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Abstract 

 

Currently the wall panel design equations given in the Australian Standard and the American 

Institute Code offer no guidelines for the inclusion of side restraints or openings. Empirical 

formulae have been derived based upon limited test data, in which only the length and location 

of openings are accounted for with a dimensionless parameter, αx. In this study the nonlinear 

Layered Finite Element Method (LFEM) is used to undertake a comparative study to verify the 

effectiveness of the method in predicting the failure characteristics of seven (7) two-way 

normal strength concrete walls without and with window and door openings. The ultimate 

loads, load-deflection responses up to failure, deflected shapes and crack patterns predicted by 

the LFEM are compared to the experimental observations. The method is then used to conduct 

three parametric studies investigating the influence of opening size, length and height on the 

ultimate load and deflection of twenty (20) high strength wall panels acting in both one-way 

and two-way. 

 

Comparisons of the numerical results to established formula for walls with openings validated 

the accuracy of the LFEM predictions. Results demonstrate that increase in opening size 

decreases the axial strength ratio to different degrees for one-way and two-way walls. 

Increasing only the opening length also significantly decreases the axial strength ratio. 

Increasing only the opening height has little impact on the ultimate load capacity. Walls 

analysed in two-way action have an increased strength compared to the one-way counterparts 

due to the provision of side restraints, however, such improved strength becomes small for a 
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large sized opening. Results further confirm that increasing the opening height together with 

the length has the most critical effect. Hence to ensure safe design, the combined effects of 

increasing both the height and length of an opening should be incorporated into the ultimate 

load formula which is proposed in this study. The results of this study have assisted in 

verifying the LEFM as a reliable and effective technique for determining a relationship 

between ultimate load capacity and varying opening configurations so that more dependable 

design aids and accurate formulae can be established. 
 

Key words: Axially loaded concrete wall panel; eccentric load; opening; numerical analysis. 

 

1. Introduction 

 

Reinforced concrete wall panels are widely used as load-bearing components within the core of 

high-rise buildings and in tilt-up construction. Although a considerable amount of research has 

been carried out to investigate the behaviour of reinforced concrete wall panels, most of this 

work has examined axially loaded, solid wall panels supported along the top and bottom edges 

only [1,2]. Openings are generally present in load bearing walls for the provision of services, 

doors and windows. However, previous experimental research on the strength and behaviour of 

concrete walls with openings is very limited [3-6] with many researchers expressing the need 

for more test data to verify empirical design methods. Although limited, research on walls with 

openings has established some significant conclusions. Experimental tests indicated that 

slender walls containing openings are susceptible to unpredictable failure characteristics due to 

buckling and excessive cracking around the openings. Thus it is vital that the behaviour of 

walls with openings is comprehensively understood. This requires an understanding of the 

influence of opening parameters such as size, location and type on the failure characteristics of 

load bearing walls so that reliable design aids can be developed and empirical design formulae 

further verified. 
 

Currently the wall panel design equations given in the Australian Standard AS3600 [7] and the 

American Institute Code ACI-318 [8] give no guidelines for the inclusion of side restraints or 

openings. Empirical formulae have been derived based upon limited test data, in which the 

length and location of openings are accounted for with a dimensionless parameter αx. 

 

Saheb and Desayi [5] were the first to establish an adequate amount of test data on walls with 
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openings, upon which the parameter αx could be derived. The study involved testing twelve (12) 

wall panels to failure under a vertical in-plane uniformly distributed load, to determine the 

effects of the type (door and window) and location of openings on the strength and behaviour 

of panels in one-way (walls supported at top and bottom only, Figure 1(a)) and two-way action 

(walls supported on all four sides, Figure 1(b)). Due to the lack of established methods, 

equations previously proposed for solid wall panels were modified to account for the effect of 

the openings. The dimensionless parameter αx was established, which takes into consideration 

the length and location of openings by the following function: 

 

LdAA xxoxx +=α  (1) 

 

where Aox/Ax accounts for the opening size in the horizontal plane, dx/L corresponds to the 

opening location in the horizontal direction, and dx is the distance between centres of gravity 

(Cx and C) of the panel with and without an opening, respectively, in the horizontal plane [5] 

(see Figure 2). It is evident that the parameter αx does not include the opening height or the 

combined influence of the opening length and height. 

 

More recently Doh and Fragomeni [6] tested eight (8) one-third to one-half scale wall panels 

with openings and with a slenderness ratio of 30 or 40. Incorporating their own data and the 

test results of Saheb and Desayi [5], the previously published empirical formulae [1,2,9] for 

walls without an opening were extended to allow for openings and H/t up to 40 [6]. Or, 

 

 ( ) uxuo NkkN α21−=  (2) 

 

where )22.1('0.2 7.0
awcu eetfN −−=  (3) 

 

in which Nuo and Nu are respectively the ultimate load of two identical wall panels with and 

without openings; f’
c is the characteristic compressive strength of concrete; tw is the wall 

thickness; e is the eccentricity of load and ea is the additional eccentricity due to the 

out-of-plane deflection of the wall during loading (the P-δ effect); k1=1.175 (one-way)/1.004 

(two-way) and k2=1.188 (one-way)/0.933 (two-way) are the constants derived from the test 

data [6] using a calibration process. 
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Comparisons of the ultimate load predicted by the newly established formula (Eq. (2)) to the 

test data of Doh and Fragomeni [6] and Saheb and Desayi [5] indicate that the new prediction 

formula is accurate but slightly conservative. Although this is the most comprehensive formula 

for determining the ultimate load of concrete walls with openings, it still accounts for the 

opening length and location with the parameter αx as given by Eq. (1), in which the opening 

height is not considered. Thus at this point in time there is a need for more testing and 

numerical analysis so that the combined influence of the opening height, length and location 

can be incorporated into the design of load bearing concrete walls. 

 

The finite element method is increasing in popularity as a technique for analysing the ultimate 

behaviour of structural elements. The nonlinear Layered Finite Element Method (LFEM), 

developed by Guan and Loo [10] for cracking and punching shear failure analysis of concrete 

flat plates, has shown to be able to predict the ultimate behaviour of square walls with square 

openings [11]. With an increased availability of high-powered computers, numerical modelling 

approaches are able to provide a cost effective and accurate alternative to the experimental 

investigation of concrete wall panels [12, 13]. Additionally, the accuracy of the numerical 

solution is not limited by experimental errors and uncertainties. 

