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We theoretically investigate schemes to discriminate between two nonorthogonal quantum states
given multiple copies. We consider a number of state discrimination schemes as applied to nonorthog-
onal, mixed states of a qubit. In particular, we examine the difference that local and global opti-
mization of local measurements makes to the probability of obtaining an erroneous result, in the
regime of finite numbers of copies N , and in the asymptotic limit as N → ∞. Five schemes are
considered: optimal collective measurements over all copies, locally optimal local measurements in
a fixed single-qubit measurement basis, globally optimal fixed local measurements, locally optimal
adaptive local measurements, and globally optimal adaptive local measurements. Here an adaptive
measurement is one in which the measurement basis can depend on prior measurement results. For
each of these measurement schemes we determine the probability of error (for finite N) and scaling
of this error in the asymptotic limit. In the asymptotic limit, it is known analytically (and we verify
numerically) that adaptive schemes have no advantage over the optimal fixed local scheme. Here we
show moreover that, in this limit, the most naive scheme (locally optimal xed local measurements)
is as good as any noncollective scheme except for states with less than 2% mixture. For finite N ,
however, the most sophisticated local scheme (globally optimal adaptive local measurements) is
better than any other noncollective scheme, for any degree of mixture.

PACS numbers: 03.67.Hk, 03.65.Ta

I. INTRODUCTION

Understanding the principles governing the process of
measurement has the potential to illuminate fundamental
questions and practical notions of the behaviour of the
physical world. Yet despite the exceptional experimen-
tal success of quantum theory, many questions regarding
the fundamental principles of quantum measurement re-
main. A key aspect of this is the restriction imposed
by quantum measurement that a measurement of an un-
known quantum system cannot usually reveal complete
information about that system. The consequences of this
become evident in the problem of discriminating between
two nonorthogonal quantum states [1]. Consider a quan-
tum system that was prepared in one of two known states,
but we do not know which one. The task is to determine
which of the two preparations took place. If we consider
only pure states, we may represent the two possibilities
as |ψ+〉 and |ψ−〉. Except for orthogonal states (where
|〈ψ+|ψ−〉| = 0) there is no measurement that could be
applied that will deterministically find the state of the
system without error [1].

Despite this, it is possible to construct a measurement
that always determines the correct state, but doing so
produces a nonzero probability of obtaining an inconclu-
sive result [1–4]. Alternatively, one can construct a mea-
surement in which all results are conclusive, but neces-
sarily possessing some probability of error, which is to be
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minimized [1, 5]. This minimum-error-probability mea-
surement is known as the Helstrom measurement, pos-
sessing an error probability C dependent upon the over-
lap of the states, |〈ψ+|ψ−〉|.

Should additional copies of the unknown state be avail-
able [6], one can devise measurement schemes that ex-
ploit these additional copies to achieve a lowered error
probability. An example is the simple “majority vote”
scheme, where the Helstrom measurement is applied to
each of N copies individually, and the overall result cho-
sen according to which state corresponds to the majority
of individual results. The probability of error in such a
scheme scales as Cmaj ∝ |〈ψ+|ψ−〉|N .

In comparison, the collective Helstrom measurement,
performed at once on the collective state of all copies,
|ψ±〉⊗N , achieves a probability of error Ccol = (1 −√

1− |〈ψ+|ψ−〉|2N )/2. While this strategy is strictly op-
timal, with Ccol scaling as |〈ψ+|ψ−〉|2N for N → ∞, it
is not in general obvious whether the Helstrom measure-
ment on N > 1 copies can be performed using only local
measurements, making it difficult to practically realize
using current experimental techniques.

For this special case of discriminating pure nonorthog-
onal quantum states, |ψ+〉 and |ψ−〉, it is possible to
achieve the same scaling of error probability as the col-
lective Helstrom measurement by using a fixed local mea-
surement (as in the majority vote scheme but using a
different fixed measurement) applied to all N copies [7].
Furthermore, by performing local measurements on each
copy adaptively, choosing the measurement bases to min-
imize the error probability at each stage (thus being “lo-
cally optimal” adaptive measurements), it is possible to
precisely achieve the optimal performance as defined by
the collective Helstrom measurement for any N [7, 8].
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The above picture becomes much more complicated
for mixed states. In this general case, the locally op-
timal adaptive local measurement scheme can exhibit
worse performance than the simple majority vote scheme
when the number of copies exceeds some threshold [9].
Clearly, neither scheme is the optimal local measurement
scheme in the general case. To derive a local measure-
ment scheme that is globally optimal, with the least prob-
ability of error for all N , requires an analysis based on
dynamic programming [10]. This was done in Ref. [9],
and tested experimentally, for N ≤ 10.

