
1

An Evaluation Criterion for Open Source Software

Projects: Enhancement Process Effectiveness

Amir Hossein Ghapanchi* and Aybuke Aurum

*Corresponding author

Biographical notes: Amir Hossein Ghapanchi is a PhD candidate at the School of Information

Systems, Technology and Management, University of New South Wales, Australia. He holds a

MSc in IT engineering. He has served in a number of national information systems projects.

His main research interests include the success of open source software projects, IT human

resource management, e-government planning and implementation, multi-criteria decision

making (MCDM) and business process reengineering (BPR). He has published in several

prestigious information systems journals such as Journal of Systems and Software and

International Journal of Information Management.

Aybuke Aurum is an Associate Professor at the School of Information Systems, Technology

and Management, University of New South Wales, Australia. She holds a PhD in Computer

Science. She has over 80 publications including three edited books, namely Managing Software

Engineering Knowledge, Engineering and Managing Software Requirements and Value-Based

Software Engineering. Her research interests include value-based approach in software

development, management of software development process and requirements engineering. She

is on the editorial boards of Requirements Engineering Journal and Information and Software

Technology Journal.

Abstract. Low responsiveness of project team to user needs has been reported

as one of the critical concerns of open source software (OSS) adopters.

Enhancement process is a key process in which OSS project responds to user

needs in terms of suggesting and implementing software features, thus the

dimension of enhancement effectiveness corresponds nicely to adopters’

concern about open source software. Therefore, it is imperative to change the

attitude of managers of OSS projects which have ineffective enhancement

processes. One strategy that facilitates this change management issue is to

provide project managers with a model to measure their enhancement

processes. Although scholars have researched the enhancement process of OSS

projects for almost one decade, the literature still lacks from rigorous ways to

measure this process. Therefore this study aims to construct a valid, reliable

measurement model for the enhancement process effectiveness in an open

source environment through the scale development methodology introduced by

Churchill (1979). We examine the validity and reliability of an initial list of

indicators through two rounds of data collection and analysis from 240 and 750

OSS projects respectively, and come up with a measurement model for the

effectiveness of enhancement process comprising four indicators. The

2

implication of this measurement model for practitioners is explained through a

numerical example followed by implications for research community.

Key words: Open source software, Change management, Information system evaluation,

Enhancement process.

1 Introduction

Adoption of open source software (OSS) has resulted in $60 billion per year savings

to its consumers. Johnson (2008) states “… while it [OSS] is only 6% of estimated

trillion dollars IT budgeted annually, it represents a real loss of $60 billion in annual

revenues to software companies”. Although OSS constitutes less than 1% of global

software spend, it contributes to reduce more than 25% of such spending Tiemann

(2009). Thus, a critical area of academic interest has been studying OSS projects

(Chengalur-Smith et al. 2010; Subramaniam et al. 2009; Stewart et al. 2006). As

Crowston et al. (2006) state enhancement process, “adding features” to the software,

is one of the most important continuing processes that characterizes OSS projects. In

an open environment, “Feature requests” are typically handled through a tracking

system that provides the project with an infrastructure to manage reporting features,

assigning the job of feature implementation, and finally implementing the feature.

Enhancement is a never-ending process in which users suggest their functional needs

to the project community. Hence, effective enhancement corresponds to high

responsiveness to user community. That is why prior research on OSS projects has

implied the importance of effective enhancement process in impacting OSS success

(Crowston et al. 2006).

This study contributes to the literature by providing a measurement model for the

effectiveness of the enhancement process in OSS projects. We focus on the

enhancement process for three main reasons. Firstly, enhancement process is within

the control of OSS project managers to a high extent, therefore having a model to

measure it, is of high significance for OSS practitioners to evaluate their projects.

Secondly, an effective enhancement process means a high responsiveness of an OSS

project to the user community, in terms of adding new features, that has been reported

3

as key concerns of OSS adopters (Golden 2004). Accordingly a measurement model

for enhancement effectiveness provides OSS adopters with a software evaluation

criterion. Thirdly, enhancement is tied to users’ perceptions of the project quality,

activity and value (Mockus & Weiss 2008), thus effective enhancement process might

contribute to attracting a higher user interest in OSS projects that has been often

reported as a critical success factor for OSS projects (Stewart et al. 2006).

To our knowledge, although few papers have studied tasks involved in the

enhancement process (e.g. feature suggestion, or feature assignment), there is a lack

of study that views enhancement as a process. Moreover, the importance of

enhancement effectiveness has been strongly highlighted by prior research (Crowston

et al. 2003; Crowston et al. 2006), but the development of a valid and reliable

measurement model to gauge this phenomenon has not been reported in OSS

literature. Therefore, the current study takes the first step towards constructing a

reliable and valid measurement model for the effectiveness of the enhancement

process in OSS projects. It is hoped that this measurement model will be further

improved by future researchers.