 

The purpose of this study is thus to conduct a numerical analysis of one-way and two-way 

concrete walls with window and door type openings using the LFEM. The wall panel and the 

opening(s) are rectangle and square in shape. The accuracy of the LFEM is initially verified 

through a comparative study based on seven (7) normal strength wall panels in two-way action 

tested by Saheb and Desayi [5,9]. Once verified, the LFEM can be used with confidence to 

ascertain the failure characteristics including the ultimate loads, deformed shapes, 

load-deflection responses and crack patterns of walls with openings. The LFEM is then used as 

an effective tool to undertake parametric studies of twenty (20) high strength wall panels (in 

both one-way and two-way action) independent of any experimental investigation. Once the 

relationship between the opening parameters and the ultimate capacity of load bearing walls is 

comprehensively understood, an improved design formula can be proposed and design aids be 

developed. This will ensure the safe and economical design of load-bearing concrete walls with 

openings. 
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2. Analysis Tool – Nonlinear Layered Finite Element Method (LFEM) 

 

The use of layered finite elements provides an effective means of analysing the elasto-plastic 

failure behaviour and geometric non-linearity of planar continuum concrete structures. The 

LFEM [14] incorporates a layered model in which each finite element is sub-divided into a 

number of fully bonded layers, each uniform in thickness, and with constant material properties. 

However different layers may be assigned different thicknesses and materials, which allows for 

an accurate detection of cracks in each concrete layer, and for the inclusion of reinforcing steel. 

 

In association with the layered approach, eight-node degenerate shell elements (Figure 3(a)) 

are adopted to simulate the concrete wall panel. Figure 3(b) shows a typical wall element. The 

Mindlin plate hypothesis is used to derive such an element from three-dimensional elasticity. Two 

primary assumptions are adopted: (1) lines normal to mid-surface before deformation remain 

straight but not necessarily normal after deformations, and (2) the stress component normal to the 

mid-reference plane is constrained (i.e. 0=zσ ) at the global, element level, as is required for 

degeneration from a three-dimensional to a shell element. Based on these assumptions, the shell 

elements are formulated in such a way that each nodal point located on the mid-reference 

surface has five degrees of freedom viz the in-plane displacements, u and v, transverse 

displacement w and two independent bending rotations about the x and y axes, i.e. θy and θx 

respectively. 

 

A three-dimensional stress state is considered in the model. The stresses in each layer are 

calculated at Gauss points located at its mid-surface and are assumed to be constant over the 

layer thickness. In the non-linear analysis, the material state at any Gauss point may be elastic, 

plastic or fractured depending on the incremental loading history. Figure 4 shows the constitutive 

models for both concrete and steel. 

 

In the elastic stage, concrete is treated as an isotropic material and the constitutive relation in 

the material coordinate system (x′y′z′) is expressed as 

 

 d dc{ } [ ] { }σ ε= D  (4) 
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in which the bulk and shear moduli are respectively K=E/3(1-2υ) and G=E/2(1+υ). In Eq. (4), 

the three-dimensional stress and strain components are respectively 

},,,,,{}{ yzxzxyzyx τττσσσ=σ  and },,,,,{}{ yzxzxyzyx γγγεεε=ε . Due to the assumption of σz=0, 

each element has five non-zero stresses (σx, σy, τxy, τxz, τyz) and five independent strains (εx, εy, γxy, 

γxz, γyz). With all the strain components, the principal strains and their corresponding directions 

can be calculated, based on which the principal stresses and directions can be determined using 

the appropriate constitutive models for concrete as detailed below in this section. 

 

Concrete failure is identified as a result of either tension cracking or plastic yielding (crushing). 

An elastic brittle fracture behaviour is assumed for concrete in tension. Cracks are assumed to 

form in the plane perpendicular to the direction of maximum principal tensile stress upon 

reaching the specified concrete tensile strength ft. Cracking is represented by a set of evenly 

spaced parallel cracks smeared over the integration zone. Cracked concrete is treated as an 

orthotropic material and the tension cut-off representation is utilised. The constitutive equation 

for cracked concrete is given as 

 

 }{][}{ εσ dd crD=  (6) 

 

where 
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For cracked concrete, the aggregate interlock and dowel action of steel bars contribute, to a 

different degree in different principal directions, the cracked shear moduli ( cG12, cG13 and cG23) 

as a function of the current tensile strain [15]. For concrete cracked in one direction, E(22) = E2, 

E(23) = )21( 2
32 ννν −−EE , ( )004.0125.0 11312 ε−== GGG cc  (=0 if ε1≥0.004) and GGc )65(23= . 

For concrete cracked in two directions, E(22) = Ei and E(23) = 0, ( )004.0125.0 113 ε−= GGc  (=0 if 

ε1≥0.004), ( )004.0125.0 223 ε−= GGc  (=0 if ε2≥0.004) and cc GG 1312 5.0=  (= cG235.0  if cc GG 1323< ). 

Due to the bonding interaction between concrete and steel, a gradual release of the concrete 

stress component normal to the cracked plane is considered to simulate the so-called tension 

stiffening effect [15]. This is represented in Eq. (7) and Figures 4(a) and (b) by the fictitious 

modulus of elasticity, imttti fE εεεα )/1( −=  where mit εεε ≤≤ .Note that Eq. (7) must be 

transformed from the principal (material) axes to the local xyz coordinate system through the 

transformation matrix [Tε′] for strain components. Or, 

 

 ]][[][][ '' εε TDTD cr
T

cr =  (8) 

 

To model any irrecoverable deformation, the strain-hardening plasticity approach is used to 

model concrete in compression (see Figure 4(a)). When the minimum principal compressive 

stress exceeds 0.3 times of the concrete compressive strength f’
c, the initial yield surface is 

reached which is followed by loading and unloading processes leading to increased plastic 

deformation. Following a study of Hinton and Owen [15], the direction of the plastic strain 

increment is defined by the flow rule. In addition, the normality of the plastic deformation rate 

vector to the yield surface is commonly assumed in establishing the stress-strain relationship in 

the plastic range. The elasto-plastic constitutive equation relating the incremental stress and 

strain is given as 

 

 d dep{ } [ ] { }σ ε= D  (9) 

