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Abstract
In this paper, we propose the modulation-domain Kalman �l-
ter (MDKF) for speech enhancement. In contrast to previous
modulation domain-enhancement methods based on bandpass
�ltering, the MDKF is an adaptive and linear MMSE estima-
tor that uses models of the temporal changes of the magnitude
spectrum for both speech and noise. Also, because the Kalman
�lter is a joint magnitude and phase spectrum estimator, under
non-stationarity assumptions, it is highly suited for modulation-
domain processing, as modulation phase tends to contain more
speech information than acoustic phase. Experimental results
from the NOIZEUS corpus show the ideal MDKF (with clean
speech parameters) to outperform all the acoustic and time-
domain enhancement methods that were evaluated, including
the conventional time-domain Kalman �lter with clean speech
parameters. A practical MDKF that uses the MMSE-STSA
method to enhance noisy speech in the acoustic domain prior
to LPC analysis was also evaluated and showed promising re-
sults.
Index Terms: speech enhancement, Kalman �ltering, modula-
tion domain

1. Introduction
In the problem of speech enhancement, where a speech signal
is corrupted by noise, we are primarily interested in suppress-
ing the noise so that the quality and intelligibility of speech
are improved. Speech enhancement is useful in many appli-
cations where corruption by noise is undesirable and unavoid-
able. The Kalman �lter was �rst introduced for speech enhance-
ment in [1], where signi�cant noise reduction was reported
when linear prediction coef�cients (LPCs) estimated from clean
speech were provided. In practice though, poor parameter esti-
mates from noisy speech result in degraded enhancement per-
formance. Iterative Kalman �lters (such as [2]) have been
shown to alleviate the effects of poor parameter estimates in the
Kalman �lter, but in some of these methods, convergence is not
guaranteed and the enhanced output suffers from musical noise
and speech distortion.

The Kalman �lter is an unbiased, time-domain, linear min-
imum mean squared error (MMSE) estimator, where the en-
hanced speech is recursively estimated on a sample-by-sample
basis. Hence, the Kalman �lter can be viewed as a joint es-
timator for both the magnitude and phase spectrum of speech,
under non-stationarity assumptions [3]. This is in contrast to the
short-time Fourier transform (STFT)-based enhancement meth-
ods, such as spectral subtraction, Wiener �ltering, and MMSE
estimation [4], where thenoisy phase spectrum is combined
with the estimated clean magnitude spectrum to produce the
enhanced speech frame. However, it has been reported that
for spectral SNRs greater than approximately 8 dB, the use of
unprocessed noisy phase spectrum does not lead to perceptible
distortion [4].

There has been recent interest in using the modulation do-
main as an alternative to the acoustic domain for speech en-
hancement, where we de�ne theacoustic frequenciesas the
STFT of a signal and themodulation domainas the temporal
trajectory of the magnitude spectrum at all acoustic frequen-
cies [5]. This is because there is growing psychoacoustic and

physiological evidence to support the signi�cance of the modu-
lation domain for speech analysis and processing [6]. Drullman
et al. [7, 8] investigated the importance of modulation frequen-
cies for intelligibility by applying low-pass and high-pass �lters
to the temporal envelopes of acoustic frequency subbands. They
showed frequencies between 4 and 16 Hz to be important for in-
telligibility, with the region around 4–5 Hz being the most sig-
ni�cant. In a similar study, Arai et al. [9] showed that applying
passband �lters between 1 and 16 Hz does not impair speech
intelligibility. While the envelope of the acoustic magnitude
spectrum represents the shape of the vocal tract, the modulation
spectrum represents how the vocal tract changes as a function
of time. It is these temporal changes that convey most of the
linguistic information (or intelligibility) of speech.

Hermansky et al. [10] proposed to bandpass �lter the time
trajectories of cubic-root compressed short-time power spec-
trum for enhancement of speech corrupted by additive noise.
Similar bandpass �ltering was applied to the time trajectories
of the short-time power spectrum for speech enhancement in
[11, 12]. These bandpass �ltering methods have several lim-
itations: (1) the �lters are �xed in nature, while the proper-
ties of speech and noise change over time; (2) the properties
of the noise are not exploited in the design of the �lters; and (3)
noise contained in the �lter passband (the speech modulation re-
gions) is preserved. These limitations were addressed recently
in [13], whereby the spectral subtraction algorithm was used
to process the modulation spectrum on a frame-by-frame basis.
The results from this study demonstrated the effectiveness of
speech enhancement in the modulation domain, where `musi-
cal noise' that is typically associated with spectral subtraction
in the acoustic domain, could be suppressed in the enhanced
speech by increasing the modulation frame duration.

