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Abstract

It is shown that if the decoherence matrix corresponding to a qubit
master equation has a block-diagonal real part, then the evolution is
determined by a one-dimensional oscillator equation. Further, when
the decoherence matrix itself is block-diagonal, then the necessary and
sufficient conditions for completely positive evolution may be formu-
lated in terms of the oscillator Hamiltonian or Lagrangian. When
the solution of the oscillator equation is not known, an explicit suffi-
cient condition for complete positivity can still be obtained, based on
a Hamiltonian/Lagrangian inequality. A rotational form-invariance
property is used to characterise the evolution via a single first-order
nonlinear differential equation, enabling some further exact results to
be obtained. A class of master equations is identified for which com-
plete positivity reduces to the simpler condition of positivity.

1 Introduction

Master equations are useful for representing the evolution of non-isolated
quantum systems, where the details of the interaction with the environment
are encoded in a decoherence matrix or memory kernel [1]. In practice,
given the complicated nature of typical environments, one must often work
with master equations that have been derived via approximations and/or
phenomenological considerations. Unfortunately, in such cases the result-
ing master equations may not correspond to evolutions that are physically
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possible - for example, the density operator may evolve to have negative
eigenvalues.

The distinction between physical and nonphysical master equations is not
obvious in general. For example, Dümcke and Spohn have pointed out that
subtly different ways of approximating the physical principle of weak cou-
pling, for a qubit interacting with a thermal reservoir, can variously lead
to either physical or nonphysical evolution [2]. Similarly, Barnett and Sten-
holm have shown that the assumption of an apparently innocuous exponential
memory kernel, describing a harmonic oscillator coupled to a reservoir, leads
to negative probabilities [3].

There is, therefore, interest in finding conditions on master equations
which ensure that the corresponding evolution of the density operator is
physical [1, 4, 5, 6, 7, 8, 9, 10]. In this regard, it is not sufficient to merely
ensure that the density operator remains positive under evolution. In par-
ticular, if some auxiliary system is correlated with the system of interest,
but does not interact with it, then the corresponding joint density operator
must also remain positive under the evolution. This requirement is stronger
than positivity, due to the remarkable nature of quantum correlations, and
is called complete positivity [1, 11]. Determining conditions for qubit master
equations to generate completely positive evolution is the focus of this paper.

The general form of a memoryless master equation, for a qubit system
described by density operator ρ, is (eg, equation (2.7) of [4])

ρ̇ = Λt(ρ) := −i[H(t), ρ] + (1/4)
∑
j,k

γjk(t) (2 σjρσk − σkσjρ− ρσkσj) . (1)

Here H(t) is a Hamiltonian operator, the σj are the Pauli spin matrices, and
γ(t) is a 3× 3 Hermitian matrix which will be referred to as the decoherence
matrix. Master equations written in memory-kernel form can also be reduced
to the above time-local form, provided that a particular inverse exists [7, 12].
Note that the (minimal) Lindblad form of the master equation corresponds
to the eigenvalue decomposition γ =

∑3
l=1 λl e

(l)e(l)† of γ, i.e., one has [1, 4, 5]

ρ̇ = −i[H, ρ] + (1/4)
3∑

l=1

λl

(
2 LlρL†

l − L†
l Llρ− ρL†

l Ll

)
,

with Ll := e(l) · σ (thus, tr[L†
jLk] = 2 δjk).

In the case of no explicit time-dependence, the necessary and sufficient
condition for completely positive evolution is simply that the decoherence
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matrix is nonnegative [4, 5], i.e., γ ≥ 0. While this remains a sufficient
condition when H and/or γ depend on time (since the evolution is then a
composition of a sequence of infinitesimal completely positive evolutions),
finding the necessary and sufficient conditions for complete positivity in the
time-dependent case is a very difficult problem.

This problem has been solved by Wonderen and Lendi [6], and indepen-
dently by Maniscalco [8], for the case

H(t) = (1/2)hσ3, γ(t) =

 γ ig 0
−ig γ 0
0 0 γ3

 ,

which is applicable to several systems of physical interest (including an ex-
ample where the master equation is obtained from a memory-kernel form
[8]). The more trivial case of characterising complete positivity when the
decoherence matrix is diagonal and H = 0 is also solvable, and is reviewed
in [7].