Effective enhancement process is a success Indicator for OSS projects (Crowston et

al. 2003). Therefore, having a measurement model for enhancement process can help

OSS project administrators to better gauge the effectiveness of their enhancement

processes. Such measurement model can also provide an evaluation criterion to

organizational users who are interested in adopting OSS projects. One criterion for

these organizations to assess alternative OSS projects of the same type would be

comparing the extent to which each software project’s team operate the feature adding

activity more effectively.

The remainder of this paper is structured as follows. Next section reviews the related

literature on OSS as well as enhancement process. Section three introduces the

enhancement process in the environment under the study. The scale development

methodology employed in this research is presented in Section four. The empirical

study undertaken including data collection, analysis and findings are presented in

4

Section five. Section six presents the result of post-hoc analysis. Section seven

illustrates the measurement model proposed in this study using a numerical example

followed by discussions and conclusions in Section eight.

2 Research Background

2.1 Open Source Software

OSS originated in the early 1960s, when key foundations of Internet were being

constructed in academic settings like MIT and Berkeley (Ducheneaut 2003). That was

probably of early attempts to share software source code by developers. OSS was

termed in February 1998 by a group of “free software” supporters, including Eric S.

Raymond and Tim O’Reilly (Midha 2007).

Open source software is best understood in contrast with closed source software

(CSS). Although in CSS the program’s source code is a trade secret and is protected

by law, in OSS the source code is publicly available for anyone who would like to see

it. CSS projects hire developers and pay them to develop software and try to sell it,

while OSS projects seeks to attract volunteer programmers to develop a software

under the terms of a license that eventually lets everybody have the outcome of the

work and even use its source code.

A typical OSS project starts with what Raymond (Raymond 1999) calls “scratching a

developer's personal itch”. An OSS project initiator who has a software idea starts

writing the code. Since the community is intended to be able to see the software, it is

released under a license that allows the community to see the source code and use the

software. The community users can contact the project team and request new features

or report a bug in the system. As a result of this evolution, OSS is said to meet user

needs better than traditional closed-source software (Loshin 2005). In addition, being

involved with development process, users may be more satisfied with open source

software (Midha 2007).

Even though, access to source code is normally open in open source software (OSS),

there may be some exceptions like software developed under Microsoft’s share source

5

initiative
1
. Normally open source software is developed by volunteers rather than paid

developers, but there are some contradictory cases like Linux which is developed by

volunteers as well as paid developers. However, researchers agree on the definition

proposed by Open Source Initiative (OSI). OSI defines OSS as software released

under a license approved by Open Source Initiative (2005). OSS could be free or

commercial; however, the focus of this study will be on free OSS. Hence, hereafter

when we use OSS we actually mean free open source software.

OSS is worth researching because of the large number of open source software that

have been highly successful and are being used by millions of users (Ghapanchi &

Aurum 2011a; Ghapanchi & Aurum 2011b). Apache, Mozilla Firefox, Linux, Unix,

and Perl are examples of such software.

2.2 Enhancement Process in OSS Projects

Enhancement is defined as a process to augment a software product with features not

originally incorporated (Notkin & Griswold 1988). Enhancement process aims the

software project to quickly identify and develop new features to keep them

competitive. The cost of enhancement phase accounts for nearly 40% of the total life-

cycle costs of software development (Lientz & Swanson 1980).

In the traditional software development, the maintenance performer is responsible for

all aspects of maintenance: correction, retargeting, and enhancement (Lientz &

Swanson 1980). A user demanding maintenance submits a request to the maintenance

performer, who modifies the source code to apply the change. In OSS development,

the user can perform many enhancements directly.

Enhancement process, “adding features” to the software (Crowston et al. 2006), is one

of the most important continuing processes that characterizes free OSS projects along

with “fixing defects” and “release management”. “Feature requests” are handled

through a tracking system that provides the project with an infrastructure to manage

1 See http://www.microsoft.com/resources/sharedsource/default.mspx

6

reporting features, assigning the job of feature implementation, and finally

implementing the feature.

Compared with CSS, in OSS user features are more rapidly developed because

creativity is more prevalent in OSS (Dalle & Jullien 2000; O'Reilly 1999). O'Reilly

(1999) believes that open source software are usually more extensible than closed

source ones because there is a tighter coupling in the latter. Therefore, adding a new

feature to a closed-source software requires more changes in existing modules than in

OSS (Paulson et al. 2004). Also, the number of features added is found to be greater

in OSS compared with CSS; which means that OSS approach supports more features

over time than CSS (Paulson et al. 2004).

