
ACMC08  SOUND : SPACE – Proceedings of the Australasian Computer Music Conference 2008
 
 

 
Page 19

Toby Gifford 
Queensland University of Technology 
Victoria Park Road 
Kelvin Grove, 4059 
Australia 
toby.gifford@qut.edu.au 

Andrew R. Brown 
Queensland University of Technology 
Victoria Park Road 
Kelvin Grove, 4059 
Australia 
a.brown@qut.edu.au 

Stochastic Onset Detec-
tion: An approach to de-
tecting percussive at-
tacks in complex audio

Abstract 
This paper introduces a new onset detection algorithm 
for the extraction of percussive attack times from a mu-
sical audio signal. The crux of the technique is to search 
for patterns of increasing noise in the signal. We there-
fore refer to it as the Stochastic Onset Detection (SOD) 
technique. This technique is designed for use with com-
plex audio signals consisting of both pitched and per-
cussive instrumental sounds together, and aims to re-
port solely on the timing of percussive attacks. In con-
trast to most onset detection algorithms it operates in 
the time domain and is very efficient; suiting our re-
quirements for real-time detection. In this paper we 
describe our approach to onset detection, compare this 
with other approaches, outline our detection algorithm 
and provide preliminary results from musical trials to 
validate the algorithm’s effectiveness. 

Introduction 
The extraction of onset time information from 
musical signals is an important process for a 
number of applications. These include music in-
formation retrieval (MIR) systems seeking note 
and pulse identification, beat tracking systems for 
rhythmic segmentation, and real-time interactive 
music systems where music analysis and syn-
chronisation are the goals. A number of publica-
tions have surveyed the techniques for onset de-
tection (Bello et. al., 2004, Collins 2005). These 
surveys reveal that these techniques generally op-
erate in the frequency domain and perform best 
on a particular class of onsets, with the most im-
portant class distinction being between pitched 
sounds and non-pitched sounds. The algorithm 
we present in this paper is targeted at onset detec-
tion in non-pitched sounds and operates in the 
time domain. 

We have designed this algorithm for use in an 
interactive music system that performs real-time 
percussive accompaniment to a complex music 
signal. For example, a system that adds musical 
parts against an audio input, or where the system 
acts as an ‘automatic’ DJ. Existing techniques for 

onset detection are confounded by the presence of 
pitched material to varying degrees. The aim of 
this algorithm is to perform better than existing 
techniques on complex audio signals, such as re-
cordings of multi-part performances. The results 
of the algorithm have been evaluated by the use of 
mimicry – by having the algorithm play along 
with the audio track triggering a percussive sound 
when it detects an onset. The algorithm’s success 
was assessed aesthetically by the musicality of the 
output, that is to the extent it detects musically 
significant percussive onsets and ignores insignifi-
cant ones. Audio examples that accompany this 
paper can be found online at 
http://runtime.ci.qut.edu.au/ListeningForNoise_ 
Examples.zip 

Existing techniques 
In the survey of techniques for onset detection by 
Bello et. al. (2004) they describe an approach 
shared by many techniques;  the input signal is 
distilled into a reduced form called the detection 
function;  the detection function is then searched 
for recognisable features, often peak values; and 
these features are filtered, and then reported as 
onsets. 

The simplest method for detecting onsets is to 
look for growth in the amplitude envelope. How-
ever, in the presence of complex audio signals con-
taining multiple musical parts this technique is not 
viable. 

 
Figure 1. Attacks can be masked in multi-part signals. 
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For example, figure 1 shows the waveform for 
a sustained synthesizer note with a kick drum 
sound in the middle (corresponding to the exam-
ple audio file kick_and_synth.mp3). The kick 
drum is clearly audible but its onset does not cor-
respond to a peak in the amplitude envelope. 

To overcome situations like this, where timbre 
is more significant than amplitude, a number of 
onset detection algorithms first split the signal 
into frequency bands using a Fourier transform. 
Onsets are then associated with growth in the en-
ergy in any band. One algorithm using this tech-
nique is Miller Puckette’s (1998) bounded-Q onset 
detector available as the bonk~ external for 
Max/MSP. Another example is the High Fre-
quency Content (HFC) detection function of Masri 
and Bateman (1996) which aggregates energy 
across all bins but preferentially weights higher 
frequencies.  