 

where aDa
DaaD DD TT'
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for coordinate transformation from the principal axes to the local reference axes x, y and z. In 

Eq. (10), a is the flow vector and H’ is the hardening parameter associated with the expansion 

of the yield surface. When the ultimate strain εu is reached, the crushing type of failure 

transpires in concrete. The LFEM assumes some but not all strength and rigidity of the material 

is lost. The material matrix for concrete taking into account the effect of bulk modulus is 
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The orthogonal mesh of steel reinforcing bars are modelled as ‘smeared’ layers of equivalent 

thickness whereby the volume of the reinforcing bars is averaged over the element length 

perpendicular to the bar direction. Each ‘smeared’ steel layer is assumed to have elastic-plastic 

uniaxial behaviour in the direction of the reinforcing bars (see Figure 4(c)). The constitutive 

relation for a steel layer is given as 

 

 d ds{ } [ ] { }σ ε= D  (13) 
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and ]][[][][ '' εε TDTD s
T

s =  (15) 

 

for coordinate transformation from the direction of steel bars to the local coordinate system. 

 

The total material matrix for each element can be determined based on the principal of 

superposition where the contributions of concrete (nc) and steel (ns) layers are added up. Or, 
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where ][ cD = ][ crD  or [ ]Dep  or [ ]Dcrs  depending on the actual material condition. The 

stiffness matrix for the corresponding element can be evaluated using the Gaussian integration 

technique with the selective integration rule. The structural stiffness matrix is then assembled 

using the standard procedure. The reliability of the material constitutive model has been 

demonstrated in various publications [10,14,16]. 

 

A total Lagrangian formulation for degenerate shell elements is adopted to deal with the 

change in structural geometry due to large deformation [15]. The current stress/strain and 

displacement fields are referred to, respectively, the original geometric configuration and the 

initial un-deformed position. The incremental and iterative Newton-Raphson method is used to 

obtain the nonlinear solution due to both material and geometric nonlinearities. 

 

3. Normal Strength Concrete Wall Panels in Two-Way Action – Comparative Study 

 

3.1. The wall models 

 

Six (6) wall panels tested by Saheb and Desayi [5] with varying window and door opening 

configurations are analysed in this study. For a more comprehensive comparison of the LFEM 

predictions and the experimental results, a solid panel tested by the same team is also included. 

Note that all the walls analysed herein are in two-way action. 

 

The geometric and material parameters are identical to those specified for the experimental 

work. As seen in Figure 5, all of the models are 600mm high, 900mm long, and 50mm thick, 

with an aspect ratio (H/L), thinness ratio (L/tw), and slenderness ratio (H/tw) (see Figure 2) of 

0.67, 18, and 12 respectively. The walls with openings are designated WWO-1(P) to WWO-6(P) 

with the letter P indicating two-way action. The solid panel is designated WAR-1(P). All 

window openings are of 240mm×240mm in size and door openings are 210mm wide and 

420mm in height. The dial gauge locations (side of the opening and centre of the column 

sections) are also indicated in the figure. 
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Depending on the geometric configuration, each wall panel is analysed as either a quarter, half or 

full model. A convergence study is undertaken to determine the most effective element size for 

the finite element mesh. A series of meshes with an increased number of elements are proposed, 

with particular emphasise on the refinement around the opening to ensure that the stress 

concentrations are accurately modelled. The most appropriate mesh in terms of efficiency and 

accuracy can then be determined when the LFEM predicted ultimate load starts to converge 

towards the experimental failure load. 

 

A typical wall model detailing the elements and nodes is shown in Figure 6. For each model, 

every element is sub-divided, in the thickness direction, into eight concrete layers of varying 

thickness. In the test panels, two layers of steel reinforcement mesh were symmetrically placed 

on the tension and compression faces for effective resistance to eccentric loading. Each steel 

mesh consisted of 2.12mm and 3mm diameter steel bars spaced uniformly in vertical and 

horizontal directions respectively [5]. For each wall, the spacing of the bars differed depending 

on the opening arrangement. In the layered model, each layer of steel mesh is modelled as two 

uniform orthogonal smeared steel layers of equivalent thickness. 

 

For the panels with and without openings, the average cube strength (fcu) was 35.3MPa and 

22.33MPa respectively [5]. The characteristic strength was defined as 0.8fcu. Therefore the 

compressive strengths of 28.4MPa and 17.86MPa are used in this study for panels with and 

without openings respectively. The yielding strengths (fy) of the 2.12mm and 3mm reinforcing 

bars are 297MPa and 985MPa respectively, and their moduli of elasticity are 2.05×105MPa and 

2.1×105MPa [5]. The loading is applied as a series of point loads and moments along the top 

edge of the model to simulate a uniformly distributed load at an eccentricity of tw/6 as adopted 

in the test [5]. This is presented in Figure 6. Appropriate boundary conditions are applied in the 

model to simulate the actual restraints used in the experiments [5]: the top and bottom edges of 

the wall were hinge supported, not allowing any translation in the z-direction and rotation 

about y-axis. The bottom edge was also restrained in the y-direction. The side edges were 

restrained by angle sections, therefore not allowing translations in the x- and z-directions and 

rotation about x-axis. 
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3.2. Analysis results 

 

The effectiveness of the LFEM is demonstrated through a comparison with the experimental 

data and observations in terms of the deformed shapes, the crack patterns, the load-deflection 

responses as well as the ultimate loads. The deflected shapes for selected walls in two-way 

action, as demonstrated in Figure 7, are satisfactorily predicted by the LFEM, clearly showing 

biaxial curvature (see Figure 1(b)). 

