
A Triangular Decomposition Access Method for Temporal Data -
TD-tree

Bela Stantic Rodney Topor Justin Terry Abdul Sattar

Institute for Integrated and Intelligent Systems
Griffith University,

Queensland, Australia
Email: b.stantic, r.topor, j.terry, a.sattar@griffith.edu.au

Abstract

In this study, we investigate and present a new in-
dex structure, Triangular Decomposition Tree (TD-
tree), which can efficiently store and query tempo-
ral data in modern database applications. TD-tree is
based on spatial representation of interval data and
a recursive triangular decomposition of this space. A
bounded number of intervals are stored in each leaf
of the tree, which hence may be unbalanced. We de-
scribe the algorithms used with this structure. A
single query algorithm can be applied uniformly to
different query types without the need of dedicated
query transformation. In addition to the advantages
related to the usage of a single query algorithm for
different query types and better space complexity,
the empirical performance of the TD-tree is demon-
strated to be superior to its best known competitors.
Also, presented concept can be extended to more di-
mensions and therefore applied to efficiently manage
spatio-temporal data.

Keywords: Temporal Databases, Access Method

1 Introduction

A temporal database is one that supports some as-
pect of time distinct from user-defined time. Over
the last two decades interest in the field of temporal
databases has increased significantly, with contribu-
tions from many researchers (Date et al. 2002), (Snod-
grass 2000). In the literature, two time lines of inter-
est have been mentioned, transaction time and valid
time. The valid time line represents when a fact is
valid in the modelled world and the transaction time
line represents when a transaction was performed. A
bitemporal database is a combination of valid and
transaction time databases (Date et al. 2002). Be-
cause temporal databases are in general append only,
they are usually very large in size, thus efficient access
method is even more important in temporal databases
than in conventional databases (Dyreson et al. 1995).
Many multidimensional access structures have been
proposed and some of them have been recommended
for handling temporal data (Kumar et al. 1998). The
effectiveness of the majority of these index structures
has been theoretically evaluated (Salzberg & Tsotras
1999). Proposed access methods for temporal data
can be classified on the techniques used as follows:

Copyright c©2011, Australian Computer Society, Inc. This pa-
per appeared at the 22nd Australasian Database Conference
(ADC 2011), Perth, Australia, January 2011. Conferences in
Research and Practice in Information Technology (CRPIT),
Vol. 115, Heng Tao Shen and Yanchun Zhang, Ed. Reproduc-
tion for academic, not-for-profit purposes permitted provided
this text is included.

• Extensions of data partitioning spatial indexing
structures (Guttman 1984) such as the Segment
R-tree (Kolovson & Stonebraker 1991), 4R-tree
(Bliujute & et al. 2000), or a number of partially
persistent methods (Kumar et al. 1998),

• Modifications of regular B+-tree access struc-
tures such as the Fully Persistent B+-tree (Lanka
& Mays 1991) and the Snapshot index (Tsotras
et al. 1995),

• Techniques based on incremental structures such
as the Time Index (Elmasri et al. 1990), Time
Index+ (V.Kouramajian & et.al 1994) and the
Monotonic B+-tree (R.Elmasri et al. 1993),

• Employing the existing B+-tree access structure
by mapping of one dimensional ranges to one di-
mensional points, as is the case in MAP21 (Nasci-
mento & Dunham 1999), mapping strategy that
linearize the data like Interval Space Transfor-
mation method (IST) (Goh & et al. 1996) or
managing the intervals by two relational indexes
the RI-tree (Kriegel et al. 2000), (Enderle et al.
2005).

Data partitioning access methods, such as spa-
tial indexes, use a spatial containment hierarchy that
clusters data into bounding regions at the leaf level.
The nearby internal nodes are then clustered into
bounding region of the parent node forming a hier-
archical directory structure. These regions may not
represent the entire data space and could overlap.
Overlapping is a problem for data partitioning ac-
cess methods because even for a simple point query
it may need to examine multiple paths. When open
ended now-relative intervals (where the ending point
of the temporal interval follows the current time) are
represented with widely used maximum timestamp
approach a significant overlapping between nodes and
dead space causes very poor performance of the index
(Stantic et al. 2004), (Stantic et al. 2003).

We intend to propose access method for tem-
poral data that relies on the exploitation of the
relational database systems built-in functionalities
and to utilises the native Data Definition Language
(DDL), Data Manipulation Language (DML) and to
use PL/SQL procedure environment within the SQL
standard.

