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Abstract— Proteins carry out the majority of functionality on
a cellular level. Computational protein structure prediction (PSP)
methods have been introduced to speed up the PSP process due
to manual methods, like nuclear magnetic resonance (NMR)
and x-ray crystallography (XC) taking numerous months even
years to produce a predicted structure for a target protein.
A lot of work in this area is focused on the type of search
strategy to employ. Two popular methods in the literature
are: Monte Carlo based algorithms and Genetic Algorithms.
Genetic Algorithms (GA) have proven to be quite useful in
the PSP field, as they allow for a generic search approach,
which alleviates the need to redefine the search strategies for
separate sequences. They also lend themselves well to feature-
based resampling techniques. Feature-based resampling works
by taking previously computed local minima and combining
features from them to create new structures that are more
uniformly low in free energy. In this work we present a feature-
based resampling genetic algorithm to refine structures that
are outputted by PSP software. Our results indicate that our
approach performs well, and produced an average 9.5% root
mean square deviation (RMSD) improvement and a 17.36%
template modeling score (TM-Score) improvement.

I. INTRODUCTION

PROTEINS carry out the majority of functionality within
an organism on a cellular level. A protein is formed

by a string of amino acids folding into a specific three-
dimensional shape, which determines the biological task it
will perform. An example of this would be the hemoglobin,
which performs the task of carrying oxygen to the blood
stream. These biological tasks are important in the biology
domain, but when it comes to computer science the more
exciting aspect in terms of proteins is the numerous three-
dimensional shapes and sizes they adopt to perform these
biological tasks. To elicit these three-dimensional shapes,
a process known as protein structure prediction (PSP) is
carried out.

To speed up the PSP process, due to manual methods like
nuclear magnetic resonance (NMR) and x-ray crystallogra-
phy (XC) taking numerous months or years to produce a
predicted structure, several computational methods have been
proposed. These methods can be grouped into three main
categories, comparative or homology modeling, threading
or fold recognition, and ab initio or de nova. Comparative
modeling and threading work by aligning a protein target
sequence with one or more template sequences. Ab initio,
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which is considerably different from the other two meth-
ods, is based on Afinsen’s ‘Thermodynamic Hypothesis’
[1]. This states that a protein’s native structure is at its
lowest free energy minimum. Both comparative modeling
and threading use protein sequences stored in databases
to find suitable template sequence matches, however they
produce very inaccurate models if the template sequence-
similarity to the protein to be folded is < 30%. The ab initio
approach (which means ’from the origin’) tries to produce a
protein’s three-dimensional structure like nature does - from
its sequence alone. Our research predominately uses the ab
initio approach.

The ab initio method in PSP has been looked at from
many different perspectives, and therefore has a large amount
of work utilising different search approaches. These include
numerous versions of Monte Carlo (MC) [2], [3], Ant Colony
Optimisation [4], and Simulated Annealing (SA) [5]. Statisti-
cal approaches such as Chain Growth (CG) [6], and Contact
Interaction (CI) [7] have also been developed. However,
most of these search approaches have the problem that as
the sequence length increases the accuracy of the predicted
structure decreases. Despite this, further research into bio-
inspired algorithms [8], [9], such as Genetic Algorithms, have
proven to be quite promising in solving the PSP problem
[10], [11], [12].

GAs allow for a generic search strategy that can be applied
to various cases, which alleviates the need to redefine the
search strategies for separate sequences. It can also generate
more successful descendants than random search. The most
obvious problem with GAs is that after numerous generations
the diversity within the population decreases, causing the GA
to get stuck in local minima, and therefore producing sub-
optimal solutions.

A technique that can be applied to the GA PSP search
strategy is feature-based resampling. Feature-based resam-
pling lends itself well to GAs as they can take features from
various protein structures and recombine them to produce
more native-like conformations. Feature-based resampling
can be broken down into two concepts: (1) resampling, and
(2) feature-based. Resampling by nature is taking an already
searched search space, and using the output from that search
as input into another search. Feature-based refers to taking
various features from the initial search that are more native-
like in nature and creating new structures with those features.