In this paper the more general form

H(t) = (1/2)hσ3, γ(t) =

 γ1 f + ig ir
f − ig γ2 is
−ir −is γ3

 (2)

is considered, where f , g, h, r, s and the γj are all real functions of time.
Thus γ11 6= γ22 in general; γ12 may have a real component; and (more triv-
ially) there is no restriction on the imaginary part of the decoherence matrix.
Note that this form is equivalent to the condition that the real part of the
decoherence matrix is block-diagonal. As will be seen in section 2, it is also
equivalent to the condition that the damping matrix in the Bloch representa-
tion is block-diagonal, i.e., equation (2) corresponds to the case that damping
in one direction is decoupled from damping in the remaining two orthogonal
directions.

It is shown in section 3 that the evolution corresponding to equation (2) is
in general determined by the solutions of a one-dimensional time-dependent
oscillator equation

d2q/dτ 2 + k(τ)q, (3)

where the reparameterised time τ and the ‘spring constant’ k(τ) are deter-
mined by H and γ. Explicit solutions for the oscillator motion yield explicit
solutions for the corresponding master equation.
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The general form in equation (2) satisfies the property that the master
equation is form-invariant under arbitary (time-dependent) rotations of the
system about the z-axis. This provides a useful gauge-like degree of free-
dom for simplifying the master equation, which is exploited in section 4 to
characterise the qubit evolution via a single nonlinear first-order differential
equation. This equation may be solved, for example, when

h = 0, f = K(γ1 − γ2)

in equation (2), for some constant K, thus generalising the abovementioned
cases considered previously in [6, 7, 8].

In section 5 it is shown that when the full decoherence matrix is block-
diagonal, i.e., when

r = s = 0 (4)

in equation (2) (corresponding to any ‘drift’ in the Bloch representation be-
ing confined to the z-direction), then the necessary and sufficient conditions
for completely positive evolution may be formulated in terms of either the
oscillator Hamiltonian or Lagrangian, depending on whether k is positive or
negative. This leads to an explicit characterisation of complete postivity,
whenever the oscillator system is solvable.

Further, Lagrangian and Hamiltonian oscillator inequalities are derived
which lead to a useful sufficient condition for complete positivity. In par-
ticular, this condition is formulated solely in terms of the master equation
parameters, and hence can be applied whether or not the corresponding so-
lution is known. It is quite strong, being both necessary and sufficient in a
number of cases, and is invariant under rotations of the system about the
z-axis.

Finally, a class of master equations is identified for which complete pos-
itivity is equivalent to positivity, corresponding to the case of unital evo-
lution with no damping in the z-direction. This class includes a group of
Bloch-Redfield master equations in a white noise limit, recently considered
by Whitney, which generate positive evolution [9]. It immediately follows
that the evolution is in fact completely positive for this group. This case is
of further interest in that the question of complete positivity can be settled
despite being unable to solve for the evolution explicitly.
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2 Evolution in the Bloch representation

It is convenient to rewrite the master equation (1) in terms of the Bloch
vector v, where

ρ = (1/2) [1 + v · σ]. (5)

Substituting into the first equality in (1) and taking the trace with σj then
leads to the equivalent Bloch equation

v̇ = u + Dv,

where
uj := (1/2)tr[σjΛ(1)], Djk := (1/2)tr[σjΛ(σk)]

are termed the drift vector and damping matrix respectively [8]. This is a
first-order inhomogenous differential equation, and hence the general solution
is of the form

v(t) = M(t)v(0) + w(t), (6)

for some matrix M and vector w. Substitution of (6) into the Bloch equation
yields the equivalent evolution equations

Ṁ = DM, ẇ = u + Dw,

for M and w, subject to the inital conditions

M(0) = I, w(0) = 0.

Now, to first-order in ε,

det M(t+ ε) = det M det(I + εD) = det M
∏
j

(1+ εDjj) = det M(1+ εtr[D]),

and hence it follows that

det M = exp
(∫ t

0
ds tr[D(s)]

)
> 0.

Thus the inverse matrix M−1 always exists, and it is straightforward to check
that the solution for w is given by

w(t) = M(t)
∫ t

0
ds M−1(s)u(s). (7)
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Hence, solving the general master equation (1) is equivalent to solving the
matrix equation

Ṁ = DM, M(0) = I (8)

for the evolution matrix M . Similar considerations apply to higher-dimensional
quantum systems.

For the general qubit master equation in (1), the above definitions of u
and D and the relations

tr[σaσbσc] = 2iεabc, tr[σaσbσcσd] = 2 (δabδcd + δadδbc − δacδbd) (9)

may be used to calculate

u1 = −Im{γ23} et cyclic, Djk = Re{γjk} − δjk tr[γ]−
∑

l

εjkl tr[Hσl].