 

According to Saheb and Desayi [5], the test panels exhibited cracks propagating from the corners 

of the openings to the corners of the panel, dividing the panels into triangular portions. It should 

be noted that the numerically predicted crack patterns indicate the crack directions only (not the 

crack length and width) at Gauss points, upon the maximum principal tensile stress reaching the 

specified concrete tensile strength ft. As can be seen in Figure 8 for selected wall panels, the 

cracking behaviour is well predicted by the LFEM, as all the LFEM models show cracks 

propagating in a similar manner. A larger number of cracks spread over a greater area can be 

seen in the LFEM results (in tension layer) as compared to the experimental observations (on 

tension face). This is because in the LFEM a crack is displayed at any Gauss point at which the 

tensile strength of concrete is exceeded regardless of the length or width of the crack. In the 

experimental work however, many of the smaller cracks are either not visible to the human eye 

or merge together forming a larger and more localised crack. Some minor differences between 

the experimental and numerical results may also be attributed to experimental error and the 

idealistic nature of the LFEM. 

 

Figure 9 shows the load-lateral deflection curves for selected points corresponding to the dial 

gauge locations as indicated in Figure 5. Note that the experimental failure loads are also 

indicated in the figure. Note also that due to symmetry, the LFEM predicts identical 

load-deflection responses for symmetrical locations, e.g. Points F and A for WWO-1(P) and 

Points B and D for WWO-4(P). This is however not the case in the experiment due to the 

prevalence of imperfections and errors associated with materials, test setup and measurements. 

The experimental observations [5] show the mid-height lateral deflection adjacent to the 

opening (e.g. Point B in Figure 5) to be greater than that of a mid-point of the column section 

(between the edges of the opening and wall, e.g. Point A in Figure 5). This trend is also 

noticeable in the load-displacement curves for all the seven wall panels, e.g. WWO-1(P), 

WWO-2(P) and WWO-5(P) as presented in Figures 9. 
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The LFEM models undergo varying amounts of plastic deformation (Figure 9). Walls WWO-1(P) 

and WWO-3(P) undergo considerable plastic deformation before failure occurs. However the 

other models undergo little plastic deformation which suggests a brittle mode of failure by 

buckling or instability mechanisms. Experimental observations indicated that failure was mostly 

due to bending, intensified by buckling of the narrower column sections. Thus the failure mode 

observed in the experimental investigation is well predicted by the LFEM. 

 

The LFEM ultimate load predictions are satisfactory but slightly overestimated as shown in Table 

1 and Figure 10, with comparisons to the experimental failure loads obtained by Saheb and 

Desayi [5]. The ratios of the LFEM to experimental failure loads vary from 0.99 to 1.22, with a 

mean value of 1.09 and a standard deviation of 0.10. The discrepancies are due to the fact that the 

LFEM model is idealistic, as the geometry, materials and restraints are assumed to be exactly as 

specified. This is however not the case in laboratory tests as imperfections often present such as 

possible dimensional variations, material irregularities, concrete voids, changes in 

reinforcement location, and the variations in restraint or loading conditions. 

 

The purpose of this comparative study is to establish the LFEM as an effective tool for predicting 

the failure characteristics of axially loaded concrete walls with openings. The results clearly 

validate the effectiveness and reliability of the LFEM, and its applicability to walls with openings. 

The modelling techniques adopted to simulate the geometric, material, restraint and loading 

conditions of the test panels are also proven to be satisfactory. In general, the LFEM ultimate 

loads, deflections and crack patterns show close correlation to the experimental observations. 

 

4. High Strength Concrete Wall Panels in One-Way and Two-Way Action – Parametric 

Study 

 

4.1. The wall models 

 

In total, twenty (20) wall models are analysed with the LFEM in three parametric studies and 

the ultimate behaviour of these wall models is examined. The parameters are the size, length 

and height of an opening. The overall configuration, the material composition as well as the 

loading and restraint conditions of the wall models are based on the test specimens of Doh and 

Fragomeni [6]. As presented in Figure 11, all the wall models have a centrally located opening 
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either square or rectangle in shape. All models are 1200 mm in height and 1200 mm long, with 

a thickness of 40 mm. This makes a slenderness ratio of 30. 

 

The first parametric study investigates the influence of varying the opening size (combined effect 

of the opening height and length), as illustrated in Figure 11(a). The second parametric study (see 

Figure 11(b)) is to investigate the influence of increasing the opening length (from 300 mm to 

800 mm) while maintaining a constant height (300 mm). The third parametric study (see Figure 

11(c)) investigates the effect of increasing the opening height (from 300 mm to 800 mm), whilst 

the length remains constant as 300 mm. The designations of all the models are also indicated in 

the figure, where A, L and H represent the opening size, length and height respectively; OW and 

TW refer to one-way and two-way action respectively. Note that A-OW3, L-OW3 and H-OW3 

are identical models and the same is true for A-TW3, L-TW3 and H-TW3. 

 

Satisfactory results from the comparative study presented in Section 3 confirm the effectiveness 

of the numerical modelling technique. For the parametric studies, only a quarter of each wall 

model is analysed due to symmetry. Each wall model is sub-divided, in the thickness direction, 

into eight concrete layers of varying thickness. One single layer of F41 mesh (consisting of 4 mm 

nominal diameter bars spaced at 100 mm in both horizontal and vertical directions) is modeled 

centrally by two orthogonal smeared layers of equivalent thickness. 

 

The average cylinder strength (fcm) is taken as 67MPa. The characteristic strength of concrete 

in compression (f’
c) is assumed to be 0.85fcm which is used in the analysis. The yielding 

strength of steel fy is taken as 450MPa. Similar to the modeling approach described in Section 

3.1, the uniformly distributed eccentric load at tw/6 is applied as a series of point loads and 

moments along the top edge of the model. The restraints for the top, bottom and side edges of 

the model are also identical to those adopted in Section 3.1. For one-way wall models, however, 

the side edges are free from any restraint. In addition, symmetrical boundary conditions are 

assigned to nodes on the lines of symmetry. 

 

4.2. Ultimate load and deflection 

 

4.2.1. Parametric study 1 - opening size 

 

The ultimate load of each wall model is presented by plotting the axial strength ratio against 
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the dimensionless size parameter Ao/A, as shown in Figure 12, where Ao=Aox=Aoy and A=Ax=Ay 

(see Figure 2). Ao/A is similar to the parameter αx, however since the wall models and openings 

in this parametric study have unit aspect ratios, the size parameter Ao/A also relates to the 

vertical cross section (see Figure 2). The axial strength ratio is equal to the predicted failure 

load given by the LFEM Nuo divided by the concrete strength f'
c, the length L and thickness tw 

of the wall panel. The axial strength ratio eliminates the effects of changing panel size and 

concrete strength on the failure load of the panel. This dimensionless quantity is useful for 

comparing the behaviour of different wall panels. 