Here we analyze the performance of a number
of multiple-copy two-state discrimination schemes, fo-
cussing on the distinction between local optimization and
global optimization as it applies to the resulting proba-
bility of error of these schemes. We consider two classes
of local measurement schemes: those using identical mea-
surement bases for each copy (fixed measurements) and
those in which the measurement bases are changed as
each measurement result adds new knowledge (adaptive
measurements). This gives us four schemes for consider-
ation: locally optimal fixed (LOF) local measurements,
globally optimal fixed (GOF) local measurements, locally
optimal adaptive (LOA) local measurements, and glob-
ally optimal adaptive (GOA) local measurements. For
comparison, we also consider the optimal collective mea-
surement (OCM). For each of these schemes we calculate
the error probability for states with various levels of de-
polarizing mixture, for finite N . We then determine the
large N scaling of the schemes by directly calculating the
corresponding Chernoff bound in each case. Doing so,
we verify recent theoretical bounds [11, 12] placed on the
asymptotic scaling of local measurement schemes. In ad-
dition, we analyze the relationship between the LOF and
GOF local measurement schemes as mixture is varied,
and find that the latter has no advantage in the asymp-
totic limit for all qubit states with mixture greater than
2%.

II. DISCRIMINATION SCHEMES

Consider a pair of pure qubit states passing through
a depolarizing channel [13]. Let α ≤ π/2 be the angle
separating the two states in Hilbert space (α = π/2 thus
corresponds to orthogonal states). Without loss of gen-
erality we may represent these states as

ρ̂± = 1
2 [Î + (1− ν)(Ẑ cosα± X̂ sinα)] (1)

where X̂ and Ẑ are the Pauli operators, and ν ∈ [0, 1]
quantifies the level of mixture applied by the channel.
Given a collection of N identical copies of either the ρ̂+ or
the ρ̂− state (with equal probability), our task is to then
determine, conclusively and with minimal probability of
error, which state was given.

The four local discrimination schemes are defined by
a sequence of local projective measurements applied
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FIG. 1: Probability of error of optimal collective measure-
ment of up to 10 copies with α = π/6 for various amounts of
depolarizing mixture ν, and for equally likely states (q = 1/2).

to each of the N copies of the unknown state. A
local projective measurement performed in the basis
{|φ〉〈φ|, |φ⊥〉〈φ⊥|}, where

|φ〉 ≡ cosφ|0〉+ sinφ|1〉 (2)

is parametrized by the angle φ ∈ [0, π/2). (Due to our
choice of Hilbert space basis in defining our states ρ̂±, we
can restrict measurements to those with real coefficients
in this basis.) Each of the local measurement schemes
then constitutes a sequence of measurement angles {φn},
where 1 ≤ n ≤ N . Given the state parameters ν and
c ≡ cosα, Bayesian inference can be used to optimally
analyze the measurement results and make a final deter-
mination of that state, with some probability of error,
C = CN (ν, c).

A. Optimal Single-Copy and Collective
Measurement

For any number of copies N ≥ 1, the minimum pos-
sible error probability C can be obtained in principle
by measuring all N copies of the state using a collective
measurement. A collective measurement is one that, in
general, cannot be achieved by local measurements, even
allowing for the measurement basis to be chosen adap-
tively (i.e. based on prior results). The optimal collective
measurement for any N can be performed by measuring
the observable Γ̂ = qρ̂⊗N+ − (1− q)ρ̂⊗N− [1, 5] and guess-
ing the state as ρ̂+ or ρ̂− corresponding to the sign of the
result obtained. Here q is the prior probability of the sys-
tems being in the ρ̂+ state. The resulting probability of
error, known as the Helstrom lower bound, is found to be
COCM
N = 1− q+

∑
j:γj<0 γj , where γj are the eigenvalues

of Γ̂.
Given the conditions α and ν, we can compute the

eigenvalues of the operator Γ̂ and determine the prob-
ability of error. Some examples for α = π/6 and var-
ious ν are shown in Fig. 1. When ν = 0 (that is, for
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2α

ρ̂−ρ̂+

FIG. 2: Single-copy state and measurement on a Bloch sphere
cross-section. The states ρ̂+ and ρ̂−, separated by a Bloch-
space angle of 2α (corresponding to an angular separation of
α in Hilbert space, as used in the text; here α = π/6), are de-
picted with ν = 0.1 depolarizing mixture. The measurement
basis shown, here with φ = π/4, is referred to as an ‘unbiased’
measurement. In the case of equal prior probability (q = 1/2),
this is the optimal single-copy measurement.

|−〉〈−|

|1〉〈1|

|+〉〈+|

|0〉〈0|

|φ⊥〉〈φ⊥|

|φ〉〈φ|
ρ̂−ρ̂+

FIG. 3: Single-copy state and measurement on a Bloch sphere
cross-section, with states ρ̂+ and ρ̂− with ν = 0.1 depolarizing
mixture. The measurement basis shown is with φ = α/2,
optimal in the limit q → 1. This and the opposite case where
φ = π/2 − α/2 (optimal for q → 0) are referred to as ‘fully
biased’ measurements.

pure states) the eigenvalues of Γ̂ can be determined an-
alytically, and the optimal collective measurement error
probability COCM

N is given by

COCM
N

∣∣
ν=0

= 1
2

(
1−

√
1− 4q(1− q)c2N

)
, (3)

where c (that is, cosα) in this pure state case can also
be written c = |〈ψ+|ψ−〉|.