In OSS literature, some researchers have taken enhancement process into account.

Stewart & Gosain (2006a) looked at the percentage of feature requests completed as

an indicator of OSS project effectiveness. They suggest that OSS project success

comprises the extent to which a project receives input from the community (e.g. the

number of developers), and the extent to which it creates an observable output such as

new features. Herbsleb & A. Mockus (2003) stated that the progress in adding new

features, fixing bugs reported and responding to user interests reflect the outcomes of

an OSS project. Moreover, Stewart & Gosain (2006b) demonstrated that the

percentage of feature requests completed impacts perceived effectiveness of OSS

projects.

Although there are some studies attempting to measure the effectiveness of

enhancement process for traditional closed-source software development (Kemerer &

Slaughter 1997; Banker & Slaughter 2000), there is a lack of studies that measured

that for open source software projects. For example Banker & Slaughter (2000) used

application enhancement costs defined as the total dollars that were incurred to

additions, modifications, and deletions of functionality of the application during a

specified time frame. Moreover, Kemerer & Slaughter (1997) used the total number

of adds, changes and deletes made to the functionality of the software module over its

lifetime.

7

3 Enhancement Process in Sourceforge.net

The setting chosen for this research is the largest OSS repository, Sourceforge.net. As

of May 2011, Sourceforge has 260,000 registered open source software projects, and

it also has more than 2.7 million registered members (Source: www.sourceforge.net).

Sourceforge.net doesn’t clearly specify the enhancement process through its feature

tracking system, but pre-defines four statuses for a feature including open, closed,

pending, and deleted. “Open” status is used when a feature is first suggested.

Subsequently, someone (e.g. a project administrator) either assigns it to a developer to

implement, or “delete” the feature if it is duplicate or not legitimate; “Pending” status

is also used when the feature is legitimate but it is better to be implemented at a point

of time in future. Finally, when the feature is implemented, he changes the status to

“closed”. Enhancement process in Sourceforge.net typically involves three tasks:

suggesting a feature, reviewing and assigning the feature, implementing the feature.

Following we explain each task.

Suggesting a feature:

It starts with a community member suggesting a new feature to be added to the

software. As Figure 1 shows a feature reporter enters a summary of the problem as

well as a description. The system also allows the feature reporter to attach a file.

Fig. 1. A feature reporting page on Sourceforge.net

Reviewing and assigning the feature:

8

When a feature is requested, the project administrator (or whoever is in charge)

reviews it. If it is worth implementing, s/he assigns it to a developer or a group of

developers. Here, developers’ motivation is highly important since majority of them

are not paid and no one can force them to fulfill a requested feature that they don’t

like to work on.

Implementing the feature:

Implementing the feature is the final task of enhancement process. When a feature

report is assigned to a developer, he starts working on it. When the feature is

completed, the developer changes the status to “closed”. Figure 2 displays the feature

tracking system that SF.net freely offers to the projects that register on it. Each record

presents a reported feature in terms of its summary, status, date opened, assignee,

submitter, and priority. Each feature also gets a priority that ranges from 1 (less

important) to 9 (more important).

Fig. 2. A typical feature tracking system on SF.net

4 Research Methodology

We thoroughly reviewed prior measures used to operationalize the effectiveness of

enhancement process. However we found most of the indicators to comprise only one

or two simple measure; in addition, most of them seemed to be developed not as a

9

result of a rigorous scale development and validation process. Hence, we decided to

apply Churchill 's (1979) guideline of scale development to operationalize the

effectiveness of enhancement process. This guideline has been widely used in

information system literature (Limayem et al. 2007). According to Limayem et al.

(2007), this guideline has six steps (See Figure 3). Following the scale development

process is explained as per each methodology stage.

Specifying the domain

OSS projects hosted on Sourceforge

Generating of initial scale items

Literature review, Studying Sourceforge.net, Examining possible queries on enhancement
process; Result=9 initial items

Data Collection: first stage

Assessing validity and reliability

Data Collection: second stage

Scale Purification

Collecting data on the 9 items from 240 OSS projects which adopted enhancement tracking
system; Result=data collected on 9 items from 240 projects

Assess convergent validity of items (CFA, Cronbach’s alpha, AVE); Assess discriminant

validity (CFA); Result= Convergent and discriminant validity were found for 6 out of 9

measures; List of 6 candidate measures

Collecting data on the 6 items from 750 OSS projects to evaluate purified items;
Result=data collected on the 6 items from 750 projects

Assess composite reliabilities and AVE using PLS; Assess convergent and

discriminant validity using PLS; Result = Convergent and discriminant validity were

found for 4 of the purified measures; final list of 4 measures

Fig. 3. Scale development process following Churchill (1979) guideline

10

5 Empirical Study

In what follows, we will explain data collection and analysis of the research as per

each methodology stage in the Churchill 's (1979) guideline for scale development.