 

As can be seen in Figure 12, the wall strength appears to be inversely proportional to the 

opening size. The axial strength ratio decreases linearly with opening size, indicated by an R2 

value (correlation coefficient) of 0.99 for both one-way and two-way action. The strength of 

the one-way wall models reduces by 92% as the opening dimension increases from 25% to 

67% of the wall dimension. Similarly, for the two-way wall models the strength reduction is 

86% as the opening dimension increases from 25% to 67% of the wall dimension. Thus 

increasing the opening size significantly reduces the ultimate load carrying capacity of axially 

loaded walls in one-way and two-way action. 

 

As summarized in Table 2, the maximum mid-height lateral deflection adjacent to the opening 

δmax,LFEM decreases as Ao/A is increased. For the one-way wall models a large reduction in 

deflection occurs after Ao/A increases from 0.5 to 0.67. Whereas for the two-way models, the 

reduction in deflection is almost proportional to the increase in opening size. The reduced 

deflections for large sized openings may be attributable to the dominance of brittle failure 

mechanism due to buckling rather than bending. Figure 13 shows the deflected shapes of wall 

models A-OW6 and A-TW3. 

 

4.2.2. Parametric study 2 – opening length 

 

The variation in the opening length is represented by the length parameter Lo/L, where Lo=Aox/tw 

and L=Ax/tw (see Figure 2). Thus the length parameter only corresponds to the horizontal cross 

section of the wall, as does the parameter αx. A near ideal linear relationship exists between the 

axial strength ratio and Lo/L, verified by the R2 values of 0.98 and 0.99 for one-way and two-way 

action respectively (see Figure 14). As Lo/L increases from 0.25 to 0.67, the ultimate load 
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capacity of the one-way wall models decreases by 72%. Similarly, for two-way action the 

ultimate capacity decreases by 50%. Thus increasing the length of the opening significantly 

reduces the ultimate load carrying capacity of axially loaded walls in one-way and two-way 

action. Table 2 indicates that for the two-way wall models, increasing Lo/L appears to have the 

same influence on the maximum lateral deflections δmax,LFEM as increasing Ao/A. For the one-way 

models, on the other hand, the deflections vary little with increase in Lo/L. 

 

4.2.3. Parametric study 3 – opening height 

 

The height parameter Ho/H is only relevant to the vertical cross-section of the wall, where 

Ho/H corresponds to the ratio of the opening height to that of the wall, i.e. Ho=Aoy/tw and 

H=Ay/tw (see Figure 2). For one-way and two-way action respectively, the variation of the axial 

strength ratio against Ho/H appears almost perfectly linear, validated by the R2 values of 1 and 

0.95 (see Figure 15); the ultimate load capacity is only reduced by 17% and 14% as Ho/H 

increases from 0.25 to 0.67. This suggests that increasing Ho/H has little effect on the ultimate 

load carrying capacity, particularly in relation to the influence of Ao/A and Lo/L. For both 

restraint conditions, the maximum lateral deflections δmax,LFEM of the wall models remain 

relatively unchanged regardless of the height of the opening. This is presented in Table 2. 

 

4.3. Verification of ultimate load 

 

Table 2 also compares the ultimate loads Nuo predicted by the LFEM to those due to Eq. (2). 

Note that all the models have centrally located openings. Hence only the first term of αx (i.e. 

Aox/Ax) of Eq. (1) is relevant to this study. 

 

When Ao/A varies the correlation between the LFEM and Eq. (2) also vary for both one-way and 

two-way models. The Nuo,LFEM /Nuo,Eq.(2) ratio is close to unity when Ao/A is small, but the ratio 

decreases dramatically as Ao/A increases. Note that the parameter αx used in Eq. (2) does not 

consider the combined effect of increasing the height and length of the opening. The LFEM 

results, on the other hand, reflect the effects of increasing both the opening height and length, 

thus a large discrepancy exists in the predictions for models with large sized openings. Note also 

that Eq. (2) produces identical sets of ultimate load for both variations of Ao/A and Lo/L, because 

Lo/L is equivalent to Aox/Ax. For the LFEM prediction, however, the failure mechanisms for 
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varying the opening length only are expected to be different from those when the entire opening 

size varies. 

 

For the one-way models with variation in Lo/L, the correlation between the two predictions is 

similar to the case of varying Ao/A, however the reduction in the Nuo,LFEM /Nuo,Eq.(2) ratio as Lo/L 

increases is much less than that as Ao/A increases. For the two-way models, a fairly consistent 

correlation is achieved between the two ultimate load predictions with the LFEM predicting 

about 11% higher than that by Eq. (2). 

 

The LFEM predictions for both the one-way and two-way models are slightly decreased with 

an increase in Ho/H. This suggested that the ultimate load is marginally affected by the height 

parameter. Neglecting the effect of Ho/H, Eq. (2) results in identical ultimate loads for the 

one-way and two-way models, respectively. This is a reasonable but crude approximation. The 

LFEM, on the other hand, more accurately and logically predicts the variations in the ultimate 

loads. The predictions of both LFEM and Eq. (2) further confirm that the opening height is not 

as critical as the size and length parameters (see Figures 12, 14, 15). 

 

4.4. Comparison of axial strength ratio for one-way and two-way models 

 

As summarised in Figure 16, increasing the opening size Ao/A has the most critical impact on 

the load carrying capacity of axially loaded walls in one-way and two-way action. Increasing 

only the height of the opening has little influence on the ultimate load capacity of the wall. 

When acting together, Ho/H and Lo/L have a critical influence. Independently, the opening 

length also has a major influence on the ultimate load capacity, and appears to make the 

greatest contribution to the influence of Ao/A. 

 

Due to the combined effects of increasing the opening height and length, it is evident that 

disregard of the opening height could result in an under-design of walls with openings. This is 

reflected in the empirical formula predictions given in Section 4.3. The empirical formulae 

established by Saheb and Desayi [5] and Doh and Fragomeni [6] only consider Lo/L. When 

Ao/A is small, near perfect correlation existed between the predictions by the LFEM and Eq. (2). 

