom will have a probability ℘± = 1/2 to be in each of
them, and the maximally robust ensemble will be physi-
cally realized.
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VI. CONTINUOUS MARKOVIAN
UNRAVELINGS

The most robust unraveling is neither continuous nor
Markovian. It is not continuous because the atomic state
jumps every time there is a detection. It is not Marko-
vian because the evolution of the atomic state does not
depend only on its present state. Rather, it depends on
the past history of detections through the local oscilla-
tor amplitude µ(t). As noted in the introduction, previ-
ous investigations of robust unravelings in other systems
[8,9] have been restricted to unravelings that do have
these properties. It is therefore interesting to ask for the
present system, how close to the MRU is the most robust
unraveling that is continuous and Markovian?

Continuous Markovian unraveling (CMU) of the
RF master equation (3.1) can be represented by a
two-parameter family of nonlinear SSEs for the non-
normalized state vector |ψ̄(t)〉 of the form

d|ψ̄(t)〉 = dt
[

−iH − γ

2
σ†σ + J(t)σ

]

|ψ̄(t)〉, (6.1)

which is to be interpreted in the Itô sense [17]. Here J(t)
is a complex “current” given by

J(t)dt = γ
〈

υσ + σ†
〉

dt+
√
γ dW (t), (6.2)

where υ is a complex number satisfying

υ∗υ ≤ 1, (6.3)

and the angle brackets denote a quantum average using
the normalized state vector |ψ(t)〉. We use |ψ̄〉 rather

than |ψ̃〉 because the norm of |ψ̄〉 has no interpretation

in terms of probability, unlike that of |ψ̃〉 in Sec. IV. The
stochastic term dW (t) is a complex Gaussian white noise
term satisfying

E[dW ] = 0, (6.4)

E[dW ∗dW ] = dt, (6.5)

E[(dW )2] = υdt. (6.6)

The complex parameter υ comprises the two parame-
ters for the family of unravelings of the form of Eq. (6.1).
From Eq. (6.4) and Eq. (6.5) it can be shown that
Eq. (2.6) is satisfied for all υ. Thus

ρ(t) = E

[ |ψ̄(t)〉〈ψ̄(t)|
〈ψ̄(t)|ψ̄(t)〉

]

(6.7)

obeys the RF master equation (3.1), while in an individ-
ual trajectory the state remains pure. In this case there is
no simple way to find the steady state ensemble of pure
states. A numerical simulation of Eq. (6.1), with time
averages replacing ensemble averages, is the only way to
proceed.

Finding the maximally robust continuous Markovian
unraveling (MRCMU) in this case reduces to a search

over the ball |υ|2 ≤ 1 in the complex plane. We find that
the MRCMU is for υ = 1. For this value of υ the “cur-
rent” J(t) (which is real in this case) has a deterministic
part equal to

E [J(t)] = γ 〈σx〉 . (6.8)

That is, the measurement yields information about the
σx quadrature of the atomic dipole. As a consequence
it tends to localize the atom near the σx eigenstates.
This localization is relatively stable for high driving, since
these are also eigenstates of the Hamiltonian Ωσx/2. This
is shown in Fig. 1(e), which is a stochastically generated
sample of 10000 states from the equilibrium ensemble for
the MRCMU. In complete contrast to the direct detec-
tion ensemble in Fig. 1(a), most of the states lie close
to the σx eigenstates. For Ω large as in this figure, this
means close to the two members of the MRU shown in
Fig. 1(c).

Because a typical member of the MRCMU ensemble is
fairly close to the σx axis, it is relatively little affected by
the Hamiltonian, which causes rotation around that axis.
Under the RF master equation (3.1) its evolution consists
of decay to the equilibrium, with relatively small Rabi
oscillations superimposed. This is as shown in Fig. 1(f).
As a consequence, although the survival probability oscil-
lates, it remains above its equilibrium value and decays
towards it at a rate proportional to γ. This is shown
in Fig. 5 for Ω = 10γ. Also shown, for comparison, is
the survival probability for the minimally robust CMU,
which occurs for υ = −1. This is almost identical to the
corresponding curve for direct detection in Fig. 2, as the
ensemble is confined to the u = 0 great circle in both
cases.