5.1 Stage 1 and 2

We specified OSS projects hosted on Sourceforge as the domain of the study. Next, 9

items were chosen using literature review and examining possible queries on feature

tracking system of the projects hosted on Sourceforge.net. Table 1 shows an initial list

of measures produced at stage 2.

Table 1. Initial measures for enhancement effectiveness

Item Item Name Source Formula

X1 Total number of features

submitted

(Paulson et al.

2004); (J. Long

2004); (Garousi

2009)

X2 Number of feature report

completed

(Rainer & Gale

2005)

X3 Percentage of features

report completed

(Stewart & Gosain

2006a)

X4 Percentage of features

implemented

(Garousi 2009);

(Stewart & Gosain

2006a)

X5 Number of implemented

features

(Garousi 2009)

X6 Number of features

submitted by team

Sourceforge.net

X7 Total number of features

assigned

Sourceforge.net

X8 Percentage of features

assigned

(Midha 2007)

X9 Number of assigned

features closed

Sourceforge.net

11

5.2 Stage 3

Sourceforge divides OSS projects into various categories including: communication,

database, desktop, education, formats and protocols, games and entertainments,

Internet, multimedia, office/business, religion and philosophy, scientific/engineering,

security, social science, software development, system, terminal, and text editor. In

order to increase generalizability of the results, we decided to take sample from

various categories. This was in line with prior research that studied projects hosted on

OSS repositories including Sourceforge (e.g. Stewart et al. 2006; Long 2006; Stewart

et al. 2005). However because collecting data from projects in all categories was

beyond our limited time and resources, we chose to focus on three categories namely:

communication, software development, and scientific/engineering.

In order to narrow down our sample, we then impose some restrictions as below: we

exclude projects that have not had any file release within last 2 years (to discard

inactive projects); we exclude projects whose development status is planning, pre-

alpha, or alpha (because they normally don’t have any software release); we exclude

projects whose development status is mature (because they normally have not much

activity and are already mature in terms of features and less activity is done on them

for these purposes); we focus on those projects that have had at least 5 records in their

feature-tracking system. A random sampling method was then used to select OSS

projects. As a result, data on 240 projects was collected (80 projects from

Communication category, 80 projects from Software development category, and 80

projects from Scientific/Engineering category). Data on all 9 items listed in Table 1

was collected from the 240 projects sampled for stage 3.

5.3 Stage 4

Factor analysis is a method primarily used for summarization and data reduction (Hair

et al. 2006). Confirmatory factor analysis (CFA) is a kind of factor analysis that aims

to measure to what extent a prior structure of indicators highly load on their

associated constructs (Fabrigar et al. 1999). In this study, CFA was applied on the

12

indicators introduced in Table 1 to determine an overarching construct of

enhancement process effectiveness. To do that, a step-by-step process suggested by

Hair et al. (2006) was applied. PLS-Graph version 3.00 (Chin 2001) was used to

conduct CFA (Sun & Zhang 2008; Chan et al. 2005; Lee et al. 2007). Bootstrap re-

sampling procedure with the number of samples 200 was also employed to test the

significance of all paths (Cotterman & Senn 1992).

Data on the 9 indicators collected from 240 OSS projects was used to do the analysis

of stage 4. Confirmatory factor analysis was undertaken to examine loadings of each

item on the construct of enhancement process effectiveness as well as the validity and

reliability. The result of confirmatory factor analysis is presented in Table 2. Out of 9

items, 3 items were removed because their loadings were less than 0.7 (items

removed: X3, X4, and X8). The reason why the items with a loading lower than 0.7

have been removed is that they show a low convergent validity with the other items.

Next, we examined validity and reliability of the 6 remaining items through the same

sample (See Table 3). According to Table 3, convergent validity exist among the 6

items since (1) all of them highly load on the construct (all loadings are higher than

0.7); (2) all of these reflective indicators were found to be significant (t-value>1.96 at

Alpha level of 0.05); and also AVE value is greater than 0.5 (AVE=0.574). Our

measurement model is also highly reliable with composite reliability greater than 0.7

(composite reliability=0.913). Moreover, the only way to examine discriminant

validity here is to make sure that all items highly load on the construct under study

(e.g. 0.7 or higher). According to Table 3, therefore, discriminant validity is also

achieved because all the loadings are 0.7 or higher.