In this paper we present a feature-based resampling GA
to refine structures from an initial PSP run. This is done
by using the output (i.e. decoys) of a PSP software as the
initial population for the search. Our GA utilises operators
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that have been used in numerous low-resolution approaches
(e.g. Hydrophobic-Hydrophilic model), and we will be using
Rosetta’s energy function for fitness calculations. Our results
indicate that this approach performs well and produced, on
average, predictions that were closer to the native conforma-
tion when compared to the structures it started with.

The remainder of this paper is organised as follows. In
Section II state-of-the-art PSP approaches will be discussed,
Section III will look at PSP resampling techniques, Section
IV will outline the methodology that we have applied,
Section V explains the experimental setup, Section VI will
present and discuss the results we gained from our experi-
mentation, and in Section VII we will draw our conclusions.

II. PSP APPROACHES

PSP, on a computational level, has produced numerous
search strategies to tackle this hard optimisation problem -
to predict a protein’s three-dimensional conformation. There
are a number of achievements in this area and in this section
we will describe some of the typical approaches: RAMP,
TASSER, and Rosetta. Rosetta will be explained in more
detail as it is used heavily in our experiments.

RAMP [5], [13] is a PSP software that utilises the hi-
erarchial approach, which is solely based on the ab initio
method. This approach uses a simple tetrahedral lattice
that exhaustively enumerates through all possible compact
conformations. From this large pool of conformations it
will select the best 10,000 conformations using a lattice-
based scoring function. These 10,000 conformations are then
used as templates for constructing all-atom models by fitting
a four-state off-lattice to the lattice conformations to add
proper secondary structure refinement (due to the tetrahedral
lattice only capturing overall protein chain connectivity not
the finer details of secondary structure).

TASSER (Threading ASSEmbly Refinement) [3], [14],
[15] uses a threading modeling approach and was designed to
be able to recognise the majority of non-evolutionary related
protein folds within the Protein Data Bank (PDB). This was
so it could refine the structures it generated in regards to the
initial template, and to be able to have better predictions for
the loops. TASSER consists of three main processes, these
are: template identification, structure assembly, and model
selection.

Rosetta [2], [16] uses a Monte Carlo search to minimize
an energy function based on ’Afinsen’s Thermodynamic
Hypothesis’ that a protein’s structure in nature is often
the conformation that has the lowest free energy [1]. Each
structure that is being predicted by Rosetta’s search strategy
goes through a two-stage process: (1) an initial search using a
low-resolution representation of the protein structure where
the side chains are depicted as centroids, and (2) a high-
resolution refinement stage where all atoms are placed and
a fitness function that is closer to the true physical energy is
utilised [17]. The low-resolution fitness function is limited,
and is usually unable to determine the native conformation
between native-like structures and local minima. Despite this,
the main global conformation of the protein structure comes

together in the low-resolution search stage where the high-
resolution search stage will alter this global conformation in
small ways to mainly allow the placement of side chains.

The low-resolution search stage in Rosetta uses fragment
replacement moves. This is done by taking a sequence of
continuous resides of three or nine in length and replacing
their backbone torsion angles with the torsion angles of
a fragment obtained from the PDB. This is one of the
main innovations that enables a lot of Rosetta’s success in
PSP. Instead of spending large amounts of computation time
searching individual torsion angles, Rosetta can easily shift
between structures that are locally viable.

For each target protein that Rosetta is to be run on a
fragment pool is created ahead of time. This fragment pool
contains for every frame of three or nine residues in the
target protein a set of 200 fragments obtained from the
PDB. Fragments are selected based on two main criteria.
The first being the sequence-similarity between the target
protein sequence within the frame and the sequence of
the fragment in the PDB. The second criteria for fragment
selection is matching secondary structure. This is done by
comparing the predicted secondary structure for the target
protein’s fragment with the actual secondary structure of the
fragment contained within the PDB. This pool is used for
every predicted structure created for a certain target protein,
and fragment replacement moves are pulled out of it at
random. Once a fragment replacement has occurred local
minimisation is applied and the move is either accepted or
rejected.