The survival time for the MRCMU is shown in Fig. 3.
Because of our definition of survival time in Eq. (2.12),
the survival time for the MRCMU is determined by the
rapid (for Ω ≫ γ) oscillations in the survival probability
rather than the slow mean decay. Thus it is qualitatively
similar to the survival time for the direct detection en-
semble, starting at 2 ln 2γ−1 and then falling like Ω−1 as
Ω increases.

VII. COMPARISON OF THE MRU AND THE
MRCMU

We have seen that no continuous Markovian unraveling
(CMU) is as robust as the maximally robust unraveling
(MRU), which is neither continuous nor Markovian. Fur-
thermore, the robustness for the maximally robust CMU,
as measured by the survival time, scales in the same way
as that for the very non-robust direct detection scheme.
However, because of the arbitrariness in any definition of
survival time, we are interested more in the robust en-
sembles themselves than in the numerical values of their
survival times. As discussed above, the MRCMU realizes
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an ensemble that has a common feature with that real-
ized by the MRU: the states in the ensemble tend to have
well-defined values of u = 〈σx〉. In this section we wish
to answer the question: just how close is the MRCMU
ensemble to the MRU ensemble?

A. Closeness of Two Ensembles

To answer this question we require a measure (not nec-
essarily transitive) from ensemble EA to ensemble EB,
where each ensemble represents the same state matrix. It
seems best to choose an operationally defined measure,
which we do as follows.

By allowing the same projector to reappear with dif-
ferent indices, we can write, to any desired degree of ac-
curacy,

EA =
{

(|φk〉, N−1) : 1 ≤ k ≤ N
}

, (7.1)

EB =
{

(|ψµ〉, N−1) : 1 ≤ µ ≤ N
}

, (7.2)

where |φk〉 and |ψµ〉 are normalized states such that

ρ = N−1
∑

k

|φk〉〈φk| = N−1
∑

µ

|ψµ〉〈ψµ|, (7.3)

where N is an arbitrarily large integer.
To define the closeness of the ensembles, imagine that

there are two people, Alice and Bob. Alice has in her
possession a measuring device with N settings, corre-
sponding to the N projectors {|φk〉〈φk| : k}. If setting
k is chosen then the device makes a projective measure-
ment with projector |φk〉〈φk|. Bob has in his possession
an ensemble of quantum states {|ψµ〉 : µ}. It is Bob’s
aim to try to convince Alice that he is actually in pos-
session of the ensemble {|φk〉 : k}. He must submit each
of his N systems |ψµ〉 to Alice, telling her which of her
states |φk〉 each is supposed to be in. She then makes the
appropriate measurement and, unless Bob’s ensemble re-
ally is the same as Alice’s, is likely to find errors some
of the time. An error is when a state that Bob claims is
|ψk〉 is found to give the answer “no” to Alice’s projective
measurement “is the state |φk〉?” Assuming Bob chooses
a good strategy, then the higher the probability of error,
the larger the distance between the two ensembles.

We can formalize this as follows. Say Bob actually
sends state |ψµ〉, but claims it is |φk(µ)〉, where the func-
tional dependence here indicates that Bob makes his
choice of index k based on his actual state. Then the
probability of error for this state is

ǫk(µ)|µ = 1 −
∣

∣〈φk(µ)|ψµ〉
∣

∣

2
. (7.4)

The ensemble average probability of error, for Bob’s op-
timum strategy, is

ǫopt = N−1 min
M

N
∑

µ=1

ǫk(µ)|µ, (7.5)

where the minimum is over all one-to-one mappings M

µ
M−→ k(µ) , k

M−1

−→ µ(k). (7.6)

Bob’s strategies have to correspond to a mapping of this
form because unless Bob names each of Alice’s states
once and once only Alice would know that Bob is lying
when he claims to be in possession of Alice’s ensemble
{|φk〉 : k}.