Table 2. The result of CFA on 9 items using data on 240 projects; (Composite Reliability =

0.913, AVE = 0.574); *Significant at Alpha level of 0.05

Item Loading Mean of

sub-sample

Standard

Error

T-value
*
 Decision

X1 0.8409 0.8220 0.0611 13.7562 Selected

X2 0.9586 0.9543 0.0130 73.7347 Selected

X3 0.3495 0.3522 0.0549 6.3713 Dropped

13

X4 0.3462 0.3499 0.0561 6.1750 Dropped

X5 0.9630 0.9589 0.0136 70.9727 Selected

X6 0.7663 0.7676 0.0647 11.8477 Selected

X7 0.9097 0.9120 0.0249 36.5262 Selected

X8 0.2727 0.2798 0.0659 4.1407 Dropped

X9 0.9408 0.9442 0.0125 75.2735 Selected

Table 3. The result of CFA on 6 items using data on 240 projects; (Composite Reliability =

0.967, AVE = 0.829); *Significant at Alpha level of 0.05

Item Loading Mean of

sub-sample

Standard

Error

T-value
*

X1 0.8830 0.8724 0.0508 17.3659

X2 0.9678 0.9659 0.0107 90.2139

X5 0.9709 0.9697 0.0109 89.3054

X6 0.7834 0.7870 0.0512 15.3033

X7 0.9100 0.9142 0.0225 40.4848

X9 0.9359 0.9397 0.0136 69.0084

5.4 Stage 5

At stage 5, we sampled 750 projects for the Stage 5 of the methodology similar to the

sampling for Stage 3. Out of 750 projects, 250 projects belonged to Communication

category, 250 projects to Software development category, and 250 projects to

Scientific/Engineering category. We collected data on all of the 750 projects. Tables 4

show some demographic information on projects sampled for stage 5 of the model.

Table 4. Distribution of the projects collected for stage 5 in terms of number of downloads

Number of downloads Frequency Percentage

50-1000 50 7%

14

1000-20,000 307 41%

20,000-100,000 221 29%

>100,000 172 23%

Total 750 100%

5.5 Stage 6

Data on the 6 indicators collected from 750 OSS projects was used to do the analysis

of stage 6. Confirmatory factor analysis was run to assess validity and reliability of

the items (See Table 5). According to Table 5, the loadings of 2 out of 6 purified

items were higher than 0.7. Hence, X1 and X2 were removed and X5, X6, X7, and X8

were kept. We again ran CFA to assess validity and reliability of the 4 remaining

items (See Table 6). As Table 6 shows, the 4 items show a high level of convergent

validity because of three reasons. Firstly, all the loadings are 0.7 or higher. Secondly,

all the 4 indicators are found to be significant at Alpha level of 0.05 (t-value>1.96).

Thirdly, average variance extracted (AVE) has a high value of 0.779 (AVE>0.5 is

accepted). Having high loadings on the construct of “enhancement process

effectiveness” also is a cue of discriminant validity (0.7 or more). Our measurement

model is also highly reliable with composite reliability greater than 0.7 (composite

reliability=0.934).

As a result of the above-mentioned methodology, four items (X5, X6, X7, and X9)

were extracted to measure enhancement process effectiveness namely: the number of

features submitted by team members, the number of assigned features, the number of

implemented features, the number of assigned features implemented.

Table 5. The result of CFA on 6 items using data on 750 projects; (Composite Reliability =

0.856, AVE = 0.533); *Significant at Alpha level of 0.05

Item Loading Mean of

sub-sample

Standard

Error

T-value
*
 Decision

X1 0.3317 0.5171 0.3002 1.1049 Dropped

X2 0.3017 0.5121 0.3282 0.9191 Dropped

15

X5 0.8270 0.8748 0.0652 12.6802 Kept

X6 0.7752 0.7729 0.0610 12.7030 Kept

X7 0.9246 0.9195 0.0275 33.6645 Kept

X9 0.9260 0.9241 0.0272 34.0579 Kept

Table 6. The result of CFA on 4 items using data on 750 projects; (Composite Reliability =

0.934, AVE = 0.779); *Significant at Alpha level of 0.05

Item Loading Mean of

sub-sample

Standard

Error

T-value
*

X5 0.8226 0.8266 0.0732 11.2355

X6 0.7973 0.8093 0.0585 13.6222

X7 0.9497 0.9512 0.0110 86.5508

X9 0.9505 0.9558 0.0092 102.9905

6 Post-Hoc Analysis

After the completion of the above-mentioned methodology, we decided to run a

post-hoc analysis on the five items that had not turned to be measures of enhancement

effectiveness (i.e. X1, X2, X3, X4, and X8) to find out if they measure a different

construct. Table 7 shows the result of this analysis. According to Table 7, items X3

and X4 are the only ones with a loading higher than 0.7. Looking at the definition of

X3 (i.e.