The optimal single-copy measurement (OSM) is the
special case N = 1. This is a projective local measure-
ment, independent of ν due to the invariance of the di-
rection of eigenvectors under depolarization. The mea-
surement angle is given by

φOSM(q) = 1
2 arccot[(2q − 1) cotα]. (4)

For the case of equal prior probabilities (q = 1/2)
the measurement angle φOSM is π/4, with |φ〉〈φ| and
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FIG. 4: Probability of error of locally optimal fixed local mea-
surements of up to 10 copies with α = π/6 for various amounts
of depolarizing mixture ν.

|φ⊥〉〈φ⊥| symmetric about the state vectors ρ̂± (see, e.g.,
Fig. 2). The probability of error is

COSM = 1
2

[
1− (1− ν)

√
1− c2

]
(5)

for all ν ∈ [0, 1].
We note that in the case of unequal prior probabili-

ties, q 6= 1/2, the optimal single-copy measurement an-
gle φOSM ‘biases’ towards the more likely state. As q in-
creases from 1/2, the measurement angle decreases such
that, in the limit of complete prior determination q = 1,
φOSM = α/2, with |φ〉〈φ| lying in the direction of ρ̂+ (see
Fig. 3). Similarly, for q = 0, φOSM = π/2− α/2, placing
|φ⊥〉〈φ⊥| in the direction of ρ̂−. We refer to the measure-
ments in these limits as being ‘fully biased’, and the case
where φ = π/4 as being ‘unbiased’.

B. Locally Optimal Fixed Local Measurements

For any locally optimal scheme, the optimization is
done by minimizing the error probability of the measure-
ment of only a single copy. The measurement angles are
therefore defined by φOSM (dependent on q). Here we
consider the case where each measurement is also per-
formed independently, i.e. without any information ob-
tained from the measurement of other copies. Given ν,
α, and q = 1/2, all constants, it follows that the mea-
surement bases of such a scheme are fixed for all copies:
φLOF = π/4.

The LOF scheme reduces to a simple binomial decision
problem, with probability of error

CLOF
N =

bN/2c∑
n=0

(
N

n

)(
1− COSM

)n (
COSM

)N−n
(6)

for N odd. Because the measurements are fixed and sym-
metric about the states ρ̂±, for N even there is the addi-
tional possibility of obtaining measurement results such
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that Bayesian analysis equally favors both states. In this
case, we may arbitrarily choose the overall discrimination
result, because the equal a priori likelihood of the states
ensures that any choice will lead to the same probability
of error. For example, we can randomly choose the out-
come. Equivalently, we may choose the state that would
have been chosen if the final measurement had not been
made, i.e. by considering only the first N − 1 measure-
ment results. In doing so, it is evident that the prob-
ability of error for the LOF scheme will not differ from
any odd N − 1 copies to an even N copies, regardless
of our method for choosing the overall outcome in this
situation. This results in a stepwise decrease of the error
probability as the number of copies increases, examples
of which can be seen in Fig. 4, where various levels of
depolarizing mixture ν are applied to the state.

C. Globally Optimal Fixed Local Measurements

To achieve global optimization it is necessary to
consider the error probability that arises after all N
copies have been measured. One might consider a di-
rect approach, calculating the total error probability by
summing over the set of possible outcomes where the
Bayesian posterior probability is satisfied (i.e. greater
than one half, for each outcome), similar to Eq. (6), and
optimizing over the measurement angle.

Instead of this approach, however, we present an al-
ternative approach based on dynamic programming [10].
While more complicated than a direct summation, this
approach is considerably more powerful, and will be nec-
essary in following sections. For pedagogical reasons, we
introduce it here for the easiest to understand case: a
fixed scheme.

The dynamic programming approach allows us to con-
struct a recursive analytic expression for the resulting
probability of error. Suppose all N copies are measured
in the basis defined by the angle φ, and Bayesian analysis
is applied to the first n ≤ N measurement results. We
obtain a value Pn+1 that quantifies the credulity that the
prepared state is ρ̂+ at this stage.

Let us defineRn as the probability of error we expect to
obtain after measuring the remaining N − n copies. For
n = N , this is a simple function of the final credulity,
RN (PN+1) = min(PN+1, 1 − PN+1). For general n, the
expected error probability at the (n− 1)th measurement
can be determined from the expected error probability at
the nth measurement, as

Rn−1(Pn) =
∑
Dn

Pr[Dn|Pn, φ]Rn(Pn+1), (7)

where Dn represents the possible outcomes of the
measurement of the nth copy and Pr[Dn|Pn, φ] =
Pr[Dn|ρ̂+, φ]Pn + Pr[Dn|ρ̂−, φ](1−Pn). In order to eval-
uate Rn, the credulity Pn+1 can be calculated from the
credulity Pn and measurement outcome Dn by applying
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FIG. 5: Angles of globally optimal fixed local measurements
φGOF for up to 10 copies with α = π/6 for various amounts
of depolarizing mixture ν.
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FIG. 6: Probability of error of globally optimal fixed local
measurements of up to 10 copies with α = π/6 for various
amounts of depolarizing mixture ν.