In this paper, we propose the use of Kalman �ltering for
estimating the temporal trajectories of the magnitude spectrum
along each acoustic frequency. We believe the ability of the
Kalman �lter to estimate both the magnitude and phase spec-
trum, under non-stationarity assumptions [3] makes it prefer-
able over STFT-based enhancement methods, because phase in-
formation has been shown to play a more important role in the
modulation domain than in the acoustic domain [10]. Using ob-
jective tests on the NOIZEUS speech corpus [4], we show that
in the ideal case where accurate model parameters are avail-
able, the modulation domain Kalman �lter (MDKF) outper-
forms all acoustic and time-domain speech enhancement meth-
ods that were evaluated (including the time-domain Kalman �l-
ter (TDKF)), in the ideal case where accurate model parameters
are available. We also present some results of a practical MDKF
that uses the MMSE-STSA algorithm in the acoustic domain as
a preprocessor for LPC estimation.

2. Modulation domain Kalman �ltering for
speech enhancement

2.1. Acoustic analysis-modi�cation-synthesis framework

The analysis-modi�cation-synthesis (AMS) framework consists
of three stages: (1) the analysis stage, where the input speech
is processed using STFT analysis; (2) the modi�cation stage,
where the noisy spectrum undergoes some kind of modi�cation;
and (3) the synthesis stage, where the inverse STFT is followed



by the overlap-add synthesis to reconstruct the output signal.
Let us consider an additive noise model:

y(n) = x(n) + v(n) (1)

wherey(n), x(n) andv(n) denote zero-mean signals of noisy
speech, clean speech and noise, respectively. Since speech can
be assumed to be quasi-stationary, it is analysed framewise us-
ing short-time Fourier analysis. The STFT of the corrupted
speech signaly(n) is given by:

Y (n; k ) =
1X

l = ¡1

y(l )w(n ¡ l )e¡ j 2¼kl
N (2)

wherek refers to the index of the discrete acoustic frequency,
N is the acoustic frame duration (in samples) andw(n) is an
acoustic analysis window function. In speech processing, the
Hamming window with 20–40 ms duration is typically em-
ployed. Using STFT analysis, we can represent Eq. (2) as:

Y (n; k ) = X (n; k ) + V (n; k ) (3)

whereY (n; k ); X (n; k ) andV (n; k ) are the STFTs of noisy
speech, clean speech, and noise, respectively. Each of these can
be expressed in terms of acoustic magnitude and acoustic phase
spectrum. For instance, the STFT of the noisy speech signal can
be written in polar form as:

Y (n; k ) = jY (n; k )jej \ Y ( n;k ) (4)

wherejY (n; k )j denotes the acoustic magnitude spectrum and
\ Y (n; k ) denotes the acoustic phase spectrum.

Traditional AMS-based speech enhancement methods
modify, or enhance, only the noisy acoustic magnitude spec-
trum while keeping the noisy acoustic phase spectrum un-
changed. Let us denote the enhanced magnitude spectrum as
jX̂ (n; k )j, then the modi�ed acoustic spectrum is constructed
by combiningjX̂ (n; k )j with the noisy phase spectrum, as fol-
lows:

X̂ (n; k ) = jX̂ (n; k )jej \ Y ( n;k ) (5)

The enhanced speecĥx(n) is reconstructed by taking the in-
verse STFT of the modi�ed acoustic spectrum followed by syn-
thesis windowing and overlap-add reconstruction [14].

2.2. Kalman �ltering in the modulation domain

The modulation domain views the acoustic magnitude spectrum
as a series ofN modulating signalsthat span across time. Each
modulating signal represents the temporal evolution of each
acoustic magnitude spectral component, as shown in Fig. 2. In
the proposed modulation-domain Kalman �lter (MDKF), each
modulating signal,jY (n; k )j (wherek = 1 ; 2 : : : ; N ) is pro-
cessed using a Kalman �lter (see Fig. 1).

In the modulation-domain Kalman �lter, we assume an ad-
ditive noise model for each modulating signal:

jY (n; k )j = jX (n; k )j + jV (n; k )j (6)

wherejV (n; k )j is thekth modulating signal of white Gaussian
noise. Apth order linear predictor can be used to model thekth
modulating signal of speech and together with the corrupting
noise, we can write the following state space representation for
jY (n; k )j:

X (n; k ) = A (k)X (n ¡ 1; k) + dW (n; k ) (7)

jY (n; k )j = cT X (n; k ) + jV (n; k )j (8)

where A (k) is the state transition matrix,X (n; k ) =
[jX (n; k )j; jX (n ¡ 1; k)j; : : : ; jX (n ¡ p + 1 ; k)j]T is the
clean modulation state vector,d = [1 ; 0; : : : ; 0]T and c =
[1; 0; : : : ; 0]T are the measurement vectors for the excitation
noiseW (n; k ) and observation, respectively.
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Figure 1: Schematic diagram of the proposed AMS-based
modulation-domain Kalman �ltering framework.