) and X4 (i.e.

), it

appears that these two items are both measuring the latent construct of enhancement

efficiency.

16

Table 7. The result of CFA on the 5 remaining items (post-hoc analysis)

Item Loading Mean of

sub-sample

Standard

Error

T-value Decision

X1 0.434 0.365 0.153 2.83 Dropped

X2 0.630 0.592 0.105 5.97 Dropped

X3 0.876 0.890 0.034 25.65 Selected

X4 0.873 0.887 0.035 24.39 Selected

X8 0.514 0.536 0.080 6.36 Dropped

7 Numerical Example

As mentioned previously, a “latent variable” (here enhancement effectiveness) is a

weighted composites of the manifest variables (e.g. the number of features

implemented). PLS approach can provide an explicit factor score that represents the

value of the latent variable for each case in the sample. To compute the factor score

for a given case, PLS generates a weight matrix W for X, manifest variables matrix,

such that F=XW, in which F is the corresponding factor score. These weights are

computed so that each of them maximizes the covariance between responses and the

corresponding factor scores. Given that, the enhancement effectiveness can be

computed using an unstandardised factor score calculated by PLS.

Equation 1 shows a measurement model to calculate enhancement effectiveness

based on the data used and the measures developed in this research. In Equation 1,

enhancement effectiveness is the factor score computed by the PLS algorithm, the

coefficients (e.g. 0.17) are the weights calculated by PLS, and X5, X6, X7, and X9

are the manifest variables proposed in this research to measure the effectiveness of the

enhancement process (the number of features submitted by team members, the

number of assigned features, the number of implemented features, the number of

assigned features implemented). In the following, we present a hypothetical example

that demonstrates practical use of the measurement model developed in this research.

17

Enhancement Effectiveness = 0.17 * x5 + 0.25 * x6 + 0.27 * x7 + 0.32 * x9 Equation (1)

A high-technology manufacturing firm wants to select an open-source human

resource management (HRM) software to automate its HRM processes. They decide

to choose one of the options available on the Sourceforge.net, the largest OSS

repository in the world.

After collecting initial information, the IT department selects 16 alternative HRM

systems to choose from. Preliminary screening shows that five candidates, projects

HR1 through HR5, out of the 16 fulfill a large proportion of their requirements. In

order to choose one out of the five available software, they use a number of criteria

suggested in OSS literature such as project activity, number of downloads,

sponsorship and license. Subsequently, the IT team compares the five projects based

on the criterion proposed in this paper, “enhancement effectiveness”. The committee

uses the measurement model proposed in this study and Equation 1 to calculate

enhancement effectiveness for the alternatives. Data on the four measures introduced

in this study is collected from the five projects, and then using the Equation 1

enhancement effectiveness is computed for each project (See Table 8). As Table 8

illustrates, project “HR4” has the most effective enhancement process among the

others indicating that the project values user community’s functional needs more than

the other four. It should be noted that the criterion of enhancement effectiveness is

just one of the several key decision criteria to evaluate and select a software, thus it

should be used along with other decision criteria introduced in the literature such as

project activity and license.

Table 8. Enhancement effectiveness for the five alternative HRM software

Project

Measures Enhancement

effectiveness

score
*

Rank

 X5 X6 X7 X9

HR1 93 108 133 79 104 2

HR2 67 78 67 49 64 4

HR3 66 14 108 49 59 5

18

HR4 116 144 125 111 124 1

HR5 49 67 101 48 67 3

*
Calculated using Equation 1.

8 Discussion and Conclusions

This research has taken the first step in OSS literature towards creating a reliable and

valid measurement model for the construct of enhancement process effectiveness. An

initial list of measures to make up the construct was generated through literature

review and analyzing feature-tracking system of Sourceforge.net. Those measures

were then validated and regarded reliable through a rigorous statistical methodology

proposed by Churchill (1979). Undertaking 6 steps suggested by Churchill (1979), 9

initial items were reduced to 4 items through testing validity and reliability. The 4

items extracted by this research to measure the effectiveness of enhancement process

are: number of features submitted by team, number of features implemented, number

of assigned features implemented, and number of features assigned. Finally, a post-

hoc analysis of the non-selected items showed that two items of percentage of features

completed and percentage of features implemented can be used as measures of the

efficiency of the enhancement process.

8.1 Implications for Theory

Our study has important implications for OSS research community. Firstly, the

measurement model proposed in this study can be used by other researchers to

examine relationships between the effectiveness of enhancement process and its

potential antecedents and consequences (e.g. OSS project performance). Secondly,

although the enhancement process has been studied and measured using one or two

tasks involve in it (e.g. feature suggestion, feature assignment and etc.), to our

knowledge, no empirical study has been reported to develop a measurement model for

the enhancement as a process.

