
A RFID Explicit Tag Estimation Scheme for
Dynamic Framed-Slot ALOHA Anti-Collision

Prapassara Pupunwiwat, Bela Stantic

Institute for Integrated and Intelligent Systems
Griffith University, Queensland, Australia

{P.Pupunwiwat, B.Stantic }@griffith.edu.au

Abstract—Radio Frequency Identification (RFID) systems con-
sist of fast capturing radio frequency tags and networked electro-
magnetic readers. Despite the advances of the RFID technology,
tag collision is a major problem and can be solved by using
the anti-collision scheme. The current ALOHA-based approach
suffers from tag starvation problem due to the inaccurate frame
size. In this paper, we propose a “RFID Explicit Tag Estimation
Scheme” (RETES) for a Dynamic Framed-Slot ALOHA (DFSA),
which estimate precise number of tags around the reader and
compatible with Electronic Product Code (EPC) Class 1 Gen-
eration 2. The preliminary findings indicated that our method
achieves better outcome than existing techniques. We identified
that the variations of specific RETES’s parameters impact the
DFSA’s performance. Therefore, to achieve the best performance
the parameters should be dynamically adjusted over the process
of identification.

I. I NTRODUCTION

RFID technology has gained significant momentum in the
past few years. The core RFID technology can be traced back
to World War II where it was used to distinguish between
friendly and enemy aircrafts. Currently RFID technology is
used in different systems such as: transportation, consumer
packaging, security and access control, library system, and
defence and military.

When numerous tags are present in the interrogation zone
at the same time, the reader requires an ability to read data
from individual tags. A technical scheme that handles tag
collision without any interference is called ananti-collision
protocol. The main focus of ananti-collisionscheme is to read
multiple tags as fast and reliably as possible. Two types oftag
anti-collisionalgorithms widely used in RFID systems are the
Tree-based deterministic anti-collision and the ALOHA-based
probabilistic anti-collision.

In this study, we propose aRFID Explicit Tag Estima-
tion Scheme(RETES) for Backlog estimation andframe-
sizeestimation, which is compatible withDynamic Framed-
Slot ALOHA(DFSA). The aim of RETES is to identify the
best variables that can predict the most accurate number of
tags within an interrogation zone, using information based on
collision slotsandempty slots. Accurate estimation of number
of tags leads to accurateframe-sizeestimation and system
efficiency. Initial findings have indicated that RETES with
lower values for the parameters have a better impact on the
performances of DFSA. The initialQ values and number of
tags within the reader zone also influence the performance of
RETES.

The remainder of this paper is organised as follows: In
section 2 we provide background information related to RFID
tag collisions andanti-collisionschemes, and discussion of the
Dynamic Framed-Slot ALOHAand its limitations. In section 3
we present a core of new methodology, theRFID Explicit Tag
Estimation Scheme. In section 4, we present our experimental
evaluation, results, and analysis. We conclude our paper in
section 5.

II. RFID BACKGROUND

RFID technology is a contactless identification technology
that identifies electronic tags attached to items. There are
several methods of identification but the most common is to
store a serial number that identifies a person or object such as
Electronic Product Code (EPC).

Simultaneous transmissions in RFID systems lead to col-
lisions as the readers and tags typically operate on the same
channel. The tag collision in RFID systems, also known as
Multi-Access, happens when multiple tags are energised by
the RFID tag reader simultaneously, and reflect their respective
signals back to the reader at the same time.

The various types oftag anti-collisionapproaches for tag
collision can be reduced to two basic types:Tree-baseddeter-
ministic approach andALOHA-basedprobabilistic approach.
The Tree-based approach is slow and introduces identification
delay but leads to fewer collisions. In contrast, tags respond
at randomly generated times in an ALOHA-based approach.
If a collision occurs, colliding tags will have to identify
themselves again after waiting a random period of time [1].
This technique is faster than Tree-based but suffers from tag
starvation problem where not all tags can be identified due to
the random nature of chosen time.