All of the methods mentioned above are state-of-the-art in
the PSP field. However, they all still struggle with producing
accurate predicted models. This is even more apparent as the
length of the protein increases. Another aspect PSP methods
struggle with is finding the true global minimum of the en-
ergy function. It is very difficult to find the global minimum
of the energy function in PSP, compared to any other known
critical search space, as it is very high-dimensional and
contains a large amount of local minima. The main strategy
a lot of PSP software (e.g. Rosetta) use to combat this
issue is to perform a large amount of random restarts. The
inherent problem with this kind of strategy is that information
about previous local minima is thrown away. Samples from
previous conformation space may suggest regions of lower
energy, which may be beneficial to pursue further sampling
around. This leads to the intuition of resampling techniques,
which are explained in the next section.

III. PSP RESAMPLING TECHNIQUES

The main purpose of resampling techniques is to take an
already sampled search space and then refine it. In regards
to PSP, this can be looked at as taking already computed
local minima and finding samples of conformation space
within it that indicate regions which contain consistently
lower energy, and focusing further sampling or searching
around those regions. There are two main types of resampling
used in PSP: structure-based resampling, and feature-based
resampling [17].
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Fig. 1. Each amino acid in our protein structure representation will contain
N , Cα, Cβ , C, and O atoms.

Structure-based resampling techniques either selects re-
gions of conformation space or individual protein structures
and focuses further sampling around them. Feature-based
resampling on the other hand is more concerned with native-
like features from the previous sampling round. If no models
from the previous round of sampling produces a structure
close enough with the native structure, they still may contain
various native-like features, which can be recombined to cre-
ate new structures that are closer to the native conformation.
A basic example of feature-based resampling can be seen as
having a predicted protein structure with one domain wrong,
but by intermixing this protein with another protein, which
has the other correct domain, a structure is formed that is
closer to the native conformation than either of the two
structures alone.

A large amount of the literature in feature-based resam-
pling is focused on using Genetic Algorithms (GA) [18],
[19]. This is due to GAs lending themselves well to recom-
bination of structures. For example, GAs can combine the
best structures from the previous generation to produce more
native-like structures in their crossover operator.

IV. METHODOLOGY

The main motivation for our work is to create a GA
utilising feature-based resampling. This incorporates taking
the initial predicted structures from a complete run of a
protein structure prediction (PSP) software using an arbitrary
target protein. These initial structures will then be used as
input into our GA for refinement.

The PSP software we have selected to use in our experi-
ments is Rosetta. The reason we have chosen Rosetta is two
fold: (1) in Critical Assessment of Techniques for Protein
Structure Prediction (CASP) Rosetta has outperformed nu-
merous other PSP approaches [20], [21], [22], and (2) Rosetta
is open source, making it easy to use and integrate into
our software. For the same reasons we have used Rosetta’s
energy function in our GA for fitness calculations. In this
section we will look at the model we will be using throughout
our experiments and the setup for our GA will be explained
in detail.

A. Protein Model

To do any manipulation of a protein structure a repre-
sentation of the protein conformation needs to be decided
on. For our experiments we will use a high-resolution cen-
troid model, instead of a low-resolution model. In the low-
resolution model primarily one monomer is used to depict
the backbone of a protein’s conformation, whereas in the
centroid model the complete backbone is represented and the
sidechain is replaced by a single large centroid. Cartesian
coordinates will be utilised for our model (i.e. x, y, and
z), rather than torsion angels. This is due to torsion angels
being unable to represent the precise spatial interrelationships
between residues that are not next/close to each other in the
protein’s sequence [17].

The atoms that our high-resolution model will consist of
are the same as the structures outputted by popular PSP
software (e.g. N , Cα, Cβ , C, and O). Note this is not
a complete high-resolution model as only Cβ is used to
represent the sidechain, however PSP software can easily be
used to add in the finer details if required. An example of
this model can be seen in Figure 1.