Bayes’ theorem,

Pn+1 =
Pr[Dn|ρ̂+, φ]Pn

Pr[Dn|Pn, φ]
. (8)

Beginning with n = N and progressing backwards to-
wards n = 0, we can thus calculate the expected proba-
bility of error for any n by evaluating Eqs. (7) and (8) at
each step using

Pr[Dn|ρ̂±, φ] =
ν

2
+ (1− ν) cos2

(
φ− π

4
(Dn − 1)∓ α

2

)
.

(9)
In doing so we traverse a binary tree in which all possible
permutations of measurement results are visited. The
probability of error for N copies of the state is therefore
given by

CN = R0(P1), (10)

where P1 = q = 1/2.
Armed with an expression for the probability of error

for all N copies, we can determine the globally optimal
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FIG. 7: Probability of error of locally optimal adaptive local
measurements of up to 10 copies with α = π/6 for various
amounts of depolarizing mixture ν.

fixed measurement angle by simply minimizing over φ.
In this case, the optimal measurement angle, φGOF, will
depend on N and ν, as well as α. Figure 5 shows exam-
ples of this globally optimal fixed measurement angle for
various amounts of mixture. We see that for N > 1 in the
pure state case, a pair of measurement angles are equally
optimal, becoming increasingly biased towards one or the
other states as N increases.

For states with appreciable mixture, the measurements
oscillate between being unbiased for odd N , and some-
what biased for even N . In doing so, the scheme avoids
the possible condition of obtaining equal credulities for
the states following analysis of all measurement results.
A mixture of ν = 0.02 appears to be an intermediate
regime (but see Sec. III). Figure 6 shows the error prob-
abilities for these measurements.

D. Locally Optimal Adaptive Local Measurements

For the pure state case, ν = 0, it has been shown the-
oretically [7] and demonstrated experimentally [9] that,
with measurements allowed to vary adaptively, one can
achieve an error probability exactly equal to that of the
collective measurements for a simple, locally optimal,
adaptive scheme. That is,

CLOA
N

∣∣
ν=0

= COCM
N

∣∣
ν=0

= 1
2

(
1−

√
1− c2N

)
. (11)

Here each copy is measured in sequence using the locally
optimal single-copy measurement given the Bayesian
credulity at each stage, Pn [8]. This measurement basis
is defined by the angle φLOA

n = φOSM(Pn). The measure-
ment result is used to determine an updated credulity
Pn+1, following Eq. (8). This is subsequently used to
find the (locally optimal) angle for the next measure-
ment, and so on in turn for each of the N copies.

For the mixed state case, ν > 0, one could consider a
direct approach, in a similar fashion as may be considered
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FIG. 8: Ratio of the error probability of locally optimal adap-
tive local measurements and the error probability of globally
optimal fixed local measurements, CLOA

N /CGOF
N , for various

mixtures ν. Values above 1 indicate the LOA scheme ex-
hibiting error probabilities greater (i.e. worse) than can be
obtained using the GOF scheme.

for the GOF scheme, by evaluating the error probability
over the entire set of measurement outcome strings. Do-
ing so might be feasible for the moderate N considered
here, but the complexity of the computation increases
exponentially, making such an approach intractable for
the large N considered in Sec. III.

The dynamic programming approach described in the
previous section can also be used to calculate the error
probability of this scheme. Here, however, an expression
for the measurement angle is already well-defined, given
the credulity Pn at the nth copy (which can be calcu-
lated). The overall probability of error for this scheme
can therefore be calculated without requiring a numerical
optimization. Examples are illustrated in Fig. 7.

The optimality of the LOA scheme (in terms of low-
est overall error probability) does not hold for ν > 0.
For certain ν and N the LOA scheme results in a higher
probability of error than a fixed scheme [9]. Figure 8 il-
lustrates this by comparing the LOA scheme to the GOF
scheme. The error probability for each scheme decreases
for each newly measured copy (as each measurement pro-
vides information) however there appears a complicated
relationship in the ratio of error probabilities of each
scheme. The ratio is not monotonic in ν for N fixed,
nor is it monotonic in N for ν fixed.

E. Globally Optimal Adaptive Local Measurements

To determine the measurements necessary to achieve
the lowest error probability possible using local measure-
ments in the general case, we must perform global opti-
mization in a manner similar to that done for the GOF
scheme. Relaxing the condition that φ is fixed, the mea-
surement angle for the nth measurement becomes a func-
tion of n and the credulity Pn, i.e. φn(Pn). To consider
the potential values of Pn between 0 and 1, we construct



6

a table of measurement angles φGOA
n (Pn) with a large

number s of linearly spaced samples of 0 ≤ Pn ≤ 1. For
intermediate values of Pn, the angle φGOA

n is estimated
by cubic interpolation of nearest-neighboring samples.