19

The current study has taken the first step towards constructing a reliable and valid

measurement model for the effectiveness of the enhancement process in OSS projects.

We call future research to study enhancement activities of OSS projects as a process

rather than just taking its tasks into account.

Theory building and testing which is the ultimate goal of research are highly tied to

measurement (Ghapanchi & Aurum 2011a). Therefore, taking measurement into

account leads to advancement of information technology research (Ghapanchi &

Aurum 2011a). The measurement model proposed in this research to gauge the

effectiveness of the enhancement process is one step towards this goal.

8.2 Lessons for Practitioners

This study has key implications for OSS project administrators as well as

organizations who want to adopt OSS software. Firstly, the validated measurement

model suggested in this study can help OSS project administrators to better gauge the

effectiveness of their enhancement processes. We advise OSS project administrators

that traditional success measures introduced in the OSS literature (e.g. high download

rate, or development interest) might not be adequate to have a comprehensive view of

project success. Effectiveness of the enhancement process is another measure

introduced in this paper as a potential indicator of success for OSS projects.

Secondly, the dimension of enhancement process effectiveness responds nicely to the

concern of organizational users regarding open source software products in that

responsiveness to customer needs is one of the most frequently cited concerns of IT

practitioners adopting OSS (Golden 2004). The measurement model proposed in this

study to compute the effectiveness of the enhancement process provides an evaluation

criterion to organizational users who are interested in adopting OSS projects.

Therefore, one criterion for these organizations to assess alternative OSS projects of

the same type would be comparing the extent to which each software project’s team

operate the feature adding activity more effectively.

20

According to project management literature, performance is composed of

effectiveness and efficiency (Crawford & Bryce 2003). Efficiency simply refers to the

extent to which output is created out of a particular amount of input (

). In other words, efficiency means doing things in the most economical way

(Nichols 1999). Effectiveness, on the other hand, means the capability of producing

an effect. In other words, effectiveness means getting the right things done (Nichols

1999). The current study identified 4 and 2 items for measuring enhancement

effectiveness and efficiency. A thorough examination of enhancement performance

would include incorporating both sets of measures (i.e. effectiveness as well as

efficiency measures).

References

Banker, R.D. & Slaughter, S.A., 2000. The Moderating Effects of Structure on

Volatility and Complexity in Software Enhancement. Information System

Research, 11, pp.219-240.

Chan, H.C., Teo, H.H. & Zeng, X.H., 2005. An evaluation of novice end-user

computing performance: Data modeling, query writing, and comprehension.

Journal of the American Society for Information Science and Technology,

56(8), pp.843-853.

Chengalur-Smith, I., Daniel, S. & Sidorova, A., 2010. Sustainability of Free/Libre

Open Source Projects: A Longitudinal Study. Journal of the Association for

Information Systems, 11(11).

Chin, W.W., 2001. PLS-Graph Manual Version 3.

Churchill, G.A., 1979. A Paradigm for Developing Better Measures of Marketing

Constructs. Journal of Marketing Research, 16(1), pp.64-73.

Cotterman, W.W. & Senn, J.A. eds., 1992. Challenges and strategies for research in

systems development, Chichester: Wiley Series in Information Systems.

Crawford, P. & Bryce, P., 2003. Project monitoring and evaluation: a method for

enhancing the efficiency and effectiveness of aid project implementation.

International Journal of Project Management, 21(5), pp.363-373.

Crowston, K., Annabi, H. & Howison, J., 2003. Defining open source software

project success. In the 24th International Conference on Information

Systems. Seattle, WA.

Crowston, K., Howison, J. & Annabi, H., 2006. Information systems success in free

and open source software development: theory and measures. Software

Process: Improvement and Practice, 11(2), pp.123-148.

21

Dalle, J. & Jullien, N., 2000. Windows vs. Linux: Some Explorations into the

Economics of Free Software. In Proceedings of Acts of SSII.

Ducheneaut, N., 2003. The Reproduction of Open Source Software Communities. PhD

dissertation. Berkeley: University of California.

Fabrigar, L.R. et al., 1999. Evaluating the Use of Exploratory Factor Analysis in

Psychological Research. Psychological Methods, 4, pp.272-299.

Garousi, V., 2009. Evidence-Based Insights about Issue Management Processes: An

Exploratory Study. In the International Conference on Software Process.

Vancouver, Canada.

Ghapanchi, A.H. & Aurum, A., 2011a. Measuring the Effectiveness of the Defect-

Fixing Process in Open Source Software Projects. In The 44th Hawaii

International Conference on System Sciences. Hawaii.