It follows that, for the particular forms of H and γ defined in (2), the drift
vector and damping matrix are given by

u =

 −s
r
−g

 , D =

 −γ2 − γ3 f − h 0
f + h −γ1 − γ3 0

0 0 −γ1 − γ2

 . (10)

It is the block-diagonal form of the damping matrix D, corresponding to
damping in the z-direction being decoupled from damping in the x and y
directions, that provides the basis for the main results of this paper.

3 Reduction to an oscillator system

3.1 Oscillator form

From equations (8) and (10), the evolution matrix M is itself block-diagonal,
i.e., one has

M =

 x1 x2 0
y1 y2 0
0 0 A

 . (11)

Substitution into the evolution equation (8) yields in particular that

dA/dt = −(γ1 + γ2)A, d∆/dt = −(γ1 + γ2 + 2γ3) ∆,
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where ∆ denotes the subdeterminant x1y2 − x2y1, and thus

A = exp
[
−
∫ t

0
ds (γ1 + γ2)

]
, ∆ = A exp

[
−2

∫ t

0
ds γ3

]
. (12)

Hence only three independent parameters of M remain to be determined.
Consider now the 2-vector equation(

ẋ
ẏ

)
=

(
−γ2 − γ3 f − h

f + h −γ1 − γ3

) (
x
y

)
,

where (x, y) = (xj, yj) (j = 1, 2), corresponding to the evolution of the upper
block of M . Defining the quantities

q := xe
∫ t

0
ds (γ2+γ3), p := e

∫ t

0
ds (γ1+γ3)y, G := e

∫ t

0
ds (γ1−γ2), (13)

one immediately finds that

q̇ = (f − h)G−1p, ṗ = (f + h)Gq,

and hence the evolution of q and p is described by the quadratic Hamiltonian

H(q, p, t) :=
1

2
(f − h)G−1p2 − 1

2
(f + h)Gq2.

To obtain the canonical oscillator form, note that the corresponding ac-
tion,

∫
dt (pq̇ −H), may be rewritten as

1

2

∫
dt
[
(f − h)−1Gq̇2 + (f + h)Gq2

]
=

1

2

∫
dτ

(dq

dτ

)2

− kq2

 ,

providing that one defines the functions τ(t) and k(τ) via

τ̇ := (f − h)G−1, τ(0) = 0, k := G2(h + f)/(h− f). (14)

Hence, with respect to the reparameterised time τ , one has the oscillator
equation

d2q/dτ 2 + kq = 0, (15)

as previewed in the introduction.
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It follows that when the oscillator equation (15) can be solved, then the
evolution matrix M can be determined. In particular, such a solution must
link the oscillator state to its inital state via a linear relation of the form(

q
dq/dτ

)
=

(
a b
c d

) (
q0

(dq/dτ)0

)
. (16)

Since dq/dτ = q̇/τ̇ = p from the defining equations (13) and (14), it follows
further via (13) and (16) that(

x
y

)
=

 e−
∫

ds (γ2+γ3) 0

0 e−
∫

ds (γ1+γ3)

 (
a b
c d

) (
x0

y0

)
.

Recalling the initial condition M(0) = I, the corresponding explicit form

M =


a e−

∫
ds (γ2+γ3) b e−

∫
ds (γ2+γ3) 0

c e−
∫

ds (γ1+γ3) d e−
∫

ds (γ1+γ3) 0

0 0 e−
∫

ds (γ1+γ2)

 (17)

is obtained for the evolution matrix. Thus, the master equation is solvable
whenever the oscillator matrix in (16) is known.

3.2 Examples

As a simple example, consider the case f = 0 = γ1 − γ2. Then, k = G = 1
and τ = −

∫ t
0 ds h(s) from equations (13) and (14), and hence from (15) the

oscillator matrix is(
a b
c d

)
=

(
cos τ sin τ
− sin τ cos τ

)
=

(
cos

∫ t
0 ds h(s) − sin

∫ t
0 ds h(s)

sin
∫ t
0 ds h(s) cos

∫ t
0 ds h(s)

)
.

The solution of the corresponding master equation in the Bloch representa-
tion then follows via equations (5)-(7) and (17). Note this case corresponds
to that considered previously by Wonderen and Lendi [6] and Maniscalco [8].
It is significantly generalised in the following section.