However, for complex audio signals in which 
there is power throughout the spectrum, the 
growth of energy in a frequency sub-band due to 
a percussive attack may still be masked by the 
ambient power of the signal in that band. The 
SOD technique described in this paper is designed 
to address this problem by seeking time domain 
artefacts of percussive attacks that are absent in 
periodic signals.  

The Rapidly Changing Component 
In this paper we adopt the Deterministic Plus Sto-
chastic model of Serra (1997) for modelling musi-
cal signals. In this model a musical signal is con-
sidered to consist of a deterministic component, 
which may be described as a combination of sinu-
soids, and a stochastic component, which is de-
scribed by a random noise variable. The crux of 
our onset algorithm relies on the assumption that 
a percussive onset will be characterised by an in-
crease in the noise component of the signal. 

In Serra’s model noise is equated with ran-
domness. For example a totally random (digital) 
signal would be one where the amplitude of the 
signal at each sample point is drawn from a 
probability distribution and is independent of the 
amplitude at any other sample point.  

Informally speaking our algorithm operates 
by separating the stochastic component from the 
deterministic component of the signal, and then 
making two queries: 
(i) how loud is the stochastic component? 
(ii) how random is the stochastic component? 

It may seem superfluous to measure the ran-
domness of the stochastic component; presumably 
if we have done a good job of the separation then 
it will be totally random. The reason for making 
this measurement is that a perfect separation is, 
perhaps, impossible and certainly time consum-
ing. Instead of seeking a perfect split our algor-
ithm operates in two steps; first by separating out 
a portion of the signal that contains the stochastic 
component plus some small amount of the deter-
ministic component, and then estimating the frac-

tion of this separated portion that is due to the 
stochastic component of the signal. 

To this end we define a new notion called the 
Rapidly Changing Component (RCC). The RCC 
can be thought of as the zig-zags in the signal. For 
example, referring to figure 1, the signal is smooth 
when the synthesiser is playing on its own. The 
time at which the kick-drum starts is visually dis-
cernible because the signal becomes rougher 
(more zig-zags) at that point.   

The RCC consists both of high frequency 
sounds and noisy sounds. Our algorithm operates 
by separating out the RCC from slower moving 
components, and then measuring the loudness of 
the RCC and estimating what fraction of the RCC 
is due to noise.       

People often think of white noise as having a 
‘flat’ Fourier spectrum, in other words equal 
power at all frequencies (within some band). 
However this picture is somewhat misleading, at 
least for noise as we are talking about it in this 
paper. In fact, if a digital signal is completely ran-
dom then its spectrum is also completely random. 
There is a sense in which the spectrum can be de-
scribed as flat - namely that the power of the spec-
trum in any given frequency bin will be a random 
number drawn from the same distribution as 
every other bin. But for any particular window of 
signal (here we are talking about the Short Time 
Fourier Transform with a rectangular window) the 
actual spectrum will not have equal power in all 
bins – it will be totally random. And so from one 
analysis window to the next there will be no rela-
tionship between the spectra, save that the total 
energy will be approximately the same. Conse-
quently onset detection algorithms that operate by 
looking for patterns in the spectra of successive 
windows are ill-suited to detecting noise. 

Transient detection 
A straightforward onset detection technique is to 
look for growth in the energy of the signal. How-
ever, for complex audio signals where the ampli-
tude of pitched material exceeds that of the per-
cussive onsets as shown in figure 1, simple ampli-
tude tracking will not suffice. 

As discussed above, many transient detection 
schemes look for growth within frequency bands. 
From the preceding discussion we would expect 
that random noise would appear in various differ-
ent frequency bins inconsistently from one win-
dow to the next. This is often informally referred 
to as smearing1. One method devised to deal with 
this situation is the High Frequency Content 
(HFC) technique (Masri & Bateman, 1996). As the 
name suggests this approach aggregates all of the 
energy in high frequency bands (to be precise it 
aggregates all bands but linearly weights by fre-
___________________________________________ 
1 Strictly speaking smearing is where a particular frequency 
shows up in several frequency bins due to the quantised nature 
of the Short Time Fourier Transform.  The use of this term in 
the above context is inappropriate in the same way that the use 
of the STFT to detect noise is inappropriate. 
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quency). Doing so avoids the problems of smear-
ing to a large extent. 