Ghapanchi, A.H. & Aurum, A., 2011b. The impact of project licence and operating

system on the effectiveness of the defect-fixing process in open source

software projects. International Journal of Business Information Systems,

(forthcoming).

Golden, B., 2004. Succeeding with open source, Addison-Wesley.

Hair, J.F. et al., 2006. Multivariate Data Analysis, New Jersey: Pearson Education

Inc.

Herbsleb, J.D. & Mockus, A., 2003. An empirical study of speed and communication

in globally distributed software development. Software Engineering, IEEE

Transactions on, 29(6), pp.481-494.

Johnson, J., 2008. Available at:

http://www.standishgroup.com/newsroom/open_source.php [Accessed April

16, 2008].

Kemerer, C.F. & Slaughter, S.A., 1997. Determinants of software maintenance

profiles: an empirical investigation. Journal of Software Maintenance:

Research and Practice, 9(4), pp.235-251.

Lee, M.K.O., Cheung, Christy M.K. & Chen, Z., 2007. Understanding user

acceptance of multimedia messaging services: An empirical study. Journal

of the American Society for Information Science and Technology, 58(13),

pp.2066-2077.

Lientz, B. & Swanson, E., 1980. Software Maintenance Management: A Study of the

Maintenance of Computer Application Software in 487 Data Processing

Organizations, Acldison-Wesley.

Limayem, M., Hirt, S.G. & Cheung, C.M.K., 2007. How habit limits the predictive

power of intention: The case of information systems continuance. MIS

Quarterly, 31(4), pp.705-738.

Long, J., 2004. Understanding the creation and adoption of information technology

innovations: The case of Open Source software development and the

diffusion of mobile commerce. Texas: The University of Texas at Austin.

22

Long, Y., 2006. Social structure, knowledge sharing, and project performance in

open source software development. Nebraska: The University of Nebraska -

Lincoln.

Loshin, P., 2005. Something for Everyone! Open Source Isn’t Just For Linux Users.

Computer Power User, 5(5), pp.66-71.

Midha, V., 2007. Antecedent to the success of open source software. North Carolina:

The University of North Carolina at Greensboro.

Mockus, Audris & Weiss, D., 2008. Interval quality: relating customer-perceived

quality to process quality. In the 30th international conference on Software

engineering. Leipzig, Germany: ACM, pp. 723-732.

Nichols, P., 1999. An introduction to the logframe approach: course workbook &

materials, Melbourne: IDSS.

Notkin, D. & Griswold, W.G., 1988. Extension and software development. In The

10th International Conference on Software Engineering. Singapore, pp. 274-

283.

O’Reilly, T., 1999. Lessons from open-source software development. Commun. ACM,

42(4), pp.32-37.

Open Source Initiative, 2005. Available at: http://www.opensource.org.

Paulson, J.W., Succi, G. & Eberlein, A., 2004. An Empirical Study of Open-Source

and Closed-Source Software Products. IEEE Transactions on Software

Engineering, 30(4), pp.246-256.

Rainer, A. & Gale, S., 2005. Evaluating the quality and the quantity of data on open

source software projects. In Proc. of the 1st International Conference on

Open Source Systems. Genova, Italy.

Raymond, E.S., 1999. The Cathedral and the Bazaar. First Monday, 3(3).

Stewart, K.J., Ammeter, A.P. & Maruping, L.M., 2005. A Preliminary Analysis of the

Influences of Licensing and Organizational Sponsorship on Success in Open

Source Projects. In the 38th Annual Hawaii International Conference on

System Sciences.

Stewart, K.J. & Gosain, S., 2006a. The impact of ideology on effectiveness in open

source software development teams. MIS Quarterly, 30(2), pp.291-314.

Stewart, K.J. & Gosain, S., 2006b. The moderating role of development stage in

free/open source software project performance. Software Process:

Improvement and Practice, 11(2), pp.177-191.

Stewart, K.J., Ammeter, A.P. & Maruping, L.M., 2006. Impacts of License Choice

and Organizational Sponsorship on User Interest and Development Activity

in Open Source Software Projects. Information Systems Research, 17(2),

pp.126-144.

Subramaniam, C., Sen, R. & Nelson, M.L., 2009. Determinants of open source

software project success: A longitudinal study. Decision Support Systems,

46(2), pp.576-585.

23

Sun, H. & Zhang, P., 2008. An exploration of affect factors and their role in user

technology acceptance: Mediation and causality. Journal of the American

Society for Information Science and Technology, 59(8), pp.1252-1263.

Tiemann, M., 2009. How Open Source Software Can Save the ICT Industry One

Trillion Dollars per Year, Available at:

http://www.opensource.org/files/OSS-2009.pdf [Accessed March 3, 2010].