B. Genetic Algorithms

GAs belong to a specific class of evolutionary algorithms
that are bio-inspired. It starts off with a large pool of genetic
traits, which by use of genetic operators are reproduced,
sometimes with random mutations, and are subjected to
natural selection (i.e. the fittest survives). By doing this, there
is no guarantee that the absolute best solution will be found,
however it is apparent that over time it creates solutions that
contain a combination of genetic traits, which function better
in its defined environment. In PSP there has been a large
amount of work in GAs using low-resolution models [10],
[11], [12], [23], and very limited work using high-resolution
models [24], [25].

Algorithm 1 PSP Genetic Algorithm
i← 1;
OF ← optimal f (if known);
F ← 0;
Initialise population (pop);
COMPUTE f of all chromosomepop;
while i <= targeted generations OR F 6= OF do

SELECTION;
CROSSOVER;
COMPUTE f of all chromosomenew pop;
REPLACE chromosomepop where
(f (chromosomenew pop)) < (f (chromosomepop));
MUTATION;
F ← min(f (∀chromosomepop));
i← i + 1;

end while

A general algorithm for a GA developed to solve the PSP
problem can be found in algorithm 1. In this algorithm you
can see that the main idea of a GA is to maintain a population
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Fig. 2. An example of the crossover operator on a 2D HP Lattice. The first 14 residues of (A) are joined with the last 6 residues of (B). A random
rotation of 270◦ was applied to achieve the compact structure in (C) [10].

of solutions. The population is continually evolving by use
of genetic operators, and the size of the population is being
maintained by replacing chromosomes in the population with
fitter solutions created by the genetic operators. From this it
can be seen that we must have a fitness function f , which
can express the fitness of each solution as a numerical value.

In algorithm 1 i represents the amount of generations,
targeted generations refers to the amount of iterations it
will complete if the optimal fitness is never reached, OF is
the optimal fitness the GA is looking for in its search, and
F is the best fitness found in the search so far. Note that
OF is often not defined, as the optimal fitness is hard to
identify, and therefore targeted generations is sufficient to
use as the stopping criteria for the search. For each generation
selection and crossover operations are computed. The fitness
of the new population is then calculated and a replacement
function is carried out, which replaces any chromosome from
the current population with a fitter chromosome from the new
population (if it exists). Finally the population is mutated
randomly.

GAs created for PSP applications can be defined by: given
an amino acid sequence s = s1, s2, s3, ...sm (m = the end of
the amino acid sequence) a conformation (c) needs to have
the form of c∗ ∈ C(s) and fitness where E∗ = E(C) =
min{E(c)|c ∈ C} [26]. C(s) refers to the set of all the
possible conformations formed by sequence s which are valid
(i.e. collision free). From this it can be seen that if a free
energy calculation of c is q then E(c) can be defined as
E(c) = −q. Therefore, in PSP the smaller or more negative
f is the fitter the conformation (c) is.

For all of our GA genetic operators we have used well-
defined processes that are utilised on the Hydrophobic-
Hydrophilic (HP) Lattice model by Unger [10], [27]. The
next five sections will outline how our genetic operators and
scoring methods were developed and integrated into our GA.

1) Selection: For selection a roulette wheel approach is
taken. Solutions that contain medium to good fitness scores
are more likely to be chosen over chromosomes that have
less than average scores. In our GA we have a 80% chance

that medium to good solutions are selected, leaving a 20%
chance that less than average chromosomes will be selected.

2) Crossover: In Unger’s GA the crossover operations are
performed by swapping parts of one protein structure, with
that of another (i.e. one point crossover). For example, two
proteins (p1 and p2) are selected to breed with each other. A
crossover point (n) is randomly selected, and then everything
from n onwards in p1 is replaced with everything from n
onwards in p2, and vice versa. This process will produce
two offsprings. Figure 2 depicts the crossover procedure on
a 2D HP lattice model.