Bellman’s principle of optimality [10, 14] requires that
the final stages of an optimal scheme, whatever the condi-
tions are when those stages commence, must necessarily
themselves be optimal under those conditions. Adhering
to this principle, we construct the table of measurement
angles by first recognizing that the final measurement
angle φGOA

N (PN ) = φOSM(PN ), the optimal single-copy
angle, as there is only one copy available (the final copy)
to measure at this stage. Thus, entries in the final (Nth)
column of the measurements table represent the optimal
single-copy measurement angles φOSM(PN ) for all s sam-
ples of PN .

From this we determine the preceding measurement
angle, φGOA

N−1 (PN−1), by minimizing RN−1(PN−1, φGOA
N−1 ),

given PN−1. We do this for each PN−1 sample, defining
the (N − 1)th column of the measurements table repre-
senting φGOA

n . This then defines the optimal penultimate
measurement for whatever credulity PN−1 may be found
by that stage. The (N − 2)th measurement can be de-
termined similarly by minimizing RN−2(PN−2, φGOA

N−2 ) for
all samples of PN−2, and so on for the remaining copies.
Satisfying the optimality principle at every stage of this
reverse construction guarantees that the entire measure-
ment sequence is, of all possible local measurement se-
quences, the globally optimal one. After constructing
the final column of the measurements table, we find the
probability of error CGOA

N = RGOA
0 (q).

It is important to note that the backwards optimizing
construction of the measurements table ensures that, for
any n, the final n measurements are globally optimal. It
follows that the values of RGOA

n obtained by minimiza-
tion during this backwards process equal the forwards
probabilities of error CGOA

N for each N = n. Making use
of this fact simplifies the calculation of the measurement
angles and error probabilities for multiple (consecutive)
values of N .

Figure 9 illustrates the globally optimal adaptive mea-
surement angles in a mixture regime for up to ten copies,
calculated using s = 2501 samples in the measurement
and error probability tables. We found this to be suf-
ficiently accurate as increasing the number of samples
made no discernible difference to the outcome for all
cases considered here. For large N , the initial measure-
ments are approximately unbiased, that is, φ ≈ π/4, in-
dependent of the credulity Pn. A complex pattern of
measurement angles becomes apparent as more copies
are measured, with the final measurement being the op-
timal single-copy measurement by definition. That is,
φ(Pn) = φOSM(Pn) of Eq. 4.

Also illustrated in Fig. 9 are six example trajectories,
found by simulating the GOA scheme with measurement
results generated randomly according to the outcome
probabilities as a function of the state and measurement
angles. The actual state is ρ̂+ in each case plotted. As
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FIG. 10: Probability of error of globally optimal adaptive lo-
cal measurements of up to 10 copies with α = π/6 for various
amounts of depolarizing mixture ν.

each copy is measured, the credulity moves in a direction
corresponding to the measurement result. In some cases
the measurement results are such that the direction is
away from the true state. In the average case (and in
the asymptotic limit) the credulity Pn increasingly cor-
responds to the true state.

The probability of error for the GOA scheme is plotted,
for various levels of mixture, in Fig. 10. For pure states
this scheme reduces to the LOA scheme, achieving the
same error probability as the optimal collective measure-
ment. For mixed states the GOA scheme does not achieve
the error probability of the optimal collective measure-
ment, but no other local measurement scheme exhibits
lower probability of error.
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III. IN THE LIMIT OF LARGE N

As the number of copies grows large, i.e. N →∞, the
asymptotic behaviour of the error probability is described
by a function decreasing exponentially in N [15],

CN ∼ e−ξN . (12)

The Chernoff bound,

ξ = − lim
N→∞

logCN
N

, (13)

corresponding to a given measurement scheme, is a con-
stant quantifying the asymptotic scaling of the error
probability, with higher Chernoff bound equating to
faster scaling.

Some notable theoretical results already exist in this
asymptotic regime. It is known that fixed local measure-
ments are capable of achieving asymptotic scaling equal
to that of adaptive local measurements [11]. This result
was recently corroborated by an approach in which the
error probability of state discrimination is reformed as a
semidefinite programming problem, and for which strict
bounds on the error probability were calculated [12] using
efficient numerical algorithms [16]. Reference [12] used
the same method to investigate other schemes similar to
those presented here.

In the following sections we directly calculate the large
N behaviour for each scheme considered in the previous
sections. We consider optimal schemes under the con-
dition of local and collective measurements given states
under depolarizing mixture, and thereby provide a di-
rect verification of the asymptotic results of Refs. [11]
and [12].