A. Dynamic Framed-Slot ALOHA Algorithm

In DFSA, each tag in an interrogation zone selects one of
the givenN slots to transmit its identifier; and all tags will
be recognised after a few frames. Each frame is formed of
specific number of slots that is used for the communication be-
tween the readers and the tags. Theframe-sizeis dynamically
changed according to estimated number ofBacklog, which is
a number of tags that have not been read. There have been
several researches to improve the accuracy offrame-sizeby
implementing a Frame Estimation Tool [2], [3], [4].



According to the DFSA protocol, the reader picks tag within
an interrogation zone by the command “Select”; then issues
“Query”, which contains a ‘Q’ parameter to specify theframe-
size (frame-size F = 2Q - 1). Each selected tag will pick a
random number between 0 to 2Q - 1 and put it into its slot
counter. The tag, which picks zero as its slot number, will
respond and backscatter its EPC to reader. Then, reader issues
“QueryRep” or “QueryAdjust” command to initiate another
slot [5]. In ALOHA-based anti-collision, there are three kinds
of slot as shown in Figure 1: 1)Successful slotwhere there is
only one tag reply; 2)Empty slotwhere there is no tag reply;
and 3)Collision slot where there is more than one tag reply.

Fig. 1. Empty Slot, Successful Slot, and Collision Slot in EPC Class 1 Gen2
Protocol

B. Backlog Estimation Schemes

There are differentBacklogestimation methods proposed in
the literature [6], [7], [8], [9], [10]. These methods predicted
number of tags, which may occur for the next identification
round, by using information fromcollision slotsand/orempty
slots of the current frame. Major methods are explained as
follows:

1) Schoute backlog estimation technique:Schoute devel-
oped aBacklog estimation technique for Dynamic Framed-
Slot ALOHA using Poisson distributed [6]. TheBacklogafter
the current frame Bt is given by equation:

Bt = 2.39 ∗ c

where c represents the number of collided slot in the current
frame. This technique has the best performance, where fewest
frames were used compared to other algorithms.

2) Lowerbound backlog estimation technique:The estima-
tion function is obtained under the assumption that a collision
involves at least two different tags. Therefore,Backlogafter
the current frame Bt is given by equation:

Bt = 2 ∗ c

where c is the number of collided slot in the current frame.

3) Other backlog estimation techniques:There have been
several researches onBacklog estimation including C-Ratio
method [7], Chen1 and Chen2 methods [8], Vogt method
[9], and Bayesian method [10]. These methods are either
having worse performances than simple Schoute’s method or
too complicated to implement for RFID system. Therefore,
we only compare our method to Schoute and Lowerbound
methods, since the two methods are simple and have excellent
performances.

III. RETES METHODOLOGY

In order to overcome shortcomings of existing methods, we
propose aRFID Explicit Tag Estimation Scheme(RETES) to
estimate accurate number of tags andframe-sizefor DFSA
protocols usingcollision slots and empty slotsprediction.
Accurate estimation of number of tags will lead to accurate
frame-sizeestimation for the next round of identification
process, which then results in a minimal number ofslotsand
framesissued by a reader. This section will describe the newly
proposed RETES; the specific requirements for tag estimation;
initial Q value; and suggestframe-size.

A. RFID Explicit Tag Estimation Scheme - RETES

RETES uses a number of parameters to predictcollision
slots and empty slotsfor new identification round. RETES
method aims to obtain the optimal parameters in order to
calculate and predict the closest number of remaining tags
for the upcoming round of identification. We assume that for
the current identification round, eachcollision slothas at least
two tags that collided. However, we cannot know for sure
how many tags actually caused the collision. Because there are
exactly one tag persuccessful slot, we do not takesuccessful
slotsinto consideration. On the other hand, we assume that the
empty slotswill continuously occur during the next rounds
of identification, regardless of theframe-size. Thus, RETES
method is introduced to find the optimal parameters and to
predict the number of remaining tags for upcoming round,
using information from bothcollision slotsandempty slotsof
the current frame.

RETES uses parameter 2.0 to predict the number ofcol-
lision slots after the first round of identification. Parameter
2.0 is chosen according to the assumption that at least two
tags collided percollision slot. Since the number of tags is
supposedly unknown at the beginning of the identification, a
simple frame-sizeprediction using variable 2.0 is chosen for
the nextQ adjust. Equation (1) showsBacklogestimation using
parameter 2.0 forcollision slotsprediction.