As a second example, consider the case h = 0 = γ1−γ2, corresponding to
a symmetric damping matrix in the interaction picture. One finds k = −1,
G = 1 and τ =

∫ t
0 ds f(s) and hence that(
a b
c d

)
=

(
cosh

∫ t
0 ds f(s) sinh

∫ t
0 ds f(s)

sinh
∫ t
0 ds f(s) cosh

∫ t
0 ds f(s)

)
.
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Finally, it proves useful to consider the degenerate case f = −h, for which
one has k ≡ 0 and τ ≡ 2

∫ t
0 ds fG−1. Thus the corresponding oscillator system

degenerates to free particle motion, with zero frequency, and(
a b
c d

)
=

(
1 τ
0 1

)
=

(
1 2

∫ t
0 ds f e

∫ s

0
du (γ2−γ1)

0 1

)
.

Note that this reduces to the identity matrix when one further has f = 0,
corresponding to the trivial case of a diagonal damping matrix in equation
(10) (previously reviewed in [7]). More significantly, this solution is used
in the following section, together with rotational form-invariance, to further
reduce the evolution of the master equation to a single nonlinear first-order
equation.

Note for all the above examples that

ad− bc = 1. (18)

This holds more generally, as may be derived directly from the oscillator
equation (15), or via equations (12) and (17). Note also that the oscillator
equation breaks down for the singular case f = h, since k becomes undefined
in equation (14). However, one can solve equation (8) for M directly in this
case, to find it corresponds to an oscillator matrix equal to the transpose of
the one given above for f = −h.

4 Exploiting rotational form-invariance

4.1 Rotational form-invariance

Consider now a rotation of the system about the z-axis, by some time-
dependent angle α(t). Such a rotation corresponds to the unitary trans-
formation ρ̃ := UρU † of the density operator, with U := exp[−iα(t)σ3].
Denoting the corresponding rotation matrix by R, one has U †σU = Rσ, and
substitution into (1) yields the transformed master equation

˙̃ρ = Λ̃t(ρ̃) := −i[H̃(t), ρ̃] + (1/4)
∑
j,k

γ̃jk(t) (2 σj ρ̃σk − σkσj ρ̃− ρ̃σkσj) ,

with
H̃ = H + α̇ σ3, γ̃ = RγRT .
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A tilde will be used in general to denote quantities in the rotated frame.
For the particular class of ‘Bloch-diagonal’ master equations described by

equation (2), one finds in particular that

H̃ = (1/2)h̃ σ3, γ̃ =

 γ̃1 f̃ + ig ir̃

f̃ − ig γ̃2 is̃
−ir̃ −is̃ γ3

 , (19)

where

γ̃1 := γ1 cos2 α + γ2 sin2 α− f sin 2α, γ̃2 := γ1 sin2 α + γ2 cos2 α + f sin 2α,

h̃ = h + 2α̇, f̃ = f cos 2α + (1/2)(γ1 − γ2) sin 2α,

r̃ = r cos α− s sin α, s̃ = r sin α + s cos α.

Note that g, γ1 + γ2 and γ3 do not change under the rotation.
Comparing equations (2) and (19) it is seen that the form of equation (2)

is preserved by such rotations. Moreover, from equation (5) and the property
U †σU = Rσ, the Bloch vector transforms under such rotations as

ṽ = Rv.

Substitution into equation (6) then yields the relations

M = RT M̃R(0), w = RT w̃. (20)

Thus, if the master equation can be solved in the rotated system, by a judi-
cious simplifying choice of the function α(t), then the solution with respect
to the original system can also be determined. This rotational degree of
freedom allows non-trival new exact solutions to be obtained for qubit mas-
ter equations, via reduction of the evolution to a single first-order differential
equation for α, as is shown below. It is also relevant to the discussion of com-
plete positivity in section 5, where it is used to obtain a rotationally-invariant
sufficient condition.

4.2 Reduction to a first-order nonlinear equation

For any master equation of the form (2), define the ‘zero frequency’ gauge or
picture via the condition

f̃ = −h̃.
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Note that this is rather different from the standard ‘interaction’ picture,
which corresponds to h̃ = 0. From the above expressions for f̃ and h̃, this
condition may be rewritten as the first order differential equation

α̇ +
1

4
[2f cos 2α + (γ1 − γ2) sin 2α + 2h] = 0 (21)

for α.
Now, the choice f̃ = −h̃ corresponds to the degenerate case of a zero-

frequency oscillator considered in section 3.2, and therefore the corresponding
oscillator matrix can be immediately written down as(

ã b̃

c̃ d̃

)
=

(
1 2

∫ t
0 ds f̃ e

∫ s

0
du (γ̃2−γ̃1)

0 1

)
. (22)

Hence, if α can be determined from equation (21), then M̃ can be determined
via (17), and the evolution matrix M for the original master equation follows
via (20).