A. Optimal Collective Measurement

For equally likely states ρ̂+ and ρ̂−, the Chernoff bound
for optimal collective measurements (i.e. the quantum
Chernoff bound) is [6]

ξOCM = − log min
0≤a≤1

Tr[ρ̂a+ρ̂
1−a
− ]. (14)

We can write the states in a diagonal representation, each
as a mixture of a pair of orthogonal pure states σ̂± and
σ̂⊥± , with ρ̂± = (1− ν/2)σ̂± + (ν/2)σ̂⊥± . Substituting, we
find

ξOCM = − log min
0≤a≤1

Tr
{[

(1− ν/2)aσ̂+ + (ν/2)aσ̂⊥+
]

×
[
(1− ν/2)1−aσ̂− + (ν/2)1−aσ̂⊥−

]}
(15)

= − log min
0≤a≤1

{
c2 + (1− c2)

[
(1− ν/2)a(ν/2)1−a

+ (1− ν/2)1−a(ν/2)a
]}
. (16)

The minimum, which is unique due to convexity [6], is
satisfied for a = 1/2. The Chernoff bound for the optimal
collective measurement of mixed states ρ̂± is therefore

ξOCM = − log
[
1− (1− c2)

(
1−

√
1− (1− ν)2

)]
.

(17)
For pure states (ν = 0) this reduces to−2 log c, consistent
with the error probability scaling COCM

N ∼ c2N found by
taking Eq. (3) in the limit of large N (with equal prior
probabilities).

B. Locally Optimal Fixed Local Measurements

We can rewrite the LOF error probability Eq. (6) as

CLOF
N =

(
COSM

)N bN/2c∑
n=0

(
N

n

)(
1− COSM

COSM

)n
. (18)

For large N this has the same scaling as the integral

CLOF
N ∼

(
COSM

)N ∫ N/2

0

(
N

n

)(
1− COSM

COSM

)n
dn. (19)

When n is near N/2, the binomial coefficient function
varies slowly (approximately as a Gaussian of variance
N/4), but as n approaches N/2, [(1 − COSM)/COSM]n

grows exponentially. The scaling is therefore dominated
by this term, and the error probability can be approxi-
mated as

CLOF
N ∼

(
COSM

)N ( N

N/2

)∫ N/2

0

(
1− COSM

COSM

)n
dn

(20)

∼
(
COSM

)N N !

[(N/2)!]2
[(1− COSM)/COSM]N/2

log[(1− COSM)/COSM]
.

(21)

To determine the LOF Chernoff bound ξLOF we take
the natural logarithm of Eq. (21),

logCLOF
N ∼ (N/2) log[(1− COSM)/COSM] +N logCOSM

+ log(N !)− 2 log[(N/2)!] + const., (22)

where terms constant in N have been omitted. Using
Stirling’s approximation, this becomes

logCLOF
N ∼ N log

[
2
√

(1− COSM)COSM

]
− (1/2) logN + const. (23)

Substituting into Eq. (13) and taking the limit N → ∞
we obtain

ξLOF = − log

[
2
√

(1− COSM)COSM

]
(24)

= −(1/2) log
[
1− (1− ν)2(1− c2)

]
. (25)

For pure states this reduces to − log c for a probability
of error scaling as CLOF

N ∼ cN , quadratically worse than
COCM
N ∼ c2N , consistent with the known scaling [7, 9].
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FIG. 11: Angles of globally optimal fixed local measurements
φGOF for an unlimited number of copies with α = π/6 as the
amount of depolarizing mixture ν varies. For pure states there
are two equally optimal measurements, fully biased such that
in each case one projection is in the direction of one of the
states ρ̂±. As mixture increases, the bias of the measurement
decreases. At the critical point νcrit the globally optimal mea-
surement angles equal. For any amount of mixture beyond
this point the globally optimal fixed measurement angle is
π/4.

C. Globally Optimal Fixed Local Measurements

It has previously been shown [17] that the scaling of
the GOF scheme can be quantified by considering the
classical Chernoff bound [15] applied to fixed local mea-
surements of each independent copy. Doing so for states
ρ̂± gives

ξGOF = − log min
0≤a≤1

min
0≤φ≤π/2

M(a, φ), (26)

where

M(a, φ) = (Tr[|φ〉〈φ|ρ̂+])
a

(Tr[|φ〉〈φ|ρ̂−])
1−a

+
(
Tr[|φ⊥〉〈φ⊥|ρ̂+]

)a (
Tr[|φ⊥〉〈φ⊥|ρ̂−]

)1−a
.

(27)

We numerically minimize the function M(a, φ), thus
determining φGOF, given the parameters ν and α that
define the states ρ̂±. An example is shown in Fig. 11 for a
fixed α. For pure states we find that the globally optimal
fixed measurement is fully biased—that is, φ = α/2 or
φ⊥ = φ−π/2 = −α/2, such that one of the measurement
vectors lies in the direction of one of the two states. This
is consistent with what we might expect to find given the
results plotted in Fig. 5 for finite N . It is also consistent
with the proof given in Ref. [7] that, for pure states, fully
biased measurements exhibit error probability with the
same scaling ξ as optimal collective measurements.