However when Ao/A increases to 0.67, the Nuo,LFEM /Nuo,Eq.(2) ratio decreases to 0.20 and 0.31 for 

one-way and two-way action respectively (see Table 2). 
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The three parametric analyses clearly demonstrate the improved strength of the two-way panels 

due to the provision of side restraints (see Table 2). The relative effects of Ao/A, Ho/H and Lo/L 

are different for the one-way and two-way walls. As the opening size Ao/A increases, the 

difference between the axial strength ratio of the one-way and two-way wall models decreases 

(see Figure 12). However, Figures 14 and 15 show that as the opening length or the height is 

increased, such a difference remains relatively constant. Thus the strength increase gained by 

the side restraints appears to be offset by the combined effects of increasing the height together 

with the length of the opening. 

 

5. The Proposed Ultimate Load Formula 

 

To ensure safe design, the combined effects of increasing the opening height together with the 

opening length should be incorporated into the dimensionless opening parameter. Based on the 

findings of parametric study and the test results of Lee [17], the following ultimate load 

formula is proposed 

 

 ( ) uxyuo NkkN α21−=  (17) 

 

where 
λ
λαα

α
+

+
=

1
yx

xy  (18) 

 

and HdAA yyoyy +=α  (19) 

 

in which Aoy/Ay accounts for the opening size in the vertical plane, dy/H corresponds to the 

opening location in the vertical direction, and dy is the distance between centres of gravity (Cy 

and C) of the panel with and without an opening, respectively, in the vertical plane (see Figure 

2). As a function of αx and αy, the proposed opening parameter αxy is now able to cover the 

effect of both the opening length and height. In Eq. (18), λ (0≤λ≤1) is the weighting ratio 

indicating the percentage of αy in relation to αx. λ together with the constants k1 and k2 can be 

determined by a standard regression analysis through a calibration process which is presented 

in Table 3. 

 

In Table 3, the ultimate loads Nuo,LFEM due to the LFEM are presented for all the wall models in 
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one-way and two-way action. Note that L-OW3/H-OW3 and L-TW3/H-TW3 are not included 

because they are identical to A-OW3 and A-TW3, respectively. Also presented in the table are 

the predicted ultimate loads Nu,Eq.(3) for identical solid wall counterparts as well as the axial 

strength capacity reduction ratio Nuo,LFEM/Nu,Eq.(3) due to the existence of an opening. The 

weighting ratio λ is chosen to vary from 0 to 1 at an increment of 0.01. A regression analysis is 

carried out to determine the best fit for Nuo,LFEM/Nu,Eq.(3) versus αxy for both one-way and 

two-way wall models. This is presented in Figure 17. It has been found that λ = 0.21 for 

one-way and λ = 0.40 for two-way models yield the highest correlation coefficient R2 and the 

corresponding intersection (k1) and slope (k2). They are k1 = 1.361 and k2 = 1.952 for one-way 

models (with R2 = 0.99), and k1 = 1.358 and k2 = 1.795 for two-way models (with R2 = 0.98). 

All these values are adopted in the new formula, Eq. (17). 

 

It should be noted that the proposed formula is derived based on the three parametric studies 

where the average compressive strength (fcm) is 67MPa and the wall slenderness ratio (H/tw) is 

30, together with the test results of Lee [17] where fcm ranges between 32-100MPa and H/tw, 

between 30-40. This well covers the scope of the existing code of practice AS3600 [7]. Note 

also that a constant load eccentricity of tw/6 is adopted in this study. Whereas the effect of load 

eccentricity on the failure loads of wall panels with a constant size of opening has found to be 

significant [11], it is not a focus of this study where a particular emphasis has been given on 

the opening size, length and height. In addition, the opening location (eccentricity of opening) 

and type (door) are also important parameters in improving the applicability of the proposed 

ultimate load formula. All this will constitute a major component of the further experimental 

and numerical work which will eventually aid to developing a comprehensive design formula. 

 

6. Conclusion 
 

The Layered Finite Element Method (LFEM) has been established as a satisfactory and 

effective tool for predicting the ultimate strength of concrete walls with openings. The method 

effectively predicts the failure characteristics observed by Saheb and Desayi [1,5,9] for seven 

(7) normal strength concrete wall panels with varying opening configurations tested in 

two-way action. The cracking behaviour is well predicted by the LFEM, with some small 

differences due to the impression of more spread-over cracks in the LFEM models (not 

uncommon in any finite element analysis) and larger and more localised cracks in the 
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experiment. The ultimate load predictions are satisfactory but slightly overestimated. The 

LFEM load-displacement response reflects the non-linear behaviour expected for concrete 

structures and correlates well with the experimental measurements. Discrepancies in the test 

setup appear to have influenced the perceived accuracy of the LFEM predictions. 

 

The numerical modelling technique is then employed for parametric analyses where the LFEM 

is effectively used to determine the influence of the opening height, length, and overall size on 

the ultimate load capacity of high strength concrete walls in one-way and two-way action. The 

following discussions are derived from the analysis of twenty (20) wall models in three 

parametric studies using the LFEM. 

 
(1) Increasing the height and length of the opening Ao/A in equal proportion significantly 

decreases the axial strength ratio. Increasing Ao/A from 0.25 to 0.67 reduces the load 

carrying capacity by 92% for one-way and 86% for two-way walls. 

(2) Increasing only the length of the opening Lo/L decreases the axial strength ratio. As Lo/L 

increases from 0.25 to 0.67, the load capacity of the one-way and two-way walls 

decreases by 72% and 50% respectively. For the wall models in two-way action, the side 

restraints control the effects associated with increasing the opening length. 

(3) Increasing only the height of the opening Ho/H has little effect on the ultimate carrying 

capacity and the deflection. Increasing Ho/H from 0.25 to 0.67 reduces the load carrying 

capacity by 17% for one-way and 14% for two-way walls. 

(4) The response of the ultimate load capacity to the variation in the opening size, height and 

length is approximately linear. 

(5) Walls analysed in two-way action have an increased strength due to the provision of side 

restraints. 