1

20

→

‘→’ indicates mutating residue

(A) Fitness, F= -4

1

→

(B) F= -9

Fig. 3. An example of pivot rotation on a 2D HP Lattice. Residue 11 is
randomly selected to be the pivot (n). By rotating the substructure (n+1−
m) by 180◦ the fitness in (A) goes from being -4 to -9, which is depicted
in (B) [10].

In our approach we took this initial concept that Unger
applied in his GA using the HP model and extended it to
the high-resolution model. To do this the crossover point
(i.e. n) needed to be defined. In the low-resolution model
there usually is only one possible monomer to represent a
particular amino acid in the protein chain, whereas in the
high-resolution model there are numerous atoms that could
be used for n (e.g. see Figure 1). For our work we kept it
simple and only allowed Cα atoms as our crossover points. In
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this sense it is very similar to how Unger’s algorithm works,
but it has been designed to consider the other atoms around
the Cα atom when crossover is taking place.

Our crossover operator also contains a simplistic collision
detection algorithm. This algorithm gauges how close atoms
are to one another in Euclidian distance, and if they are too
close it rejects the proposed protein structure. It is important
to not let infeasible protein structures enter the gene pool, as
this could cause the rest of the population to become diluted,
therefore producing sub-optimal solutions. By incorporating
this collision detection algorithm a contingency plan needs to
be put into action if a protein structure is rejected. Otherwise
the crossover acceptance rate may become too low, which can
lead to stalling.

The contingency plan we have put in place is to try
three times with the same parents (p1 and p2) using a new
randomly chosen n each time. If after three times and the
crossover is still not successful we change one of the parents
(p2 becomes the next parent in the breeding list) and try
again. This process is continued until a success has been
reached or no more possible parents are left to try with p1.
If that is the case then p1 is marked as incompatible and
is either replaced by a randomly selected chromosome that
was not originally selected for breeding, or deleted from the
breeding list if there is no chromosomes left to replace it
with.

3) Mutation: Unger’s mutation operator was in the form
of a one point pivot rotation move. Pivot rotations work by
translating all points to a chosen pivot (n) and rotating the
sub-structure around that pivot point (n + 1 to m). The sub-
structure, in this case, refers to all the points in a protein
structure from n+1 to the end of the structure (m). Rotation
can be done around 3 axises: x, y, z. An example of a pivot
rotation, using a 2D HP lattice model, can be found in Figure
3.

Just like the crossover operator we have extended this to
a high-resolution model, and only used Cα atoms for n. As
for degrees/angles of rotation we have 8 possibilities that are
randomly chosen from. These are: 30◦, 60◦, 90◦, 120◦...240◦.
This operator also uses our collision detection algorithm, and
will randomly select a new chromosome to mutate if the
previous one had a collision.

4) Twin Removal: Twin’s are a serious problem in any
GA search, and this is also the case for protein structure
prediction (PSP) [28]. In this version of our GA we have
incorporated a simplistic version of twin removal, which
will be updated over time. For now, our twin removal
algorithm does not allow identical chromosomes into the
population. It does this at the evaluation stage of the GA
search between the new population and current population.
If a chromosome in the new population has a better fitness
than a chromosome in the current population it will first
check to see if that chromosome already exists in the current
population. If this is the case it will ignore it and move
on to the next chromosome, otherwise it will replace the
current population’s chromosome with the new population’s

chromosome.
5) Scoring Methods: As mentioned before, we are using

Rosetta’s energy function for fitness calculations. We take
the overall score that Rosetta’s energy function produces for
each structure we pass to it. In regards to scoring the final
structures outputted from our GA we use two methods to
gauge their structural similarity with the native structure.
These two methods are: (1) root mean square deviation
(RMSD) [29], and (2) template modeling score (TM-Score)
[30].

RMSD works by summing the Euclidian distances (e.g.
RMSD(v, w) =

√
1
n

∑
i=1 || vi − wi ||2) between every

residue from the two structures it is trying to compare. This is
normally done by using the Cα atom, but it can be done using
other atoms such as C, O, etc. TM-Score, in comparison, is
more sensitive to close matches than distant matches (unlike
RMSD). This means if one part of the protein is completely
wrong, but the other topology is quite similar the TM-Score
will not be as drastically effected.