Thus, remarkably, solving the master equation is equivalent to solving
the zero-frequency gauge equation (21) for α. Naturally enough, solving this
equation explicitly cannot be done in general, as it would amount to solving
a general time-dependent oscillator problem.

4.3 Example: a new solution

It is possible to solve equation (21) in some cases of interest other than the
examples of the previous section. For example, consider the case

h = 0, f = K(γ1 − γ2) (23)

for some constant K. This case corresponds to k(τ) being explicitly time-
dependent in the oscillator equation (15), and includes the known cases γ1−
γ2 = f = h = 0 [6, 8] and f = h = 0 [7] in particular. However, it is rather
more general, and includes, for example, the case where γ1 − γ2 and f are
arbitrary constants in the interaction picture.

To solve the master equation in this case, define the (constant) angle φ
by

cos 2φ := 2K/
√

1 + 4K2, sin 2φ := 2K/
√

1 + 4K2.
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The ‘zero frequency’ equation (21) can then be rewritten in the separable
form

(sin 2φ)
d

dt
2(α− φ) = −(1/2)(γ1 − γ2) cos 2(α− φ),

which may be immediately be integrated to give, assuming that α(0) = φ for
convenience,

(sin 2φ) log tan(α− φ + π/4) = −(1/2)
∫ t

0
ds (γ1 − γ2).

Inverting gives the explicit expression

α = φ− π/4 + tan−1
[
e−(1/4K)

√
1+4K2

∫ t

0
ds (γ1−γ2)

]
(24)

for the gauge function α, as desired. Thus, for all master equations satisfy-
ing condition (23), the explicit evolution in the Bloch representation can be
obtained by (i) applying equation (17) to equation (22) for the above choice
of α, to obtain M̃ , and (ii) finding the evolution matrix M via relation (20).

5 Complete positivity for block-diagonal γ

5.1 Necessary and sufficient conditions

The evolution of a quantum system, described by some linear map ρt =
φt(ρ0), is completely positive if and only if the corresponding Choi matrix C
has no negative eigenvalues, i.e., if and only if C ≥ 0 [13]. For the case of
qubits, it is convenient to calculate this matrix C with respect to the basis set
used in section 4 of reference [7] (corresponding to the matrix S(W ) therein),
and multiply by a factor of 2, so that the Choi matrix is the 4 × 4 matrix
defined by

Cjk := (1/2)
∑
m,n

Fmn tr[σnσjσmσk],

where Fmn := (1/2)tr[σmφ(σn)], and the indices run over 0, 1, 2, 3 with
σ0 := 1.

From the Bloch representation in equations (5) and (6), the evolution
map φ is given by

φ(X) = (1/2)tr[X] (1 + w · σ) + (1/2) (Mtr[Xσ]) · σ
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where σ denotes the 3-vector (σ1, σ2, σ3), and hence F00 = 1, F0j = δj0,
Fj0 = wj, and Fjk = Mjk for j, k = 1, 2, 3. It follows, using properties (9) of
the Pauli matrices, that the coefficients of the Choi matrix are given by

C00 = 1 + tr[M ], C01 = w1 + i(M23 −M32),

C11 = 1 + M11 −M22 −M33, C12 = M12 + M21 + iw3,

with the remaining coefficients determined via cylic permutations of 1, 2, 3
and C = C†. Checking positivity of the Choi matrix for a general qubit
evolution essentially requires finding the singular values of M [14], and hence
there is no general explicit condition in terms of the coefficients of M and w.

However, for master equations with a block-diagonal decoherence matrix,
the Choi matrix has a relatively simple form. This case is equivalent to
r = s = 0 in equation (2) and implies that, in addition to the damping
matrix D being diagonal, the ‘drift’ vector u in (10) is confined to the z-
direction. Equations (7), (10) and (11) then lead to

C =


1 + x1 + y2 + A 0 0 w3 + i(x2 − y1)

0 1 + x1 − y2 − A x2 + y1 + iw3 0
0 x2 + y1 − iw3 1− x1 + y2 − A 0

w3 − i(x2 − y1) 0 0 1− x1 − y2 + A

 .

(25)
for the corresponding Choi matrix, with

w3 = −A
∫ t

0
ds gA−1.

The condition C ≥ 0 thus reduces to the positivity of the two 2× 2 sub-
matrices composing C, i.e., to the positivity of the traces and determinants
of these submatrices. This yields, after some rearrangement, the necessary
and sufficient conditions

A ≤ 1, S := x2
1 + x2

2 + y2
1 + y2

2 ≤ 1 + A2 − w2
3 − 2|A−∆| (26)

for complete positivity. Note from (12) that A and ∆ are explicitly defined
in terms of the master equation parameters, as is w3 (given above).