So why is the HFC suited to finding noise? We 
suggest one aspect of this can be understood with 
reference to Serra’s Deterministic Plus Stochastic 
model. The stochastic component should be ran-
dom at all time scales. In particular it should be 
random from one sample to the next, so that a 
burst of noise should create an increased ‘jagged-
ness’ of the signal at very short timescales, or high 
frequencies. 

What are the drawbacks of the HFC ap-
proach? It suffers from the same basic problem as 
a direct amplitude approach but in more limited 
circumstances; if the periodic part of the signal has 
a lot of energy in high frequencies, then the 
growth in the HFC due to the percussive onset 
may be small in comparison to the ambient level 
of HFC, degrading the signal/noise ratio for the 
detection function. 

What can be done about this? Our approach is 
to look at the short-timescale activity and measure 
how random it is. Then we can look at the growth 
in that randomness. This way the presence of 
background high frequency periodic content will 
not affect our detection function and the beat de-
tection will be more robust and reliable. 

Description of the SOD Algorithm 
Our Stochastic Onset Detection (SOD) algorithm is 
designed for real-time use with minimal latency. 
The input signal is processed in short windows of 
128 samples.  Each window we measure the level 
of noise in the signal. This measurement consists 
of four steps: 
1.  Separate out the RCC 
2. Measure the size of the RCC 
3.  Measure the randomness of the RCC 
4.  Estimate the loudness of the stochastic 
 component – this is our detection function.  

Having obtained the most recent value for the de-
tection function, we then employ an adaptive 
peak-picking algorithm (described below) to look 
for significant growth in the noise. Points of sig-
nificant growth that exceed an absolute noise 
threshold are marked as percussive onsets. 

Splitting out the RCC 
The first step in the construction of our noise 
measure is separating out the Rapidly Changing 
Component (RCC) from the rest of the signal. To 
do this we use a little rocket science - drawing in-
spiration from a technique developed at NASA 
called Empirical Mode Decomposition (Huang et. 
al., 1998). This is a technique for extracting 
‘modes’ from a non-linear signal, where a mode 
may have a varying frequency through time. The 
basic idea is that to get the RCC we look at adja-
cent turning points of the signal (i.e., the local 
maxima and minima) and consider these to be 
short timescale activity around a carrier signal 
which is taken to be halfway between the turning 
points. It’s a bit like creating a smoothed carrier 

wave by using a moving average with a varying 
order, and taking the RCC to be the residual of the 
signal from the carrier wave. The process is il-
lustrated in Figure 2. 

 
Figure 2: Splitting out the RCC. 

Stochastic components of the RCC 
Generally the RCC will be comprised of both the 
stochastic component of the signal and high fre-
quency parts of the deterministic component. So 
as to get a sense of the relative sizes of these con-
tributions to the RCC, we make a measurement of 
the level of randomness in the RCC. 

The statistic that we use to measure the level 
of the stochastic component is the first order auto-
correlation, which measures how related the sig-
nal is to itself from one sample to the next. The 
stochastic component of the signal should have 
each sample statistically independent, and so will 
have an autocorrelation of zero. The deterministic 
component, on the other hand will be strongly 
related to itself from one sample to the next, and 
so should have autocorrelation close to one. The 
autocorrelation of the RCC will then reflect the 
relative amplitudes of these two components of 
the RCC; an autocorrelation of close to zero means 
that the RCC is mostly stochastic, whilst an auto-
correlation close to one means that the RCC is 
mostly deterministic. 