A number of access methods for temporal data
that utilise the relational database systems built-
in functionalities have been proposed, including:
MAP21 (Nascimento & Dunham 1999), Time Index
(Elmasri et al. 1990), Interval B-tree (Ang & Tan
1994), those based on interval space transformation
(Goh & et al. 1996) and RI-tree (Kriegel et al. 2000).



We observe that the proposed access methods that
rely on relational database systems built-in func-
tionalities, such as Time Index, Interval B-tree and
those based on interval space transformation IST,
have either space complexity problem or are gener-
ally tailored to be efficient only for specific query
types. In (Kriegel et al. 2000) it has been shown
that the RI-tree is superior to the Window-List (Ra-
maswamy 1997), Oracle Tile Index (T-Index) and
IST-technique. In (Kriegel et al. 2001) work was
extended and an algorithm for general interval rela-
tionships has been presented but there is still a need
to tailor query transformation to the specific query
types. It is our intention to propose an efficient ac-
cess method for temporal data with logarithmic ac-
cess time and guaranteed minimum space complexity
that can answer a wide range of query types with the
same query algorithm.

In this paper we present and investigate the Trian-
gular Decomposition Tree (TD-tree) access method to
index and query temporal data. In contrast to previ-
ously proposed access methods for temporal data this
method can efficiently answer a wide range of query
types, including point queries, intersection queries,
and all nontrivial interval relationships queries, using
a single algorithm, without dedicated query transfor-
mations.

The TD-tree is space partitioning access method.
The basic idea is to manage the temporal intervals
by a virtual index structure that relies on a two-
dimensional representation of intervals (Stantic et al.
2010) and a triangular decomposition method. The
resulting binary tree stores a bounded number of in-
tervals at each leaf and hence may be unbalanced.
As data is only stored in leaves, traversing the tree
avoids disk accesses, and tree depth hence does not
affect performance. Using the interval representation,
any query type can be reduced to a spatial prob-
lem of finding those (triangular) leaves that intersect
with the spatial query region. TD-trees can be im-
plemented on top of a standard relational DBMS.

The efficiency of the TD-tree is due to the virtual
internal structure so there is no need for physical disk
I/O’s, query algorithm that ensures pruning, and effi-
cient clustering of interval data. On top of the advan-
tages related to the usage of a single query algorithm
for different query types and better space complexity
the empirical performance of the TD-tree is demon-
strated to be superior to its best known competitors.

2 Related work

A number of index structures for temporal data are
described in the literature (Salzberg & Tsotras 1999).
The existing temporal access structures, as high-
ligthed in section 1 fit in one of the following groups:
(1) Extensions of data partitioning methods spatial
indexing structures; (2) Modifications of regular B+-
tree access structures; (3) Techniques based on em-
ploying the existing B+-tree access structure on map-
ping of one dimensional ranges to one dimensional
point.

We will focus on indexing structures from group
(3), which can be utilised by exploiting the struc-
tures and functionality of commercial RDBMSs and
rely on the relational paradigm. We briefly discuss
typical representatives from group (3) and highlight
their advantages and disadvantages.

The Time Index (Elmasri et al. 1990) is an index
structure for valid time intervals. It is a set of linearly
ordered indexing points that is maintained by a B+−
tree. The disadvantage of this approach is the space

required for the index, as for each point in time a
bucket of pointers refers to the associated set of valid
intervals. Since an interval may be registered with
several points in time, the space requirement is O(n2)
for storing n intervals. This is a problem, particularly
for data with many long living tuples.

The Interval B-tree (IB-tree) (Ang & Tan 1994)
overcomes the problems related to the extensive space
usage of the Time index. It represents an implemen-
tation of the Edelsbrunners interval tree using an aug-
mented B+−tree rather than a binary tree. The main
memory model of the interval tree is transformed into
an efficient secondary storage structure that preserves
the optimal space and time complexity. The disad-
vantage of this approach is the complex three-fold
model, which requires a dedicated structure for each
level. This makes the IB-tree less attractive from the
view point of time complexity.

The access method (ISP) (Goh & et al. 1996) is
based on interval space transformation. Since the
data space may grow dynamically at the upper bound,
this method is well suited for appending intervals. It
indexes lists created on different orders, start time,
end time or duration. This access method is highly
specialized with respect to the suggested mapping and
can not efficiently answer more complex queries such
as intersection query or point query.