Backlog = Round(2.0 ∗ c) (1)

wherec is the number of collided slot in the current frame.
After the second round of identification, the RETES uses

different parameter between 2.0 and 2.5 to predict the number
of collision slots. Since a collision slot engages at least
two tags, we assume that the parameter forcollision slots
calculation falls between 2.0 and 2.5 (more than 2 but possibly
less than 2.5). However, number of tags percollision slotcan



be more than 2.5 tags. According to Schoute’s method [6],
which has the bestBacklog estimation, the parameter used
is 2.39. Therefore, we assume that the optimal parameter falls
between 2 and 2.5. Variables between 0.1 and 0.5 are also used
to predict the number ofempty slotsfor the upcoming round.
Since anempty slotdoes not engage any tag, we assume that
the parameter forempty slotscalculation falls between 0.1 and
0.5. Equation (2) showsBacklogestimation using variable V1
for collision slotsprediction and variable V2 for empty slots
prediction.

Backlog = Round(V1 ∗ c + V2 ∗ e) (2)

wherec is collision slot;e is empty slot;V1 is variable between
2.0 and 2.5; and V2 is variable between 0.1 and 0.5 with
increments of 0.1.

B. Slot Observation and Initial Q-Value

According to DFSA algorithm, the reader picks tag within
an interrogation zone by the command “Select”; then issues
“Query”, which contains a ‘Q’ parameter to specify theframe-
size, [F = 2Q - 1]. For our methodology, initialQ value can be
any number between 1 and 10 since we assume that a reader
can at most pick up no more than 800 tags per round. After
the first round of identification,collision slotsandempty slots
will be observed and used, to estimate number of tags. After
the number of tags has been estimated,frame-sizefor the next
identification round can be configured. The suggestedframe-
size is explained in the following sub-section.

C. Suggested Frame-Size

The suggestedframe-sizefor our methodology is set ac-
cording to estimated number of tags. For example, if estimated
number of tags is around 100 tags, the suggestedframe-size
would have aQ value of 7. Since theframe-sizeis calculated
by 2Q - 1, theframe-sizewhere Q = 7 will allow at most 128
tags (0 to 27 - 1) to be identified. Therefore, if the estimated
number of tags is between 65 and 128 tags, the suggested
Q would equal to 7. Table I showsMinimum and Maximum
number of tags allowed per suggestedframe-size.

TABLE I
SUGGESTEDFRAME-SIZE FOR SPECIFIC ESTIMATED NUMBER OF TAGS.

MAXIMUM TAGS OF EACH FRAME-SIZE IS CALCULATED BY 2Q - 1

2Q 21 22 23 24 25

Min 0 3 5 9 17
Max 2 4 8 16 32

2Q 26 27 28 29 210

Min 33 65 129 257 513
Max 64 128 256 512 1024

IV. EXPERIMENTAL EVALUATION

In order to show the significance of our method, we con-
ducted two experimental evaluations and compared our method
to the existing techniques. In this section, we describe the
data sets used in each experiment; present the results of the
experiment; and provide an analysis upon these results.

A. Data Sets

Different tag sets are simulated in the experiment, we tested
performance of RETES method versus Schoute (Sch) and
Lowerbound (LB) method. The data used for the experiment
has been randomly generated to reflect a real world scenario.

The aims of the experiment are to find the impact of
different tag sets; to find the impact of different initialQ; and
to find optimal parameters that produce the minimal number
of slotsand frames.

• There are three tag sets for different tag sets comparison
comprising of 200, 250, and 300 tags. The initialQ of
for each tag set is fixed to 8.

• A tag set utilised for different initialQ comparison
comprising 200 tags. Different initialQ of 6, 7, and 8
are applied on the tag set.

B. Results

Results from the experiment show that different parameters
impact performances of RETES. Figure 2 and Table II show
that different number of tags within the reader’s range resulted
in different total number ofslots and frames queried by
RETES, Schoute (Sch), and Lowerbound (LB) methods. Thus,
we compare RETES’s performance based on both number
of slots and frames. Sch and LB methods have a constant
parameter of 2.39 and 2.0 respectively for number ofcollision
slotsprediction.