The Kalman �lter recursively computes an unbiased and
linear MMSE estimateX̂ (njn; k ) of the kth modulation state
vector at timen, given the noisy modulating signaljY (n; k )j,
by using the following equations:

P (n jn ¡ 1; k )= A (k )P (n ¡ 1jn ¡ 1; k )A (k )T + ¾2
W ( k ) dd T (9)

K (n; k )= P (n jn ¡ 1; k )c
h
¾2

V ( k ) + cT P (n jn ¡ 1; k )c
i ¡ 1

(10)

X̂ (n jn ¡ 1; k )= A (k ) X̂ (n ¡ 1jn ¡ 1; k ) (11)

P (n jn; k )=[ I ¡ K (n; k )cT ]P (n jn ¡ 1; k ) (12)

X̂ (n jn; k )= X̂ (n jn ¡ 1; k ) + (13)

K (n; k )
h
jY (n; k ) j ¡ cT X̂ (n jn ¡ 1; k )

i
(14)

When applying the Kalman �lter in the modulation domain,
there are some time domain-based assumptions that may not
necessarily be satis�ed in the modulation domain:

² additive noise in the time domain may not be additive in
the modulation domain (Eq. (6));

² white noise in the time domain may not be spectrally
white in the modulation domain; and

² the linear predictor may not be the best dynamic model
of modulating signals.

In regards to the additive noise assumption in the modulation
domain, let us consider Eq. (2) in polar form:

jY (n; k )jej \ Y ( n;k ) = jX (n; k )jej \ X ( n;k ) + jV (n; k )jej \ V ( n;k )

(15)
Using a geometric approach [4], it is easy to see that the ad-

ditive noise assumption of Eq. (6) is approximately satis�ed if
either\ X (n; k ) ¼ \ V (n; k ) or jX (n; k )j >> jV (n; k )j. The
�rst condition is more dif�cult to show since it is assumed that
clean speech and noise signals are not correlated. However, the
second condition is related to the instantaneous spectral SNR at
acoustic frequency indexk, i.e. jX (n; k )j2=jV (n; k )j2 . Hence
it can be inferred that the additive noise assumption in the mod-
ulation domain is roughly satis�ed in high spectral SNR re-
gions.

Fig. 3 shows the autocorrelation function of the modulat-
ing signal at an acoustic frequency for white Gaussian noise.
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Figure 2: The modulation domain representation of speech (`The sky that morning was clear and bright blue'): (a) clean speech; (b)
speech corrupted with white Gaussian noise at an SNR of 0 dB.
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Figure 3: Plot of autocorrelation function of the modulating sig-
nal at an acoustic frequency of white Gaussian noise.

We can see that the modulating signals of white noise do con-
tain some correlation at higher lags and hence their modulation
spectrum is not white. Therefore, in order to accommodate this
fact, the coloured-noise Kalman �lter [2] is chosen for use in
the proposed MDKF, where an extraqth linear predictor is used
to model the noise and the state vectors and transition matrices
are augmented to sizes ofp + q.

Finally, in regards to the dynamic model, we have observed
in our experiments that for the MDKF in the ideal case (where
clean speech parameters are available), the linear predictor is
suf�cient at modelling the modulating signals of clean speech.
However, it is well known that the presence of noise will in-
troduce bias in the LPC estimates, which degrades the perfor-
mance of the Kalman �lter. In the proposed MDKF (see Fig. 1),
we employ the MMSE-STSA method in the acoustic domain to
enhance the speech prior to LPC estimation in the modulation
domain, in order to reduce the effect of noise. We should note
that other models may be more applicable for predicting the
temporal evolution of these modulating signals in the presence
of noise and these will be investigated in a future study.

3. Speech enhancement experiments
3.1. Experimental setup

In our experiments, we use the NOIZEUS speech corpus, which
is composed of 30 phonetically balanced sentences belonging to
six speakers [4]. The corpus is sampled at 8 kHz. For our ob-
jective experiments, we generate a stimuli set that has been cor-
rupted by additive white Gaussian noise at four SNR levels (0,
5, 10 and 15 dB). The noise-only sections of all the stimuli have
been extended to approximately 500 ms to allow for reliable
noise estimation. The FFT size (N ) was 512. The objective
evaluation was carried out on the NOIZEUS corpus using the
PESQ (perceptual evaluation of speech quality) measure [15].