The Hierarchical Triangular Mesh (HTM) is
method (Szalay et al. 2007) suited for indexing the
sphere and especially for astronomy data. It subdi-
vides the half surface of a sphere into four spheri-
cal triangles of similar, but not identical, shapes and
sizes. Every triangle is further subdivided into four
smaller triangles. Division forms a balanced tree,
which is then indexed with the Quad-tree. The HTM
is highly dedicated for the data that have an inher-
ent location on the celestial sphere. The HTM has
been mentioned as it has triangles as a region as our
method and to highlight the differences.

The Relational Interval Tree (RI-tree) is an access
method for general closed interval data, it can be cre-
ated for any relational or object-relational table con-
taining intervals (Kriegel et al. 2000). Analytical and
experimental evaluation of the RI-tree shows that the
performance of this method is superior to the other
approaches. This is achieved by introducing a virtual
primary structure. Although the structure is space-
oriented, the storage of intervals is object-driven so
no storage space is wasted for empty regions in the
data space. In (Kriegel et al. 2001) work was ex-
tended and an algorithm for general interval relation-
ships has been presented but still there is a need for
tailored query transformation to the specific query
types. It is our intention to propose an efficient ac-
cess method for temporal data that can answer wide
range of query types with the same algorithm and
that does not require tailored query transformation
for different query types.

3 Representation of intervals and interval re-
lationships

We assume a discrete, totally ordered time model
with epochs in the range [0..λ], for some (large) λ > 0.
It is straightforward to map absolute timestamps into
such a range of natural numbers, as every Unix sys-
tem, for example, does. We consider only semi-open
intervals [is, ie), where 0 ≤ is < ie ≤ λ. Each such
interval can then be represented as a point (is, ie) in
two-dimensional space as shown in Fig. 1. Here, the
first coordinate represents the start, S, of the interval
and the second coordinate represents the end, E, of



Symbol Explanation
λ Arbitrary maximum value
is Interval Start
ie Interval End
S Vertical axis of of Cartesian space
E Horizontal axis of Cartesian space
l maximum depth of the tree
P Parent triangle
C Child subtriangle
d Direction of the triangle apex
b Blocking factor

Table 1: Parameters and symbols definitions

the interval. Fig. 1 shows a set of intervals A, B,
C and D and their representation in two-dimensional
space .

In order to help the reader to follow our discussion
in Table 1 we provide a legend of symbols used with
an explanation.

Figure 1: Interval representation in two-dimensional
space

For point data there are only a few distinct query
types, e.g., point queries and range queries, but for in-
terval data there are many different query types, e.g..
In particular, Allen described 13 distinct interval al-
gebra (IA) relationships that may hold between pairs
of intervals (Allen 1983), which we now consider. Let
Ivt = [is, ie) be a stored interval and Iqt = [is, ie] be
a query interval with exactly the same starting and
ending points (note query interval is closed on both
sides in contrast to data interval which is semi-open
according to the definition).

Each of the 13 IA relationships may now be
represented as a region, line or point in our two-
dimensional space. When we study Allen’s relation-
ships with indexing and query evaluation in mind, we
observe that they fall into two distinct groups.

• Relationships between two intervals that repre-
sent simple comparison of the same starting or
ending points. Such relationships include those
where both intervals start or end with the same
epoch, e.g., the relationships ‘start’: s, ‘start-by’:
si, ‘finish’: f and ‘finish-by’: fi, and those where
one interval starts with the same epoch that the
other ends, e.g., ‘before’: b, ‘after’: bi, ‘meet’:
m and ’meet-by’: mi. Each of these eight rela-
tionships can be queried efficiently by one dimen-
sional index structures such as B+-tree. This is

because the problem is reduced to a simple com-
parison of two points, start or end.

• Relationships between two intervals that require
the comparison of both start and end points of
both intervals. These five relationships are ‘over-
lap’: o, ‘overlap-by’: oi, ‘during’: d, ‘contain’:
di and ‘equal’: eq. To efficiently answer these
queries special access method is required.

From now on we focus on the problem of efficiently
answering queries about relationships in the second
group. We also study queries about the more general
‘intersects’ relationship and its special case the ‘mem-
bership’ relationship (or ‘point’ query). The basic
query types we consider are queries from group two
plus intersection and point query.