Figure 2 demonstrates that there are several major variables
used by RETES which ensure good performances, compared
with Sch and LB methods. These parameters are 2.0<= V1

<= 2.2 and 0.1<= V2 <= 0.2. Considering different tag
sets, it can be seen that when there are lower number of tags,
especially 200 and 250 tags, RETES performs better or is
in-line with Sch and LB methods using optimal parameters.
However, when number of tags exceed the capability of
number of available slots (Q8 = 256 slots), specifically for 300
tags, the performances of RETES using optimal parameters
degenerated.

TABLE II
NUMBER OF SLOTS AND FRAMES COMPARISON USING DIFFERENT TAG

SETS AND INITIAL Q; RETESVERSUSSCH AND LB

Different tag sets Different Initial Q
No. Slots/No. Frames No. Slots/No. Frames
200 250 300 Q 6 Q 7 Q 8

2.0, 0.1 564/7 654/9 860/9 616/10 558/9 564/7
2.0, 0.2 552/5 728/7 864/9 656/7 568/7 552/5
2.0, 0.3 576/4 728/7 928/7 672/6 608/6 576/4
2.1, 0.1 564/7 656/8 858/8 626/7 568/7 564/7
2.1, 0.2 552/5 728/7 872/7 656/6 568/7 552/5
2.1, 0.3 576/4 728/7 880/7 672/6 608/6 576/4
2.2, 0.1 552/5 728/7 872/7 656/6 568/7 552/5
2.2, 0.2 552/5 728/7 880/7 656/6 568/7 552/5
2.2, 0.3 576/4 728/7 880/7 672/6 608/6 576/4

LB 562/8 654/10 860/9 606/11 556/10 562/8
Sch 552/5 700/8 810/8 626/7 600/7 552/5

Figure 2 also demonstrates that different initialQ influence
the performance of RETES. Looking at low initialQ and high
number of tags from Figure 2 and Table II, particularly where



Fig. 2. Number of slots comparison of RETES method versus Sch and LB
methods using different tag sets and initial Q

Q = 6 and number of tags is 200 tags, performance of RETES
is not good compared with both Sch and LB. However, when
initial Q of 7 and 8 are used while number of tags stay 200,
performance of RETES improved, considering only optimal
parameters 2.0<= V1 <= 2.2 and 0.1<= V2 <= 0.2.

C. Analysis

Overall analysis of the experiment is presented in Table III.
Performances of the RETES methods are classified into three
categories: good, in-line, and poor. The table demonstrated that
when using higher initialQ, RETES has good performance
compared with Sch and LB methods. In contrast, when initial
Q is low, RETES’s performance degenerated but still in-
line with existing methods. Table III shows that the RETES
performed the best overall, this is the case when the optimal
parameters 2.0<= V1 <= 2.2 and 0.1<= V2 <= 0.2 are
considered.

TABLE III
IMPACT ANALYSIS OF INITIAL Q AND NUMBER OF TAGS ON

PERFORMANCES OFRETESVERSUSSCH AND LB METHODS

Initial Q No. of Tags Performances
Low High Low High Good Inline Poor

200 tags - Y Y - Y - -
250 tags - Y Y - Y - -
300 tags Y - - Y - Y -

Q6 (64) Y - - Y - Y -
Q7 (128) Y - - Y - Y -
Q8 (256) - Y Y - Y - -

V. CONCLUSION

In this study, we have identified the significance of RFIDtag
anti-collision and developed an efficient method to minimise
tag starvation problem. We have proposed aRFID Explicit
Tag Estimation Scheme(RETES), which estimates the precise
number of tags around the reader using existing information
on collision slotsandempty slotsto predict the correctframe-
sizeand improve the system efficiency of the ALOHA-based
DFSA.

In the experimental evaluations, the results and analysis of
experiments have shown that the parameter 2.0<= V1 <=
2.2 and 0.1<= V2 <= 0.2 is the optimal parameter for
RETES. The performance of the proposed method depends
on the selected initialQ and number of tags within the reader
zone. RETES has a better performance when using higher
initial Q.

From these results, we conclude that theempty slotsand
collision slotsboth have impact on theBacklogprediction. In
addition, different initialQ has an impact on the RETES’s
performance. Therefore, to achieve the best performance the
parameters should be adaptively adjusted over the process of
identification.
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