The treatment types used in the evaluations are listed below
(p is the order of the LPC analysis):

1. original clean speech (Clean);
2. speech corrupted with white Gaussian noise (Noisy);
3. time-domain Kalman �lter with LPCs estimated from

clean speech,p = 10 , 40 ms frame duration with 5 ms
update, Hamming window (TDKF ideal );

4. modulation-domain Kalman �lter with LPCs estimated
from clean speech,p = 2 , 10 ms frame duration with
2.5 ms update in modulation domain, (MDKF ideal );

5. modulation-domain Kalman �lter with LPCs estimated
from noisy speech,p = 2 , 10 ms frame duration with
2.5 ms update in modulation domain, (MDKF noisy);

6. modulation-domain Kalman �lter with LPCs estimated
from MMSE-STSA enhanced speech,p = 2 ; q = 4 ,
80 ms frame duration with 10 ms update in modulation
domain (MDKF-MMSE );

7. iterative time-domain Kalman �lter [2] with three itera-
tions, p = 10 , 32 ms frame duration with 4 ms update
(TDKF iterative );

8. MMSE-STSA method [16] (MMSE-STSA); and
9. phase spectrum compensation method [17] (PSC).

3.2. Results and discussion

Table 1 shows the average PESQ scores of the modulation-
domain Kalman �ltering methods as well as other speech en-
hancement methods. It can be seen that the ideal MDKF,
which estimated the LPCs from the modulating signals of clean
speech, has achieved the highest PESQ of all the enhancement
methods. The ideal MDKF has even outperformed the ideal
TDKF, which often serves as an upper bound of enhancement
performance. However, when the LPCs were estimated from



Table 1: Average PESQ scores comparing the different speech
enhancement methods with the proposed method for speech
corrupted by white noise. Bold numbers show the best score.

Method Input SNR (dB)
0 5 10 15

No enhancement 1.66 1.84 2.18 2.48
Acoustic and time-domain methods:
TDKF ideal 2.61 2.84 3.14 3.43
TDKF iterative 2.08 2.46 2.81 3.14
MMSE-STSA 1.98 2.36 2.69 2.98
PSC 1.97 2.35 2.72 3.06
Modulation-domain Kalman �ltering:
MDKF ideal 3.35 3.45 3.72 3.92
MDKF noisy 1.70 2.00 2.33 2.65
MDKF-MMSE 2.26 2.56 2.87 3.19

the noisy modulating signals (as in MDKF noisy), we observe
a dramatic drop in PESQ, as is normally expected when using
poor LPC estimates. When the MMSE-STSA algorithm was
used to pre-enhance the speech frame in the acoustic domain
prior to LPC analysis in the modulation domain (as in MDKF-
MMSE), we can see some improvements in the PESQ scores,
where it outperformed all acoustic and time-domain methods
except for the ideal TDKF.

When comparing the spectrograms in Figs. 4(c) and 4(f),
we notice that the enhanced speech from the MDKF has slightly
more detail than the output of the TDKF, which correlates
with the higher PESQ scores seen in Table 1. In informal lis-
tening tests comparing the ideal MDKF with the TDKF, we
found the latter method to produce speech that tended to sound
`breathy' and unvoiced, while the former method produced
clearer speech. We may attribute this problem of the TDKF
to the loss of the �ne structure (long-term correlation infor-
mation), when the Kalman �lter weights the linear predictor
(which uses only short-term correlations) more favourably over
the noisy observation. The MDKF does not suffer from this
problem since the Kalman �lter is processing in the modulation
domain (time trajectories of spectral magnitudes). We can also
see that there is less residual noise in the MDKF-MMSE output
(Fig. 4(g)) than in the MMSE-STSA and PSC methods in Figs.
4(d) and 4(e).

4. Conclusion
In this paper, we have proposed the use of Kalman �ltering
in the modulation domain for speech enhancement. In con-
trast to previous modulation domain-enhancement methods,
the modulation-domain Kalman �lter (MDKF) is an adaptive
MMSE estimator that uses the statistics of temporal changes
in magnitude spectrum for both speech and noise. Further-
more, since the modulation phase plays a more important role
than acoustic phase, the Kalman �lter is highly suited since
it is a joint magnitude and phase spectrum estimator, under
non-stationarity assumptions. Experimental results from the
NOIZEUS corpus showed the MDKF (with clean speech pa-
rameters) to outperform all the acoustic and time-domain en-
hancement methods evaluated.
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