(6) The improved strength gained due to the two-way action becomes small when Ao/A is 

large. The strength increase gained by the side restraints appears to be offset by the 

combined effects of increasing the height together with the length of an opening. 

(7) Compared to the one-way walls, the strength increase in the two-way counterparts due to 

the provision of side restraints remains relatively constant as the length or the height 

parameter is increased. 

 

Increasing the opening height together with the opening length has the most critical effect on 
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the ultimate load carrying capacity of concrete walls in one-way and two-way action. The 

design formulae proposed by Saheb and Desayi [5] and Doh and Fragomeni [6] for axially 

loaded walls with openings account for the opening length and location with the dimensionless 

parameter αx. However αx does not account for the opening height. Comparisons to the 

formula of Doh and Fragomeni [6] validate the accuracy of the LFEM predictions. To ensure 

safe design, the combined effects of increasing the opening height together with the opening 

length are incorporated into the proposed opening parameter αxy, Eq. (17). A new ultimate load 

formula is also proposed for walls with openings and acting in both one-way and two-way. To 

cover a wider range of practical application of walls with openings, more experimental and 

numerical work is needed to examine the walls with combined parameters. These include 

concrete strength, slenderness ratio (up to 50), eccentricity of opening and axial load, as well as 

opening types (window and door). This will help to improve the applicability of the proposed 

ultimate load formula and establish more accurate design aids for this important class of 

concrete structures. 
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Notation 

][D  
= total material constitutive matrix in local coordinate system 

][ cD , ][ cD  
= constitutive matrix for concrete in material and local coordinate 

systems, respectively 

][ cD  
= constitutive matrix for concrete at different stage 

][ crD , ][ crD  
= constitutive matrix for cracked concrete in material and local 

coordinate systems, respectively 

][ crsD  
= constitutive matrix for crushed concrete 

][ epD  
= elasto-plastic constitutive matrix 

][ sD , ][ sD  
= constitutive matrix for steel in material and local coordinate 

systems, respectively 

[Tε′] = transformation matrix for strain components 

{σ}, {ε} = stress and strain components, respectively 

a = flow vector 

dx, dy = distances between centres of gravity of the panel with and 

without an opening in the horizontal and vertical planes, 

respectively 

A, Ao = areas of wall panel and opening, respectively 

Ax, Aox = horizontal cross sections of wall panel and opening, respectively 

Ay, Aoy = vertical cross sections of wall panel and opening, respectively 

C = Centre of gravity of the panel without an opening 

Cx, Cy = Centres of gravity of the panel with an opening in the horizontal 

and vertical planes, respectively 

e = eccentricity of axial load 

ea = additional eccentricity due to out-of-plane deflection 

E1, E2, E3 = elastic moduli of concrete in principal directions 

Ei = fictitious modulus of elasticity 

fc' = compressive strength of concrete 
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fcm = average cylinder strength of concrete 

fcu = average cube strength of concrete 

ft = tensile strength of concrete 

fy = yield strength of steel 

G, cG12 , cG13 , cG23  = shear and reduced shear moduli of uncracked and cracked 

concrete, respectively 

H′ = hardening parameter 

H, Ho = heights of wall panel and opening, respectively 

K = bulk modulus of concrete 

k1, k2 = constants 

L, Lo = lengths of wall panel and opening, respectively 

nc, ns = total numbers of concrete and steel layers, respectively 

Nu, Nuo = ultimate load of wall panels used in comparative and parametric 

studies, respectively 

tw = thickness of wall panel 

u, v, w = nodal displacements in the x-, y- and z-directions 

x′, y′, z′ = material coordinate system 

x, y, z = local coordinate system 

αx, αy = dimensionless parameters for an opening in the horizontal and 

vertical planes, respectively 

αxy = dimensionless parameter for an opening in both the horizontal 

and vertical planes 

αt, εm = tension stiffening parameters, αt = 0.6 and εm = 0.002 

εi = maximum value reached by the tensile strain at the point 

currently under consideration 

εt = strain corresponding to ft 

ε1, ε2 = principal tensile strains in directions 1 and 2, respectively 

εu = ultimate compressive strain of concrete 

yzxzxyzyx γγγεεε ,,,,,  = normal and shear strains in the xyz coordinate system 
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yzxzxyzyx τττσσσ ,,,,,  = normal and shear stresses in the xyz coordinate system 

δmax = maximum mid-height lateral deflection adjacent to the opening 

ν = Poisson’s ratio 

ρs = reinforcement ratio 

θx, θy  = nodal rotations about the y- and x-directions, respectively 
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Table 1. Comparison of ultimate load Nu for comparative study 
 

Panel 
designation WAR-1(P) WWO-1(P) WWO-2(P) WWO-3(P) WWO-4(P) WWO-5(P) WWO-6(P)

Nu,LFEM (kN) 676.2 686 588 539 759.5 588 514.5 
Nu,Exp (kN) 555.96 692.47 592.83 448.38 697.47 587.83 448.38 

Expu

LFEMu

N
N

,

,  1.22 0.99 0.99 1.20 1.09 1.00 1.15 

Mean 1.09 
Standard deviation 0.10 
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Table 2. Comparison of ultimate load Nuo for parametric study 
 

Parametric study Wall model Ao/A Nuo,LFEM 
(kN) 

Nuo,Eq.(2) 
(kN) )2(,

,

Equo

LFEMuo

N
N  δmax,LFEM 

(mm) 
 A-OW3 0.25 347.27 343.93 1.01 5.73 
 A-OW4.5 0.375 233.97 285.76 0.82 5.66 
 A-OW6 0.5 126.55 227.59 0.56 5.12 

1 A-OW8 0.667 29.43 150.03 0.20 2.16 
(opening size) A-TW3 0.25 921.16 832.16 1.11 8.83 

 A-TW4.5 0.375 726.92 706.24 1.03 6.82 
 A-TW6 0.5 481.18 580.32 0.83 5.29 
 A-TW8 0.667 126.55 412.43 0.31 2.03 
    Mean     0.72 
     Standard deviation     0.34 
  Lo/L     
 L-OW3 0.25 347.27 343.93 1.01 5.73 
 L-OW4.5 0.375 257.51 285.76 0.90 5.54 
 L-OW6 0.5 170.69 227.59 0.75 3.98 