V. EXPERIMENTAL SETUP

All experiments used a population of 200 structures cre-
ated by a random Rosetta run, 70% crossover rate and a
10% mutation rate. Each run went for 100 generations with
results saved in 10 generation increments, from these results
the decoy that had the best RMSD improvement was chosen
as a representative for a particular protein. Protein structures
were picked at random, with the following constraints: (1)
they were between 40 and 110 residues in length, and (2)
all structures contained only one chain. This was to keep
the results as accurate as possible and eliminate any bias the
GA algorithm might have to certain structures (except for
the length).

The sample size we have used in our experiments is ±10
randomly selected proteins, which were each run through our
algorithm for 100 generations. Even though, our testing was
done on a relatively small number of proteins, uniform results
obtained from the tested proteins depict a good indication of
the capabilities of our approach.

VI. EMPIRICAL RESULTS

Table I contains the results obtained from our simulations.
It compares the results our GA produced to the original
decoys created by Rosetta. It depicts for each protein used
in our experiments: the PDB identifier, the protein’s length,
the fitness, RMSD and TM-score for the highest ranked
Rosetta decoy, and the fitness, RMSD, TM-Score, RMSD
improvement in %, and TM-Score improvement in % for the
highest ranked GA decoy. The highest ranked decoy refers
to the predicted protein structure, which had the best RMSD
result (i.e. closest to 0).

Figure 5 depicts the number of generations each protein
took to reach its optimal result. Figure 4 graphically com-
pares the protein 2ptl native conformation with Rosetta’s and
our GA’s best predicted structure for 2ptl. Figure 6 shows
a comparison between the fitness values obtained for each
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TABLE I
GA RESULTS COMPARED TO ROSETTA

Protein Length
Rosetta GA

f RMSD TM-Score f RMSD TM-Score RMSD Imp TM Imp

2ptl 78 -124.10 8.764Å 0.4084 -129.46 3.888Å 0.5442 55.64% 33.25%

1pgx 83 -120.12 4.385Å 0.6570 -88.82 3.980Å 0.6304 9.24% -4.05%

1bds 43 -21.97 6.151Å 0.2138 6.88 5.954Å 0.2406 3.20% 12.54%

1bm8 99 -82.09 7.814Å 0.2751 -67.86 7.688Å 0.2973 1.61% 8.07%

1emw 88 -48.36 8.415Å 0.2856 -51.69 8.591Å 0.3097 -2.09% 8.44%

1aoy 78 -57.80 6.028Å 0.3854 -62.71 5.350Å 0.5425 11.25% 40.76%

1csp 67 -84.95 2.576Å 0.7156 -79.62 2.527Å 0.7305 1.90% 2.08%

2ppp 107 -27.43 9.632Å 0.2780 -48.82 9.681Å 0.4483 -0.51% 61.26%

1kjs 74 -42.35 4.541Å 0.4706 -48.51 4.431Å 0.4999 2.42% 6.23%

1vcc 77 -70.08 2.950Å 0.6800 -60.89 2.586Å 0.7140 12.34% 5.00%

protein depicted in Table I. And finally Figure 7 demonstrates
the improvement comparison between RMSD and TM-score.

A. Analysis and Discussion

The first observation that can be made from our results is
that each protein we tested only took, on average, between
10 and 20 generations to reach their optimal result (see
Figure 5). If more generations were applied the fitness
would continue to improve, but the likeness to the native
would degrade. This could be due to the fitness function
we employed. Rosetta’s fitness function is not perfect and
can find structures that have a low energy score, but are not
close to the native. If this is the case then it can quite easily
let structures like this dominate the population, making the
overall population less like the native. A comparison using
different fitness functions and their effectiveness could give
us more insight into this.