We could take the distance between the ensembles to
be equal to this minimum average error probability. How-
ever, if the state matrix ρ is close to being pure (with
Tr[ρ2] close to one), then the average error probability
would be small regardless of what strategy Bob chose.
In particular, if Bob had a totally random strategy then
the error probability for an individual state |ψµ〉 would
be, on average,

〈ǫk|µ〉 = 1 − 〈ψµ||φk〉〈φk||ψµ〉 = 1 − 〈ψµ|ρ|ψµ〉, (7.7)

and the ensemble average error probability would be

ǫ = N−1
N
∑

µ=1

(1 − Tr[ρ|ψµ〉〈ψµ|]) = 1 − Tr[ρ2]. (7.8)

That is, the average error probability would be close to
zero even though Bob does not take into account the dif-
ference between his states so that his effective ensemble
consists of N copies of the mixed state ρ.

For this reason, it seems better to define the distance
between the ensembles by the normalized error probabil-
ity:

d(EA|EB) =
1 − minM

∑N
µ=1

1
N

∣

∣〈φk(µ)|ψµ〉
∣

∣

2

1 − Tr[ρ2]
. (7.9)

In this case it is easy (at least for a two-level system) to
see that

0 ≤ d(EB |EA) ≤ 1, (7.10)

where the lower bound is attained if and only if the en-
sembles are identical, and where no tighter upper bound
can be found for a given ρ. Thus the two ensembles could
be said to be close if and only if d(EB |EA) ≪ 1.

B. Closeness of the MRU and MRCMU Ensembles

In the case at hand the reference ensemble EA is the
most robust ensemble of Sec. V, while the ensemble EB

whose closeness we wish to gauge is that of the most ro-
bust continuous Markovian unraveling of Sec. VI. The
fact that EA has only two elements, whereas EB has an
infinitude of elements causes no problems. We simply al-
low an arbitrarily large number N of elements for each
ensemble and let half of those for ensemble A be the state
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with projector P̂+ and half the state P̂−, as defined in
Eq. (5.7).

Because the two states P̂± differ only by the sign of
〈σx〉, and because both ensembles are symmetric about
a reflection in the y−z plane, Bob’s best strategy is easy
to find. For each of his states |ψµ〉 he tells Alice that it

is state P̂+ if it has a positive mean σx, and P̂− if it has
a negative mean σx. If |ψµ〉 is the state

|ψµ〉〈ψµ| =
1

2
(1 + uµσx + vµσy + wµσz), (7.11)

then the probability of error for this state is

ǫµ = 1 − 〈ψµ|P̂sign(uµ)|ψµ〉 (7.12)

=
1

2
− 1

2
(|uµ|

√

1 − y2
ss − z2

ss + vµyss + wµzss). (7.13)

Averaging over all of Bob’s states we get

ǫopt =
1

2
− 1

2

(

1

N

∑

µ

|uµ|
√

1 − y2
ss − z2

ss + y2
ss + z2

ss

)

,

(7.14)

and the distance from the MRU ensemble to the MR-
CMU ensemble is

d(EA|EB) = 1 − E[|u|]
√

1 − y2
ss − z2

ss

. (7.15)

Thus to find how close the MRCMU ensemble is to
the MRU ensemble we simply need to evaluate E[|u|],
the ensemble average of | 〈σx〉 | for the former. The re-
sult is plotted in Fig. 6. The distance is always less than
about 0.3, the value to which it appears to asymptote for
large Ω. Since this is moderately small compared to one,
we can say that the two ensembles are moderately close.
This is in stark contrast to either the direct detection
ensemble or the υ = −1 CMU ensemble. For these two
ensembles, u = 0 for all members, so the distance to the
MRU ensemble is the maximum value of unity.

Also plotted in Fig. 6 is the distance from the CMU
with υ = 0 to the MRU ensemble. This CMU has a
number of special properties and is sometimes known as
quantum state diffusion [21,22]. We see that it also gives
an ensemble whose distance to the MRU ensemble is less
than unity. However, the distance is considerably greater
than that of the MRCMU, asymptoting to a value greater
than 0.4.

VIII. DISCUSSION

The resonance fluorescence master equation generates
surprisingly rich dynamics for a two-level atom. Here we
have investigated those dynamics using the technique of
finding the maximally robust unraveling. That is, finding
the scheme for monitoring the fluorescent radiation that

collapses the atom into pure states that are, on average,
the most robust. By robust we mean that they survive
best under the master equation evolution so that, once
the monitoring ceases, the probability for the atom to
be found at some later time to still be in the state into
which it was collapsed by the monitoring, is maximized.