The universe of intervals is: U = { [us, ue] | 0 ≤
us < ue ≤ λ}. Please note that due to the definition
of intervals semi-open us must be only less than ue
and can not be equal. Then Fig. 2 (a) shows a set of
intervals A, B, C, D, a query point at T0, and a query
interval Iqt = (T1, T2). The result of each query type
above is then a two-dimensional rectangle, or point,
as defined below.

• Equality Query EMQ - checks if the database
contains an interval which equals the query in-
terval:
EMQ([is, ie]) = { [rs, re] |
rs = is ∧ re = ie } is a point in two-
dimensional space;

• Intersection Query (IQ), Fig. 2 (b) - finds all
intervals that intersect the query interval:
IQ([is, ie]) = { [rs, re] | (rs < ie) ∧ (is < re) }
is a rectangle [(0, λ), (ie, is)], in our example
is = T1 and ie = T2);

• Point Query (PQ), Fig. 2 (c) - also called times-
lice query is a special case of intersection query
it finds all intervals that contain the query point:
PQ(p) = { [rs, re] | rs < T0 < re } is a
special case of IQ and results in the rectangle
[(0, λ), (p, p)], in our example p is T0;

• Contained-in Query (CQ), Fig. 2 (d) - finds all
intervals that are contained in the query interval:
CQ([is, ie])] = { [rs, re] | (is < rs < ie) ∧
(is < re < ie) }, can be simplified to { [rs, rs] |
(is < rs < re < ie)}, maps to the rectangle
[(is, ie), (ie, is)];

• Enclosure Query (EQ), Fig. 2 (e) - finds
all intervals that contain the query interval.:
EQ([is, ie]) = { [rs, re] | (rs < is < re) ∧ (rs <
ie < re) } can be simplified to {[rs, re]|(rs < is <
ie < re)}, as rs < re and is < ie, and results in
the query box [(0, λ), (is, ie)], ,

The point of this analysis is that the evaluation of
every query type can now be reduced to the spatial
problem of finding all data intervals that belong to
the rectangle associated with that query. In particu-
lar, this means that every query type can be evaluated
by a common algorithm, which is what we now study.
Note, to form a rectangular query region for partic-
ular query type, the query region can extend under
the line E = S, as for example for intersection query
Figure 2 (b) and containment query Figure 2 (d). Be-
cause 0 ≤ is < ie ≤ λ no intervals will be registered
under the line E = S so extending query region under
the line E = S to form rectangular query region will
not affect the answer.



Figure 2: Query regions

4 The triangular decomposition tree

4.1 Basic data structure

The structure of our indexing method is based on the
observation, that all data and query intervals of in-
terest represented in two dimensional space lie in the
isosceles, right-angle triangle with vertices at (0,0),
(0, λ) and (λ, λ), which lies above the line E = S.
We call this triangle the basic triangle Figure 1. This
is due to nature of interval space transformation and
fact that is < ie.

Given that our region of interest is a triangle, our
main proposal is to recursively decompose the basic
triangle into two smaller triangles. This triangular de-
composition of the basic triangle forms a tree which
we call a TD-tree. This tree is not balanced in general.
Data intervals (points in our two-dimensional space)
are stored in the database in blocks associated with
the leaves of the TD-tree. Figure 3 shows the second
and third level of a unbalanced triangular decompo-
sition. Arrows point to the “apex”, the right-angled
vertex of the triangle, of each triangle,

In such a triangular decomposition, each triangle is
uniquely identified by its apex position (s, e) , and its
direction d, the direction of the arrow from the mid-
point of the triangle’s hypotenuse to the apex. Note
that there are eight possible directions, correspond-
ing to the eight points of the compass, all of which
are shown in Fig. 4.

Given a triangle in this decomposition, its apex
and direction uniquely determine the apex and direc-
tion of each of its two subtriangles. We call these
subtriangles low and high children. Figure 4 shows,

Figure 3: Unbalanced triangular decompositions of
the basic triangle.

for each possible direction, which are the low and high
subtriangles, and where the apexes of these two sub-
triangles are. Note that we number the possible direc-
tions 0 to 7 clockwise starting from direction “north”.

By observation of Fig. 4, we see that it is possible
to define the apex position and direction of the sub-
triangles of a given triangle using the following two
algorithms. Algorithm 1 computes the direction d of
the lower (L) and higher (H) children subtriangles of
a parent triangle P with direction d, Algorithm 1.