The question of complete positivity therefore reduces to knowledge about
the quantity S on the left hand side of second inequality in (26). This quan-
tity may of course be calculated when the solution of the master equation is
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known, such as for the examples in sections 3 and 4, thus completely deter-
mining the conditions for complete positivity in these cases. More generally,
however, only partial conditions can be explicitly determined in terms of the
master equation parameters, as discussed below.

5.2 Necessary conditions

Here two necessary conditions for complete positivity are noted, for master
equations having a block-diagonal decoherence matrix, which do not require
the solution of the master equation. Both conditions are formulated in terms
of quantities that are invariant under rotations about the z-axis.

First, the condition A ≤ 1 in (26) reduces via equation (12) to∫ t

0
ds (γ1 + γ2) ≥ 0.

Second, noting that the quantity S in (26) is the sum of the squares of
the singular values of the upper block of M in (11), and that the positive
quantity ∆ is their product, it follows via s2

1 + s2 ≥ 2s1s2 and (12) that
complete positivity requires

A2 − 2A
[
|1− e−2

∫ t

0
ds γ3|+ e−2

∫ t

0
ds γ3

]
+ w2

3 + 1 ≥ 0.

Note that this quadratic condition is certainly satisfied when the correspond-
ing discriminant is negative, i.e., when

|1− e−2
∫ t

0
ds γ3|+ e−2

∫ t

0
ds γ3 ≤

√
1 + w2

3,

which in turn is guaranteed when∫ t

0
ds γ3 ≥ 0.

5.3 Sufficient condition from a Lagrangian inequality

To obtain a nontrivial sufficient condition for complete positivity, it is con-
venient to begin by working in the interaction picture, so that h = 0. In this
case one has k = −G2 for the corresponding (inverted) oscillator system in
section 3, and hence the oscillator Lagrangian is given by

L(q, dq/dτ, τ) = (1/2)
[
(dq/dτ)2 + G2q2

]
.
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Noting that the conjugate momentum is p = dq/dτ , the value of the La-
grangian at any given time follows from equation (16) as

L = (1/2)G2(aq0 + bp0)
2 + (1/2)(cq0 + dp0)

2.

Hence, if L1 and L2 refer to the values of L at time t for the canonical
initial states (q0, p0) = (1, 0) and (q0, p0) = (0, 1) respectively (actually, any
two orthogonal initial states of equal norm will do), then their average value
evolves as

L := (1/2)(L1 + L2) = (1/2)
[
G2(a2 + b2) + (c2 + d2)

]
.

Note that L is invariant under phase space rotations.
Comparing this expression with equations (11) and (17), and noting the

definition of G in equation (13), it follows that

S = x2
1 + x2

2 + y2
1 + y2

2 = 2Le−2
∫ t

0
ds (γ1+γ3). (27)

Hence the complete positivity condition (26) may be interpreted as an upper
bound on the average Lagrangian value of the corresponding oscillator system.

In particular, any upper bound for L immediately generates a sufficient
condition for complete positivity. One such bound is obtained here, using
a generalisation of the method given by Boonserm and Visser for obtaining
bounds for a2 + b2 + c2 + d2 (rather than for L), relevant to one-dimensional
scattering coefficients [15]. In section 5.3 this bound is shown to in fact be
applicable to the case of arbitrary h, as a consequence of rotational invariance.
This further allows a Hamiltonian upper bound to be obtained for the time-
dependent harmonic oscillator.

First, define the quantities X±, Z by

X± := G(a2 + b2)±G−1(c2 + d2), Z := ac + bd.

Note from the determinant property (18) that

X2
+ −X2

− = 4(a2 + b2)(c2 + d2) = 4(ac + bd)2 + 4(ad− bc)2 = 4Z2 + 4.

Now, the oscillator equations (15) and (16) imply that

d

dτ

(
a b
c d

)
=

(
0 1

G2 0

)(
a b
c d

)
,
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from which it follows, writing G′ = dG/dτ , that

dX+/dτ = (G′/G)X− + 4GZ = (G′/G, 2G) · (X−, 2Z).

But d/dτ ≡ fG−1(d/dt) from equation (14) and hence, noting the definition
of G in (13) and making use of the Schwarz inequality, one finds

Ẋ+ = (γ1 − γ2, 2f) · (X−, 2Z) ≤ [(γ1 − γ2)
2 + 4f 2]1/2[X2

− + 4Z2]1/2.