The property of producing robust states may give
the maximally robust unraveling potential applications,
particularly in quantum information technology [23,24]
where minimizing the effect of environmental decoher-
ence is essential. Quite separately from any application,
the maximally robust unraveling is useful for character-
izing the dynamics of open quantum systems, such as
the resonantly driven atom of this study. It has been
suggested before [8,9] that the ensemble arising from the
MRU is the most natural representation of the system’s
stationary state matrix in terms of pure states (state vec-
tors).

In this work we have found that the MRU for the RF
master equation is an adaptive interferometric monitor-
ing scheme proposed in Ref. [20]. The atom’s radiation
is, prior to detection by a photodetector, interfered at a
beam splitter with a reflected local oscillator. The mea-
surement is adaptive because the local oscillator ampli-
tude (which is comparable in magnitude to the field ra-
diated by the atom) has its phase changed by π every
time a detection occurs. This detection scheme has the
remarkable property that, in steady state, the atom sim-
ply jumps between two fixed pure states. In the large
driving limit, these two pure states are close to eigen-
states of the driving Hamiltonian Ωσx/2.

The adaptive interferometric monitoring scheme was
designed in Ref. [20] specifically to have this property
of producing a stationary ensemble containing just two
members. In that reference it was found that other de-
tection schemes, such as spectral detection (resolving the
three Mollow peaks), and another adaptive scheme, give
rise to similar behaviour. That is, the atom jumped be-
tween states that were close to σx eigenstates in the large
driving limit. In Ref. [20] it was speculated that this be-
haviour was what the atom “wanted to do”. Here we
have confirmed that the resulting two-member ensemble
is indeed the most robust and hence arguably the most
natural. In the context of the study of decoherence and
the classical limit, it appears that jumping between two
fixed states is the most classical behaviour for a strongly-
driven two level atom.

Another issue we have investigated in this paper is how
close to the MRU one can approach if one restricts the
unravelings to continuous Markovian ones. In the con-
text of the fluorescent atom, this means unravelings re-
alizable from homodyne measurements. They give rise
to evolution on the Bloch sphere that is continuous (but
not differentiable) and Markovian. This is an interesting
question because the set of continuous Markovian unrav-
elings is easily parameterized by real numbers, unlike the
set of all possible unravelings, which is too large to be
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finitely parameterized in this way. For this reason, pre-
vious work in MRU [8,9] has concentrated on finding the
most robust CMU.

In this work we have found that the MRCMU has a
robustness, as measured by the survival time, which falls
as Ω−1 as the driving Ω increases. This is similar to the
result for direct detection, and contrary to that of the
MRU for which the survival time is constant at 2 ln 2γ−1.
However, as we have shown graphically, the distribution
of states on the Bloch sphere for the MRCMU ensem-
ble is qualitatively much closer to that of the MRU than
to that of direct detection. Furthermore, we have in-
troduced a quantitative measure for the closeness of two
ensembles of pure states, and applied this to the vari-
ous unravelings. We find that the MRCMU ensemble is
reasonably close to the MRU ensemble, while the direct
detection ensemble is as distant as is possible from the
most robust ensemble.

This result has wider implications in the program of
decoherence, robustness, and the classical limit. A two-
level atom is an extremely non-classical system. In the
limit of strong driving the stationary state matrix is al-
most fully mixed, and the existence of two discrete levels
manifests strongly in the dynamics: the maximally ro-
bust unraveling has jumps between two almost orthogo-
nal states. By contrast, under a continuous Markovian
unraveling the atomic state does not jump, but rather
diffuses around the Bloch sphere.

We have shown that, despite the atom’s nonclassical-
ity, the ensemble generated by a CMU can be reasonably
close to that generated by the MRU. This suggests that
restricting an investigation to continuous Markovian un-
ravelings is not a serious restriction (provided that one
is not interested in the numerical value of the maximum
survival time). The basic nature of the maximally robust
unraveling should be evident from that of the maximally
robust CMU. For the two-level atom it is fortunate that
the absolute maximally robust unraveling can be found
analytically. For more general systems a numerical search
would be necessary, and, to be practical, would have to
be confined to finitely parameterizable unravelings such
as the continuous Markovian unravelings. Thus our re-
sults lends credence to the whole program of finding the
(approximately) maximally robust unraveling for open
quantum systems.