For states with sufficient mixture ν, we find the optimal
fixed measurement is unbiased, equivalent to the LOF
scheme. This confirms the results presented in Ref. [9]
that showed unbiased measurements performing better
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FIG. 12: The minimum amount of depolarizing mixture for
which the globally optimal fixed local measurement in the
asymptotic limit is φGOF = π/4 (critical mixture, νcrit) as
the separation between the states α varies.

than other schemes, given enough copies of sufficiently
mixed states.

As the purity of the states increases, the optimal
fixed measurement angle bifurcates at a critical mixture
νcrit [12]. For mixture ν ≥ νcrit, φGOF = π/4. For mix-
ture ν < νcrit there exists two unique and equally optimal
fixed measurement angles related by φGOF

1 +φGOF
2 = π/2.

In Fig. 11, the bifurcation is found at νcrit ≈ 0.012. As
the mixture decreases, the bias of the optimal measure-
ment increases monotonically.

We find that different separations of the states α ex-
hibit different critical mixtures. Figure 12 shows the de-
pendence of νcrit on α, obtained by numeric minimiza-
tion. The first notable fact is that there is an absolute
upper bound on νcrit, of about 0.0188. That is, there is an
error threshold of about 2% depolarizing noise, beyond
which there is no advantage asymptotically to using any
local strategy beyond the simplest (locally optimal fixed)
one, in which the final guess is determined by whichever
result occurred in the majority of measurements.

The second notable fact is that νcrit attains this up-
per bound at an intermediate degree of nonorthogonality
of the pure states (prior to depolarization). As the two
pure states approach orthogonality (α = π/2) or iden-
tity (α = 0), the value of νcrit is zero. That is, any
degree of mixture added to such states reduces the op-
timal solution to a repetition of the optimal single-qubit
measurement. In the limit α → π/2, this result is not
surprising, as in this limit for pure states the fully bi-
ased measurement (which is the globally optimal fixed
measurement) becomes the same as the unbiased mea-
surement, because the states become orthogonal. But
in the other limit, α → 0, these two measurements are
as different as they can be, so the discontinuous change
in the optimal measurement as mixture is added is sur-
prising, and may even be thought paradoxical. What
must be borne in mind is that the asymptotic calcula-
tion makes no reference to how many copies are required
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tion of N , approaching ξ as N grows large. Values are calcu-
lated for α = π/6 and ν = 0.02 using the table sampling and
interpolating approximation method with s = 2501 samples.
∆N = 2 is used to avoid large variations due to the stepwise
nature of the LOF error probabilities.

to approach the asymptotic regime. For almost identical
states, ξLOF is very small, reflecting the fact that it is
very difficult to distinguish the states. From Eq. (23) we
can see that the asymptotic regime will be reached only
when N/ logN � 1/ξLOF. That is, as α → 0, the N re-
quired to reach the asymptotic regime diverges. Thus for
any fixed N , no matter how large, as α→ 0 the problem
is necessarily non-asymptotic, and the globally optimal
fixed measurement for pure states (the fully biased one)
will remain close to the globally optimal fixed measure-
ment for states with a small amount of depolarizing noise.

D. Locally Optimal Adaptive Local Measurements

We may find the Chernoff bound ξ for the adap-
tive schemes by extending the dynamic programming
approach (introduced in Sec. II C) into the asymptotic
regime. We take the difference of the logarithm of error
probability between two nearby points in the regime of
large N , thereby obtaining an estimate of

d logCN
dN

∣∣∣∣
N→∞

= −ξ. (28)

For the conditions we consider, we find that this gradi-
ent reaches a constant (indicating asymptotic behaviour)
before N = 400 copies—see, for example, Fig. 13.

For such large N , calculation using the recursive ap-
proach as detailed in Sec. II C becomes computationally
infeasible. To avoid this, we instead employ the table
sampling and interpolating approximation approach used
to determine the error probability of the GOA scheme in
Sec. II E. For the LOA scheme, the measurement angles
φLOA
n (Pn) are already well-defined, equal to the optimal

single-copy measurement angle φOSM(Pn) where, as be-
fore, Pn is the Bayesian credulity of having the ρ̂+ state

given the results of the previous n−1 measurements. We
may then use this definition to calculate the error prob-
abilities, making use of the fact that RLOA

n = CLOA
N=n. We

do so for up to 400 copies.
We have found that, due to the limitations of ma-

chine precision, the interpolating approximation becomes
problematic when attempting to correctly determine the
error probabilities for such large N . The problem is
best understood by considering the results of this ap-
proach as applied to the LOF scheme (i.e. with predefined
φn = φLOF) as compared to the results we expect due to
the exact expression for the error probability. The sharp
stepwise pattern of error probabilities, evident in the ex-
act result for this scheme and which can be seen in Fig. 4,
becomes less distinct and “washed out” for increasing N
when calculating using the interpolating approximation.
The outcome is a value for the error probability that is
significantly lower than the correct value, and a value
for the LOF Chernoff bound, ξLOF, significantly greater
than the value as determined by our analytic derivation
given in Sec. III B.