Algorithm 2 computes the position (s, e) of the
apex of each subtriangle C of a parent triangle P at
any level l. This is possible only knowing the po-
sition of the parent apex and its level. From Fig
1 it is straight forward that the basic triangle apex
is (0, λ) and we accepted that the basic triangle has
level 0. Without loss of generality, we may assume



Figure 4: Positions of low and high subtriangles

Algorithm 1 Children apex directions
begin
if (1 <= P.d <= 4) then

L.d = (P.d + 5) mod 8;
H.d = (P.d + 3)

else
L.d = (P.d + 3) mod 8;
H.d = (P.d + 5) mod 8;

end if
end

that λ = 2k, for some k > 0. To find the children’s
apex position the adjustment length that has to be
applied to the parent apex position as presented in Al-
gorithm 2. Adjustment length depends only on level
of partition l and k. It can be calculated as:

length = 2k ∗ (21/2/2)(l−1) (1)

Note that both child subtriangles of the parent
triangle have the same apex position. Position of the
child C apex (s, e) will be calculated depending to the
direction d of the parent P apex using the Algorithm
2.
Note that the level of the subtriangles of a triangle
are one more than the level of the triangle. Note also
that the resulting tree need not be balanced. In an
unbalanced tree, different leaves may be at different
levels. The shape of a tree depends on the distribution
and density of data intervals.

Because we can identify the apex and direction
of every node of a TD-tree, starting from the basic
triangle, using the two algorithms 2, we do not need
to store the internal tree nodes. Thus, a TD-tree is a
virtual tree. All we need to store is the value λ and
a reference to the root node.

The actual data intervals, together with informa-
tion about the intervals, are stored in a table indexed
by a leaf identifier. The tree is organised so that at
most b data intervals are stored with each leaf, for
some integer blocking factor b > 0. A node identi-
fier is a binary string, stored as a (binary) integer,
constructed as follows. The identifier of the base tri-
angle or tree root is 1. If a node has identifier φ, the
lower and upper children of the node have identifiers
φ0 and φ1 respectively. The length of the identifier is
thus one greater than the depth of the node.

Information about leaf nodes themselves are stored
in a separate directory, containing an identifier and

Algorithm 2 Children apex position calculation
begin
switch (P.d)
if d = 0 then

C.s := P.s;
C.e := P.e - length;

else if d = 1 then
C.s := P.s - (length/root(2));
C.e := P.e - (length/root(2));

else if d = 2 then
C.s := P.s - length;
C.e := P.e;

else if d = 3 then
C.s := P.s - (length/root(2));
C.e := P.e + (length/root(2));

else if d = 4 then
C.s := P.s;
C.e := P.e + length;

else if d = 5 then
C.s := P.s + (length/root(2));
C.e := P.e + (length/root(2));

else if d = 6 then
C.s := P.s + length;
C.e := P.e;

else
C.s := P.s + (length/root(2));
C.e := P.e - (length/root(2));

end if
end

number of records per leaf. The root node stores the
blocking factor b and current maximum depth of the
tree.

4.2 Insertion algorithm

Insertion of data interval into a TD-tree is performed
according to Algorithm 3. We first descend the tree
from the root to the virtual leaf at maximum tree
depth containing the interval. This is done arithmeti-
cally, without disk access, by repeatedly selecting the
lower or upper child of each node depending on the
value of the interval.

The leaf found is called “virtual” because that
branch of the tree may have length less than the maxi-
mum depth. For example, the upper child of the root
node in Fig. 5 labelled ‘g’ is a leaf on a path of
length 2, whereas the tree has maximum depth 7, as
it can be seen in Table 2.

Algorithm 3 Insertion
Input: object for insertion OBJ , Directory D,

blocking factor, max population and
max depth

of the tree
begin
Find maxregion at max depth where OBJ would
belong;
target region = region in D with longest number of

bits in common left to right with the
maxregion;
Find target region population;
if target region population > max population
then

Increment the population in D of target region;
else;
perform Split;

end if
end



Given the sample decomposition from Fig. 5, the
directory would be as shown in Table 2. This table
shows the label, identifier (in both binary and deci-
mal) and identifier extension (in both binary and dec-
imal) for each leaf of the tree. The identifier extension
is the unique extension of the leaf identifier with zeros
so that it is of length l, where l is the maximum depth
of the tree. Values for binary identifier and both bi-
nary and decimal identifier extension are not stored
as they can be calculated from decimal identifier and
max depth of the tree ‘l’.