Combining this result with the above expression for X2
+ −X2

− then yields

[X2
+ − 4]−1/2 Ẋ+ ≤ [(γ1 − γ2)

2 + 4f 2]1/2,

which may be integrated to give

cosh−1 X+/2 ≤
∫ t

0
ds [(γ1 − γ2)

2 + 4f 2]1/2.

Noting L = GX+/2, one finally obtains the Lagrangian inequality

L ≤ G cosh
[∫ t

0
ds [(γ1 − γ2)

2 + 4f 2]1/2
]
. (28)

A sufficient condition for complete positivity in the interaction picture
follows immediately from (12), (26), (27) and (28) as

A ≤ 1, ∆ cosh
[∫ t

0
ds [(γ1 − γ2)

2 + 4f 2]1/2
]
≤ 1+A2−w2

3−2|A−∆|. (29)

It is important to emphasise that this condition can be checked whether or
not the master equation can be explicitly solved, as it depends only on the
decoherence matrix γ in the interaction picture.

Note that the above condition is ‘tight’ in the sense that it is in fact
necessary and sufficient in some cases. For example, when γ1 − γ2 = f = 0
in the interaction picture [6, 8], then G ≡ 1, a = d = 1, and b = c = 0,
implying that equality holds in (28). It is in fact also ‘universal’, i.e., it is
valid for h 6= 0 as well as for h = 0, as will be shown below.

5.4 Generalisations via form-invariance

While the sufficient condition (29) for complete positivity was only derived
for the interaction picture, with h = 0, it is in fact invariant under rotations
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about the z-axis, and hence may be applied to any master equation with a
block-diagonal decoherence matrix.

In particular, for the general case where h is an arbitrary function of
time, consider a rotation about the z-axis such that h̃ = 0, corresponding
to the choice α(t) = −(1/2)

∫ t
0 ds h (see section 4.1). Due to the rotational

form-invariance of the master equation, it follows that condition (29) must
hold with respect to the associated decoherence matrix γ̃, i.e., one has the
sufficient condition

Ã ≤ 1, ∆̃ cosh
[∫ t

0
ds [(γ̃1 − γ̃2)

2 + 4f̃ 2]1/2
]
≤ 1 + Ã2 − w̃2

3 − 2|Ã− ∆̃|

for complete positivity. However, using the tranformation equations for γ1,
γ2, etc. in section 4.1, one finds that all the relevant quantities are rota-
tionally invariant. In particular,one has Ã = A, ∆̃ = ∆, w̃3 = w3, and
(γ̃1− γ̃2)

2 +4f̃ 2 = (γ1−γ2)
2 +4f 2 for any choice of α. Hence, condition (29)

is in fact universal.
The universal form of (29) is a fortunate consequence of choosing to work

in the interaction picture in section 5.3. If, for example, f = 0 instead of
h = 0 had been assumed, then one would have obtained the simpler evolution
dX+/dτ = (G′/G)X−, leading to the Hamiltonian inequality

H ≤ G cosh
[∫ t

0
ds |γ1 − γ2|

]
analogous to the Lagrangian inequality (28), where H replaces L in (27).
Thus the integrand in equation (29) would have been replaced by the quantity
|γ1 − γ2|, which is clearly not universal. However, the rotationally invariant
form in (29) can then still be obtained, by considering an arbitrary rotation
about the z-axis.

Finally, recalling that X2
+ = X2

− + Z2 + 4 ≥ 4, it is worth noting that the
Lagrangian inequality (28) may be extended to

1 ≤ L/ω ≤ cosh
[
log ω0 +

∫ t

0
ds [(ω̇/ω)2 + 4ω2]1/2

]
(30)

for the average Lagrangian value of the general inverted oscillator equation
ẍ − ω2x = 0. Similarly, the above Hamiltonian inequality may be extended
to

1 ≤ H/ω ≤ cosh
[
log ω0 +

∫ t

0
ds |ω̇/ω|

]
(31)
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for the average Hamiltonian value of the general oscillator equation ẍ+ω2x =
0. The upper bounds in these equations can presumably be generalised to
include an arbitrary function Ω, analogous to those for a2+b2+c2+d2 in [15],
leading to new sufficient conditions for complete positivity. Minimisation
with respect to the choice of Ω would then give a ‘best’ sufficient condition.
However, this will not be further investigated here.

5.5 Complete positivity for xy-damping and zero drift

The condition that the density matrix remains a positive operator under
evolution is generally weaker than the requirement of complete positivity,
as remarked in the introduction. For qubits, positivity is equivalent to the
requirement that the Bloch vector remains in the unit ball, i.e., |v| ≤ 1. For
unital evolution, corresponding to the case of a real decoherence matrix γ,
and hence w = 0 in equation (6), positivity is therefore equivalent to the
condition

MT M ≤ I.