We believe that a similar effect also results in the un-
dervaluing of LOA error probabilities and overestimation
of the LOA Chernoff bound. This belief is justified as
we note that decreasing the number of samples s results
in an exaggeration of this effect. Conversely, increasing
s reduces the effect, however the reduction appears to
be exponentially decreasing in s. Indeed, for the LOF
scheme, the overestimation is still quite apparent even
for s = 10001 samples. Increasing s quickly becomes
computationally infeasible.

To nevertheless extract an accurate estimate of ξLOA

from these results, we calculate representative samples,
ξLOA
s , for various s ∈ {501, 1001, 1501, 2001, 2501, 10001}

and fit them to the function

ξLOA
s = x+

y

(log s)z
(29)

using a least-squares method. Here, x and y are allowed
to vary. To maintain stability of the solution, z is fixed
to the value of 1.22, which is found to work best.

We finally evaluate the fit function in the limit s →
∞; that is, we use ξLOA

∞ = x. The result of this is a
best-guess approximation of the Chernoff bound for the
scheme. We have found that this approach works well for
all but the highest-purity states, where the projection
becomes unstable and the results clearly incorrect (we
thus omit those results). The results are shown in Fig. 14
as a function of ν. As this shows, applying the approach
described here to the LOF scheme produces ξLOF that lie
only a tiny amount ≈0.0024 below the exact analytical
results, which validates the approach.

E. Globally Optimal Adaptive Local Measurements

We find the Chernoff bound for the GOA in the same
manner as we do for the LOA scheme, by extrapolating
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FIG. 14: Chernoff bounds for various state discrimination
schemes applied to states with α = π/6 and various levels of
mixture. Results for OCM and LOF schemes are calculated
analytically, indicated by solid lines (upper and lower, respec-
tively). Results for the LOA and GOA schemes, as well as
the LOF scheme for comparison, are calculated using the ex-
trapolated sampling approximation method. Results for the
GOF scheme are found by direct optimizing search. The re-
sults confirm the GOF and GOA schemes possessing the same
scaling in the asymptotic limit.

fits of the log error probability gradient in the high-N
regime. Unlike for the LOA scheme, in this case the
measurements are not well-defined in advance, and must
be determined by minimizing the error probability. The
GOA Chernoff bound is calculated for several numbers
of samples s, and an extrapolation for s→∞ gives us a
final estimate of the GOA Chernoff bound, ξGOA.

The Chernoff bounds for each of the four local schemes
are shown in Fig. 14 for states with α = π/6. The
quantum Chernoff bound of optimal collective measure-
ments is also shown. Optimal collective measurements
scale better than any other scheme in all cases except
for pure states. For pure states, all but the LOF scheme
have a Chernoff bound of ξ = −2 log c (this is − log c
for the LOF scheme). The Chernoff bound of all local
measurement schemes rapidly degrades as mixture is in-
troduced. For mixed states, the GOA and GOF schemes
have equivalent scaling, optimal for local measurement

schemes. For states of high purity, the LOA scheme has
better scaling than the LOF scheme, but the converse
becomes true as the mixture of the states is increased.
For any significant amount of mixture (here greater than
approx. ν = 0.008), the LOF, GOF, and GOA schemes
all agree. While the numerically calculated ξGOA is a
tiny bit lower than the analytically calculated ξLOF and
ξGOF, it lies on top of the numerically calculated ξLOF,
as expected. Thus we have confirmed that, for all but
very pure states, the LOF, GOF, and GOA are all opti-
mal local schemes in the asymptotic limit, outperforming
the LOA scheme.

IV. CONCLUSION

We have investigated the probability of error exhib-
ited by a representative set of local and collective mea-
surement schemes for multiple-copy state discrimination
acting on depolarized qubit states. We find that for any
nonzero amount of mixture, local schemes fail to exhibit
error probabilities approaching that of optimal collec-
tive measurements, while the globally optimal adaptive
scheme introduced in Ref. [9] outperforms all other local
schemes.

We have presented various ways in which we may cal-
culate the error probabilities and measurement settings
of the four local measurement schemes for finite N . In
addition, we have presented analytical expressions and
numerical calculations of the asymptotic behaviour (the
Chernoff bound) for each scheme. These results provide
a direct verification of the asymptotic scaling behaviour
predicted of local measurement schemes in works such
as Refs. [11] and [12]. An important conclusion of our
work is that there exists a critical degree of mixture,
νcritmax ≈ 0.0188, such that, in the asymptotic regime,
for any pair of states with at least this much depolar-
ization, the optimal local measurement scheme to dis-
tinguish them is the simplest: the locally optimal fixed
measurement scheme.
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