In Table I, it can be seen that all proteins used in our
experiments had an improvement to some degree (i.e. RMSD,
TM-Score, or both). Improvement is measured by calculating
the percentage improvement between the previous (v1) and
new value (v2) (e.g. ((|v1 − v2|)/v1) ∗ 100). A negative
improvement is represented with a − in front of it, and is
used for two cases, these are: (1) RMSDv1 < RMSDv2,
and (2) TMv2 < TMv1. The proteins we used within
our experiments ranged in length from 43-107 residues. The
best result we obtained was from protein 2ptl, which is 78
residues in length. It had a 55.64% improvement in RMSD
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Fig. 5. Number of generations each protein took to obtain its best result.

and a 33.25% improvement in its TM-Score (see Figure 4
for a graphical representation). On average we had a 9.5%
improvement in RMSD, and a 17.36% in TM-Score using
our method when compared to the original decoys outputted
by Rosetta.

In Figure 6 we have shown the fitness value comparison
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Fig. 4. (A) contains model 1 of the native conformation for 2ptl from the PDB, (B) contains Rosetta’s best predicted structure for 2ptl, and (C) contains
our GA’s best predicted structure for 2ptl. Note that both predicted structures have been rotated to match as close as possible with the native conformation.
All protein images were generated with Jmol [31].

between Rosetta’s best predicted structures to ours. These
results show that the fitness value has a limited effect on
how good a structure is. This can be inferred by there being
a 50% split between the GA structures having and not having
better fitness values when compared to Rosetta’s original
fitness values. It can also be seen that on average there is
not too much difference between the fitness values for the
same protein between the two approaches (i.e. Rosetta and
GA), which can be seen in Figure 6. This, like the number
of generations, could also be further investigated by applying
different fitness functions and evaluating their effectiveness
using our GA feature-based resampling approach.

Fitness Comparison
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Fig. 6. Fitness comparison between Rosetta and GA for each protein
depicted in Table I.

The last aspect we looked at was the RMSD improvement
compared with that of the TM-Score improvement. As men-
tioned before, we had an overall average 9.5% improvement
for RMSD and a 17.36% improvement for TM-score. In
Figure 7 we have depicted the improvement values for
RMSD and TM-Score. RMSD values are classified as an
improvement if the new value produced is closer to 0 than
the previous value. TM-Score on the other hand is based on

RMSD and TM-Score Improvement
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Fig. 7. RMSD and TM-Score improvement comparison.

whether or not the new value produced is closer to 1 than the
previous value. As our averages show, Figure 7 depicts that
we achieved better improvement values for TM-Score than
RMSD. TM-Score calculates the similarity of two proteins
based on topology and puts more emphasis on close matches
rather than distant matches. This makes it a lot more sensitive
than the RMSD measure, and in some cases more accurate.

VII. CONCLUSION

In this paper we have developed a feature-based resam-
pling approach for protein structure prediction (PSP) utilising
Genetic Algorithms (GA). GAs lend themselves well to PSP
as they can be created as a generalised search that does not
require its main search operators to be modified for particular
cases or domains. It also naturally incorporates the ability
to perform feature-based resampling in its search procedure.
Feature-based resampling works by taking previously com-
puted local minima and combing features from them to create
new structures that are more uniformly low in free energy.

Our GA was created by utilising similar crossover, and
mutation operators that were defined in Unger’s GA ap-
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proach. This incorporated a one point crossover technique
that spliced together two protein structures with the same se-
quence, and a one point mutation operator that used rotational
move sets. Our algorithm also included a simplistic twin
removal scheme, which removed twins based off of 100%
similarity with any other chromosome in the population. For
scoring the final structures we used two structural measures:
RMSD and TM-Score. Results obtained from the randomly
selected proteins indicate that our proposed feature-based re-
sampling GA performed well, and produced an average 9.5%
RMSD improvement and a 17.36% TM-Score improvement.

In regards to future work, it would be interesting to
evaluate different fitness functions other than just Rosetta’s
to see if the results could be improved further by using
a different energy function. Other improvements could be
to incorporate a more sophisticated twin removal scheme,
biological move sets and constraints, and samples or decoys
from different PSP software, rather than just using Rosetta.
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