Another measure of the randomness that 
could be considered is the signal entropy (Shan-
non, 1948). The use of entropy in searching for 
changes in the signal noise was explored by Ber-
cher & Vignat (2000), who give an adaptive pro-
cedure for estimating the entropy. However, their 
procedure is not intended for real-time use, indeed 
the calculation of entropy is computationally ex-
pensive (Hall & Morton, 2004). Furthermore, the 
autocorrelation measure has the advantage that it 
has a direct interpretation as approximating the 
percentage of the RCC that is deterministic. Con-
versely, if we take our measurement of random-
ness to be 1 – c where c is the autocorrelation, then 
this will be an approximate measure of the per-
centage of the RCC attributable to noise. For these 
reasons we prefer the autocorrelation measure to 
entropy.  
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Description of Noise Measure 
Having extracted the RCC we can report on how 
loud it is. Then, having also estimated the stochas-
tic component of the RCC, and hence the ap-
proximate percentage of the RCC attributable to 
noise, we can make an estimate of the loudness of 
the noise in the signal by multiplying the ampli-
tude of the RCC by it’s stochastic component. In 
more detail, our noise measure is constructed as 
follows:  
1. Split the signal into rectangular analysis win-
dow (we have used a window size of 128 sam-
ples). 
2. Calculate the Rapidly Changing Component 
    (i)  Find the turning points of the signal 
    (ii)The carrier wave is assumed to be halfway 
between adjacent turning points of the signal, so 
construct the carrier wave by linearly interpolat-
ing between these midpoints 
    (iii) The Rapidly Changing Component is the   
difference between the signal and the carrier 
wave. 
3. Calculate the size of the RCC: 

SizeRCC = Std. Dev. of the derivative of the 
RCC  
4. Calculate the randomness of the RCC 

RandomnessRCC = 1 – autocorrelation of the RCC  
5. Calculate the noise 

NoiseRCC = SizeRCC * RandomnessRCC  
 

 
Figure 3: Comparison of Detection Functions. 
 

An example of the Noise detection function 
for a short audio sample (corresponding to the file 
JungleBoogie.mp3 in the examples) is shown in 
figure 3. Also shown for comparison is the HFC 
detection function, and a Bounded Q detection 

function similar to that used by bonk~.  The hori-
zontal axis is time, and onsets are identified by 
looking for peaks in these detection functions.  
The noise detection measure has much more 
clearly discriminated peaks than the other two. 

Adaptive Thresholding 
Having calculated the noise function we then 
want to identify peaks, which we will interpret as 
percussive attacks. In fact, what we are really 
looking for is sudden growth in the noise, fol-
lowed by a peak, and then a decay. To do this we 
look for ‘significant jumps’ in the noise function. 
Different pieces of music may have markedly dif-
ferent noise characteristics; the size of a jump 
which is significant will depend on the ratio of the 
ambient noisiness of the pitched instruments 
compared to percussive instruments. To deal with 
this variation between musical signals we have 
used an adaptive thresholding technique. 

We maintain a measure of the mean and stan-
dard deviation of noise in the recent past using an 
Exponentially Weighted Moving Average. For 
each new window we update these measures by 
accumulating a weighted value of the preceding 
window (we currently use a weighting of 8%). So 
for each new window the measures of mean and 
standard deviation of recent history will be 92% of 
what they were before + 8% of the values for the 
immediately preceding window. This process al-
lows us to identify a significant jump in the noise 
level: where the noise level is some number of 
standard deviations above the mean of the recent 
past. 

Once an onset is detected using this technique, 
it is not necessary to report any more onsets until 
the current attack is completed. A common strat-
egy for measuring attack completion is to main-
tain a high and low threshold; where, for an onset 
to be reported the detection function must exceed 
the high threshold, and then no further onsets will 
be reported until the detection function has 
dropped below the low threshold. We have uti-
lised an adaptive version of this technique for rea-
sons mentioned previously. Once a significant 
jump is detected, an ongoing measure of the peak 
value of the detection function is maintained, and 
the attack is considered to be ongoing until the 
detection function has dropped sufficiently that 
recent past is significantly lower than the peak 
(using the same exponentially weighted moving 
average scheme as for detecting the onset). 