Figure 5: Running example regular decomposition

Label Identifier Identifier Extension
(binary) (decimal) (binary)

a 100 4 1000000
b 1010 10 1010000
c 10111 23 1011100
d 101100 44 1011000
e 1011010 90 1011010
f 1011011 91 1011011
g 11 3 1100000

Table 2: Directory for sample tree

We attempt to insert the data interval into the
actual leaf that is an ancestor of the virtual leaf found
by the above traversal.

If the identifier of the virtual leaf w containing the
interval is z, then the identifier of the actual leaf v
that is ancestor of w is given by the longest identifier
in the directory that is a prefix of z. For example, if
the identifier of the virtual leaf containing the interval
is 1010010, then the identifier of the actual leaf in
which the interval should be stored is 1010.

Considering the sample from Figure 5 and Table
2, let for example an interval, according to the start
and end points, would belong to region on max depth
’1010010’. This max depth region ‘1010010’ at the
maximum depth doesn’t does not exist so it is re-
quired to locate the actual region to store the inter-
val in. That region is given by the longest identifier
in the directory that is a prefix of max depth region
‘1010010’ and in our case it is the region ‘1010’. Hav-
ing found the region which to store the interval, we
simply update leaf identifier in table with that iden-
tifier and in directory increment number of records
that region holds by one.

To ensure efficient retrieval, we store at most b
data intervals with each leaf. If a leaf already has that
many intervals, we construct the two children of the

leaf, replace the parent with the two children in the
directory, distribute the current (and new) intervals
between the two children as appropriate, and repeat
this process recursively if all intervals go into the same
child. If this operation increases the maximum tree
depth, we record the new maximum depth. This split
is performed according to Algorithm 4.

Algorithm 4 Split
Input: Split Region SR, Directory D, block-
ing factor max pop, max depth of the tree
begin
while not both child regions population <
max pop do

divide data of SR into children
current depth = SR depth + 1
if current depth > max depth then

max depth = max depth + 1
end if
if child region is POINT then

Exit
end if

end while
end

It is possible that all intervals in a region that
has to be split are located within one newly created
smaller region, which will cause a further split. Splits
will be performed until intervals can be distributed
between two child regions or the maximum split was
reached (region represents a point). If maximum split
was reached the population of the region is allowed
to grow beyond blocking factor, which means that
multiple blocks may associate with one region.

4.3 Query algorithm

Following the analysis of Section 3, we can assume
that every query corresponds to a rectangular region
of the two-dimensional interval space, defined by the
top-left and bottom-right corners of this region. The
task of query evaluation is to find all data intervals
that occur within this query region. The particular
region chosen depends on whether we are performing
an intersection query, an overlaps query, a contains
query, and so on, but in each case the query evaluation
algorithm is identical, an important property of our
approach.

Query evaluation itself proceeds in two phases Al-
gorithm 5. In the first phase we find those TD-tree
nodes which are contained entirely within the query
region and those TD-tree leaves which overlap (but
are not contained in) the query region. This phase
accesses the disk to retrieve nodes from the directory
and to retrieve data intervals from overlapping leaves.
In the second phase, we return the intervals in the
first set of nodes, and scan the intervals in the second
set of leaves for those that occur in the query region.
This second phase requires no additional disk access.

The first phase may be implemented as follows. It
takes as input the query region Q and the directory D.
It returns the set of data intervals that occur within Q.
This phase terminates with A1 containing the set of
nodes whose descendent leaves are contained entirely
within Q, and A2 containing the set of leaves which
overlap Q. By testing whether the ancestor R of F is
contained within Q, we can select all leaves under R
in one operation. This property of our algorithm sig-
nificantly reduces the number of disk accesses and
improves its overall performance. To test whether a
triangle is contained within a rectangle or whether a



Algorithm 5 Query algorithm
begin
Input: Directory D , Query region Q
Output: Containing leaves A1, Overlapping leaves
A2
add all nonempty leaves in D to a LIST
let length L be 1
while LIST is not empty do

let F be the first leaf in LIST
let R be the ancestor of F
whose identifier consists
of the first L digits of F’s identifier
if R is contained within Q then

add all leaves in LIST
with the same prefix as R to A1
and remove them from LIST
set L to 1

else if R is disjoint from Q then
remove all leaves in LIST
with the same prefix as R from LIST
set L to 1

else if R equals F then
add R to A2
and remove it from LIST

else
increment L

end if
end while
end

triangle intersects a rectangle are straightforward ge-
ometric operations based on the vertices of the two
operations.