APPENDIX: DERIVATION OF EQ. (4.7)

Let n(t) be the event that there were no detections
from time t0 to the present time t0 + t. Let d(t) be the
event that there was a detection at time t before the
present. Then

P0(t) = P [n(t)|d(t)], (A1)

where P0(t) is as in Eq. (4.6) and where P [A|B] means
the probability of A given B.

Now what we want is ℘(t), the probability that the last
detection was at a time t before the present, at steady
state. That is, the probability that there was a detection
at time t in the past, and that there were no detections
from then until now. In other words,

℘(t) = P [n(t) ∧ d(t)], (A2)

where P [A ∧B] means the joint probability of A and B.
Now from the definition of conditional probability,

P [A ∧B] = P [A|B]P [B]. Therefore

℘(t) = P0(t)P [d(t)]. (A3)

But at steady state (that is, after initial transients have
decayed), the probability that there was a detection at
time t in the past, given no other information, does not
depend on t. That is, P [d(t)] is a constant, so we simply
have

℘(t) = N−1P0(t), (A4)

for some constant N .
To find the constant of proportionality we just note

that, since the last detection must have been at some
time t in the past,

∫∞

0
℘(t)dt = 1. Here we are actually

treating ℘(t)dt as the probability that the last detection
was in the interval [t, t + dt). From this condition it is
easy to see that

N =

∫ ∞

0

P0(t)dt, (A5)

which gives Eq. (4.7).
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Figure 1 is attached at the end.

FIG. 1. Plots (a), (c), and (e) show the distribution of pure
states in the stationary ensemble on the Bloch sphere under
various detection schemes. Plots (b), (d), and (f) show the
decay towards the stationary state matrix of a typical member
of each ensemble. Plots (a) and (b) are for direct detection,
(c) and (d) for the maximally robust unraveling, and (e) and
(f) for the maximally robust continuous Markovian unravel-
ing. For all plots Ω/γ = 10. The ensemble in (c) consists
of just two members, and the dots indicating their positions
have been enlarged to make them more easily visible.
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FIG. 2. Plot of the ensemble average survival probability
S(t) versus time (in units of γ−1) for the stationary ensemble
of direct detection. The three curves are, from the top down,
Ω = γ/2, Ω = γ, and Ω = 10γ.
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FIG. 3. Plot of the ensemble survival time (in units of γ−1)
versus Ω/γ. The solid curve is for the ensemble arising from
direct detection (Sec. IV). The dashed curve is the large Ω/γ
analytical approximation to it in Eq. (4.15). The dotted curve
is that from the maximally robust unraveling (Sec. V). The
dash-dot curve is that from the maximally robust continuous
Markovian unraveling (Sec. VI). The unevenness in this final
curve is due to statistical error in the ensemble averages Vv

and Vw), and gives an indication of the size of the statistical
error.
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FIG. 4. Diagram of the experimental configuration for an
adaptive interferometric measurement of the fluorescence of
an atom. The signal and a local oscillator are incident on a
beam splitter of reflectance r ≪ 1. The amplitude of the local
oscillator is variable as a function of time, determined by an
electro-optic modulator (EOM). The modulator is controlled
by the experimenter, being inverted every time a detection
occurs.
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FIG. 5. Plot of the ensemble average survival probability
S(t) versus time (in units of γ−1) for the stationary ensem-
bles of various detection schemes all with Ω/γ = 10. The
three curves are for the minimally robust (υ = −1) continuous
Markovian unraveling (solid), the maximally robust (υ = 1)
continuous Markovian unraveling (dash-dot) and the maxi-
mally robust unraveling (dotted).
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FIG. 6. Plot of the distance of various ensembles from the
maximally robust ensemble as a function of Ω/γ. The solid
line is for direct detection, which is the same as for continu-
ous Markovian unraveling (CMU) with υ = −1. The dashed
line is for a CMU with υ = 0. The dash-dot line is for υ = 1
(the maximally robust CMU). In the latter two cases, the
three lines indicate the mean, and the mean plus or minus
one standard deviation (the statistical error in the ensemble
average).
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