The detected onsets are then further filtered 
by an absolute noise threshold. To be considered 
as an attack, a significant jump must have a peak 
value higher than this threshold. To allow for real-
time responsiveness to the signal with minimum 
latency, the onset is allowed through the filter as 
soon as the ongoing measure of its peak value ex-
ceeds the noise threshold.  For example, an open 
high-hat onset will have a rapid increase in the 
noise level but not a quick decay – so that if the 
algorithm were to wait until the noise had peaked 
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before reporting the onset it would have signifi-
cant latency.  

Computational Efficiency 
The stochastic onset detection (SOD) algorithm 
presented in this paper is quite efficient. No FFT is 
required because it works in the time domain. In 
our real-time implementation, a 128 point sample 
window took approximately 8 samples to process. 
It is also quite responsive because the RCC meas-
urements can be calculated on small sample buff-
ers, typically as small as 32 samples providing a 
latency of less than 1 millisecond. 

Experimental Results 
We applied this algorithm to a selection of audio 
snippets containing complex audio with percus-
sion. The snippets can be found in the online ex-
amples accompanying this paper. In addition to 
our few hand-selected tracks, we tested the algor-
ithm against the MIREX Audio Tempo Extraction 
training data set. Training snippets in this set that 
did not have any percussion parts were omitted. 

The Noise detection function generally seems 
to have a superior signal to noise ratio than the 
HFC or Bounded-Q detection functions. For ex-
ample referring back to Figure 3, of these three 
detection functions the Noise detection function 
has the most clearly defined peaks. 

We evaluated the algorithm by having it ‘jam’ 
along with the audio track (in real-time) mimick-
ing what it hears by triggering a MIDI percussion 
sound when it detects an onset. The Noise meas-
ure also gives an estimate of the amplitude of the 
onset, and so this information is used to determine 
the velocity of the MIDI imitation. As a contrast, 
we performed the same trials using the bonk~ 
external for Max/MSP. 

These results are preliminary in that we have 
tested the algorithm with a limited range of musi-
cal examples and only performed aural analysis of 
the results. However, they clearly show that our 
approach is generally more robust than the algor-
ithm in bonk~ but is still not entirely consistent. 
In particular, our algorithm makes few mistakes 
in detecting onsets but does not detect all onsets. 
The onsets it does predict do not always correlate 
with those that seem most significant to human 
judgments, but this is not surprising given that 
our algorithm does not build expectations about 
pulse as humans do. 

The algorithm appears to be particularly at-
tuned to high-hat and cymbal onsets. For exam-
ple, referring once again to Figure 3, in the snippet 
from Jungle Boogie, the Noise Detection algorithm 
follows the high-hats solidly, whilst the HFC al-
gorithm appears more drawn to the guitar rhythm 
(and the Bounded-Q algorithm is totally at sea). 
The evaluations of these three algorithms may be 
heard online in the examples as JungleBoo-
gie_nd.mp3, JungleBoogie_hf.mp3, and Jungle-
Boogie_bq.mp3. 

The other examples are of the form 
name_nd.mp3 for the Noise Detection sample and 
name_bk.mp3 for the Bonk sample. 

Conclusions 
In this paper we have presented a new approach 
to onset detection of percussive sounds in audio 
signals we call Stochastic Onset Detection. This 
approach works with complex audio signals that 
have a polyphonic mixture of pitched and un-
pitched parts. Our approach analyses signals in 
the time domain and detects percussive onsets by 
measuring significant changes in the noise com-
ponent of the signal that is typically associated 
with percussive attack transients. We have devel-
oped an algorithm based on this approach and 
provided preliminary test results that indicate that 
it is efficient and effective. The algorithm seems to 
be particularly good at detecting high pitched per-
cussive sounds such as high-hats, which could be 
useful for tempo tracking of dance/rock tracks as 
the high-hat is often used to keep the pulse. 

We hope to pursue further comparative test-
ing with existing onset detection methods using 
the same hand marked test database as a bench-
mark for comparison used by Bello et al. (2005) 
and Collins (2005). We have plans to undertake 
future developments of this approach that include 
the addition of predictive assistance based on 
regularities and psychoacoustic models of expecta-
tion that we anticipate will particularly allow for 
variations in transient attack rates and allow the 
algorithm to have more sense of syncopated or 
irregular rhythms.  
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