Consider now a master equation with a decoherence matrix that is both
real and block-diagonal, i.e., with g = r = s = 0 in equation (2). It will
further be assumed that γ3 = 0. These conditions correspond in the Bloch
representation to zero drift and to the confinement of any damping to the
xy-plane. After some minor algebra, the condition for positivity reduces in
this case to

A ≤ 1, S = x2
1 + x2

2 + y2
1 + y2

2 ≤ 1 + A2. (32)

Noting from (7) and (12) that A = ∆ and w3 = 0, this condition is in
fact equivalent to (26). Hence, complete positivity reduces to the generally
weaker property of positivity for this particular class of master equations.

An interesting example of this equivalence is provided by a Bloch-Redfield
master equation recently studied by Whitney [9], corresponding to a two-
level system coupled via σ1 to a thermal environment, in the limit of a short
memory time and high temperature (see equation (22) of [9]). Although this
master equation cannot be solved explicitly, Whitney has shown via asymp-
totic analysis of |v| that the corresponding evolution satisfies positivity. It
follows immediately from the above that the evolution must therefore in fact
be completely positive, despite being unable to construct, for example, an
explicit Kraus representation.
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6 Conclusions

The main results of this paper are the reduction of a large class of master
equations to a time-dependent oscillator system and further to a nonlinear
first-order differential equation, in sections 3 and 4 respectively; the gen-
eration of new exact solutions using these reductions and rotational form-
invariance; and the characterisation of complete positivity in terms of an
oscillator Lagrangian/Hamiltonian, leading to a rotationally-invariant suffi-
cient condition for complete positivity in section 5.

Note that further examples of exact solutions, for master equations having
decoherence matrices as per equation (2), can of course be generated from
any exactly solvable oscillator equation. For example, suppose the oscillator
equation (15) can be solved for some invertible ‘spring constant’ function k(τ)
with inverse k−1(τ), satisfying k(0) = 1 (which can be ensured by translating
and/or rescaling τ). Making the anzatz f = 0, it follows immediately from
(14) that τ̇ = −h/G = (d/dt)[k−1(G2)]. Hence, using the procedure in
section 3, one can solve the master equation corresponding to the case

f = 0, h = −G(d/dt)[k−1(G2)]

in equation (2), for arbitrary γ1 and γ2, where G is defined in equation (13).
Thus any single oscillator solution generates solutions for a large class of
master equations. Moreover, one can also obtain solutions for the case f 6= 0
by applying the above result to the rotated system defined by f̃ = 0, and
using form-invariance (this is analogous to the f = 0 example discussed in
section 5.4). For all such solutions it is then possible to check whether or not
the complete positivity condition (26) is satisfied by the corresponding qubit
evolution.

The further reduction of the master equation problem to a first-order
differential equation (21) in section 4.2 provides an interesting subject for
further study, as it implies that one may also formulate the general time-
dependent oscillator problem in terms of this equation. For example, it can
be shown that the particular solution found in section 4.3 corresponds to
solving the (inverted) oscillator equation (15) for k(τ) = −(1− τ/K)−2 (for
times τ < K). More generally, a solution of the ‘zero-frequency picture’
equation (21) leads to an implicit equation for k(τ) which must be solved
subject to the condition k(0) = 1.

Finally, note for the general case of an arbitary decoherence matrix γ
and Hamiltonian H in equation (1), the question of complete positivity is
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invariant under unitary transformations, and hence under arbitrary rotations
of γ and translations of H (see section 4.1). This implies that the necessary
and sufficient conditions for complete positivity, when formulated in terms
of the master equation parameters, must be expressible purely in terms of
functionals of the three eigenvalues of γ, with no dependence on H. Now,
for the case of a block-diagonal decoherence matrix, i.e., of form (2) with
r = s = 0, these eigenvalues are given by

λ± =
1

2
(γ1 + γ2)±

1

2

[
(γ1 − γ2)

2 + 4f 2 + 4g2
]1/2

, λ3 = γ3.

However, the sufficient condition in equation (29) cannot be written in terms
of these eigenvalues (f and g do not appear in the required combination in
the upper bound). It follows that a stronger sufficient condition must exist.
It is conjectured, noting the form of the necessary and sufficient condition
(26), that replacing f 2 by f 2 +g2 and w3 by 0 in (29) yields such a condition.

Acknowledgment: I am grateful to Rob Whitney for motivating my
interest in ‘Bloch-diagonal’ master equations.
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