2 L-OW8 0.667 98.59 150.03 0.66 5.33 
(opening length) L-TW3 0.25 921.16 832.16 1.11 8.83 

 L-TW4.5 0.375 794.61 706.24 1.13 6.90 
 L-TW6 0.5 641.57 580.32 1.11 6.28 
 L-TW8 0.667 456.17 412.43 1.11 1.38 
    Mean     0.97 
     Standard deviation     0.18 
  Ho/H     
 H-OW3 0.25 347.27 343.93 1.01 5.73 
 H-OW4.5 0.375 329.62 343.93 0.96 5.77 
 H-OW6 0.5 313.43 343.93 0.91 5.55 

3 H-OW8 0.667 289.89 343.93 0.84 5.90 
(opening height) H-TW3 0.25 921.16 832.16 1.11 8.83 

 H-TW4.5 0.375 907.92 832.16 1.09 8.68 
 H-TW6 0.5 862.30 832.16 1.04 8.50 
 H-TW8 0.667 788.72 832.16 0.95 8.23 
    Mean     0.99 
     Standard deviation     0.09 
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Table 3. Calibration of constants k1 and k2 
 

Action Wall 
model 

Opening size
(mm×mm) 

Nuo,LFEM 
(kN) 

Nu,Eq.(3) 
(kN) )(,

,

3Equ

LFEMuo

N
N  αxy 

(when λ=0.21) 
 A-OW3 300×300 347.27 389.3 0.892 0.250 
 A-OW4.5 450×450 233.97 389.3 0.601 0.375 
 A-OW6 600×600 126.55 389.3 0.325 0.500 

 A-OW8 800×800 29.43 389.3 0.076 0.667 
One-way L-OW4.5 300×450 257.51 389.3 0.661 0.353 

 L-OW6 300×600 170.69 389.3 0.439 0.457 
 L-OW8 300×800 98.59 389.3 0.253 0.594 
 H-OW4.5 450×300 329.62 389.3 0.847 0.272 

 H-OW6 600×300 313.43 389.3 0.805 0.293 
 H-OW8 800×300 289.89 389.3 0.745 0.322 

     R2 0.99 
     k1 1.361 
     k2 1.952 

      αxy 
(when λ=0.40) 

 A-TW3 300×300 921.16 1073.0 0.859 0.250 
 A-TW4.5 450×450 726.92 1073.0 0.677 0.375 
 A-TW6 600×600 481.18 1073.0 0.448 0.500 
 A-TW8 800×800 126.55 1073.0 0.118 0.667 
Two-way L-TW4.5 300×450 794.61 1073.0 0.741 0.339 

 L-TW6 300×600 641.57 1073.0 0.598 0.429 
 L-TW8 300×800 456.17 1073.0 0.425 0.548 

 H-TW4.5 450×300 907.92 1073.0 0.846 0.286 
 H-TW6 600×300 862.30 1073.0 0.804 0.321 
 H-TW8 800×300 788.72 1073.0 0.735 0.369 
     R2 0.98 
     k1 1.358 
     k2 1.795 
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 (a) One-way (b) Two-way 
 

Figure 1. Bending action of wall panel 
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Figure 2. Geometry of wall panel with opening 
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(a) Eight-node degenerate shell element 
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(b) Concrete and steel layers in a typical wall element 
 
 

Figure 3. Layered finite element model 
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(a) One-dimensional representation for concrete in compression and tension 
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(b) Tension stiffening effect for cracked concrete 
 

0.0020
1

1

1

σ

ε

fy

0.8fy

εy εu

Es2

Es1

Es

0.0020
1

1

1

σ

ε

fy

0.8fy

εy εu

Es2

Es1

Es

 
 

(c) Uniaxial behaviour of steel 
 

Figure 4. Constitutive models for concrete and steel 
 



 33

 

E B A G D AA B E F

240x240

WAR-1(P)

B AA E

60
0

900 100 100
WWO-1(P) WWO-2(P) WWO-3(P)

CLCLCLCLCLCLCLCL

BE AD

210x420

B AD F A

CLCL

B A D

100 100 100

WWO-4(P) WWO-5(P) WWO-6(P)

CLCLCLCL

A

 
 
 

Figure 5. Wall panels analysed in two-way action (dimensions in mm) 
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Figure 6. Typical wall model WWO-6(P) 
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(a) WAR-1(P) (quarter model) 
 

 
(b) WWO-1(P) (quarter model) 
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(c) WWO-5(P) (full model) 
 

(d) WWO-6(P) (full model) 
 

Figure 7. Predicted deflected shapes 
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LFEM prediction for half model (tension layer) 
 

 
 

Experimental observation (tension face) 
 

(a) WWO-2(P) 
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LFEM prediction for quarter model (tension layer) 

 

 
 

Experimental observation (tension face) 
 

(b) WWO-3(P) 
 

 
 

LFEM prediction (tension layer) 
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Experimental observation (tension face) 
 

(c) WWO-5(P) 
 
 

Figure 8. Predicted and experimental crack patterns 
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(a) WAR-1(P) 

 

 
(b) WWO-1(P) 
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(c) WWO-2(P) 

 
(d) WWO-3(P) 
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(e) WWO-4(P) 

 
(f) WWO-5(P) 
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(g) WWO-6(P) 

 
 

 
Figure 9. Predicted and experimental load-deflection responses 
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Figure 10. Experimental vs LFEM ultimate loads 
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(a) Parametric study 1 - variation of opening size 
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(b) Parametric study 2 - variation of opening length 
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(c) Parametric study 3 - variation of opening height 
 
 

Figure 11. Model layout for parametric studies (dimensions in mm) 
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Figure 12. Axial strength ratio vs Ao/A 
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(a) A-OW6 (b) A-TW3 
 

Figure 13. Predicted deflected shapes (quarter model) 
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Figure 14. Axial strength ratio vs Lo/L 
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Figure 15. Axial strength ratio vs Ho/H 
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(a) One-way models 
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(b) Two-way models 
 

Figure 16. Comparison of axial strength ratio for one-way and two-way models 
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Figure 17. Regression analysis for one-way and two-way models 

 

 