In the second phase, it suffices to return all data
intervals in all descendent leaves of nodes of O1 and
to scan all data intervals in all leaves of O2, returning
those intervals that occur within Q. This latter test is
a simple arithmetic comparison. No additional disk
accesses are required in this phase.

4.4 Deletion algorithm

Algorithm 6 Deletion removes regions from the di-
rectory that contain zero objects due to the decrement
of population. Also, this algorithm merges two chil-
dren into parent region if sum of population of booth
children falls under the one third of the blocking fac-
tor.

Algorithm 6 Deletion
Input: object for deletion, Directory D , block-
ing factor
begin
delete region = region where ob-
ject for deletionbelongs
Delete object for deletion
decrement the population of delete region
if combined population of delete region and its sib-
ling < blocking factor/3 then

merge two children into parent regions
end if
end

4.5 Update algorithm

Update of the interval, which causes change in region
where interval will belong. Update can be seen as
delete and insert and therefore handled by Delete

and Insert algorithms. Update is particularly com-
mon for now-relative data when interval ending point
stops following the current time and has to be closed.
When an update is required initially the deletion al-
gorithm is applied, which may cause the merging of
regions, then an insert is performed as explained in
subsection 4.2.

5 Experimental evaluation

To show the practical relevance of our approach, we
performed an extensive experimental evaluation of
the TD-tree and compared it to the RI-tree (Kriegel
et al. 2000).

The RI-tree was chosen, since it provides the same
practically important properties as our approach. It
is easy to implement and integrate, it uses standard
RDBMS methods which provides scalability, update-
ability, concurrency control and space efficiency. Fur-
thermore it has been proven (Kriegel et al. 2000)
that the RI-tree is superior to the Window-List (Ra-
maswamy 1997), Oracle Tile Index (T-Index) and
IST-technique (Goh & et al. 1996) so performance
results of the TD-tree can be transferred to these in-
dexing techniques. We could not compare our TD-
tree with improved implementation of RI-tree (En-
derle et al. 2005) as it indexes Interval-and-Value tu-
ples together while our method only index intervals.

All experimental results presented in this section
are computed on eight 850MHZ CPU - SUN Ultra-
Sparc II processor machine, running Oracle 10.2.0
RDBMS, with a database block size of 8K and SGA
(System Global Area) of 500MB. At the time of test-
ing database server did not have any other significant
load. We used Oracle built-in methods for statistics
collection, analytic SQL functions and the PL/SQL
procedural runtime environment.

5.1 Data sets

In order to simulate different real applications sce-
narios we used different data distributions. The start
position of the intervals was always uniformly dis-
tributed on the interval domain, while the duration
was varied. Following data distributions have been
considered:

• Uniformly distributed start and uniform dis-
tributed length within the range [1, 10000] with
20% of uniformly distributed now-relative data.

• Uniformly distributed start and exponentially
distributed length according to the exponential
distribution function y = e−0.00041∗x with 20%
of uniformly distributed now-relative data.

Uniform distribution of interval start, appearance
of now-relative data and exponential distribution of
the duration reflects most real world applications
where short intervals are more likely to occur than
long intervals. We used maximum timestamp ap-
proach to represent current time. Furthermore, in
real world applications there is usually a upper bound
for the interval duration and in our case we have cho-
sen 10,000 for the upper bound, not considering now-
relative data, which are represented with maximum
timestamp approach.

All data set distributions had separate relations
with different number of tuples, 250,000, 500,000 and
1,000,000.



5.2 Query sets

In our experiment we tested performance on inter-
section queries and particularly on point query as its
specific case. Because of the nature of our query algo-
rithm, by comparing the data region with the rectan-
gular query region, as has been shown in subsection 3,
results for performance evaluation apply to the other
query types.

The point query that timeslices the timeline at
the current time was used to determine how access
method performs with now-relative data. The point
query that timeslices the time line at the current time
is considered to be the most important because most
often we will ask queries about the current state of
reality.

5.3 Update sets

Most often updates in Temporal databases happen
when facts cease to be valid (in valid time databases)
or tuple is logically deleted (in transaction time
databases). In both cases ending time of interval that
contain sematic for ‘now’ (now-relative data) is re-
placed with the current time. We tested performance
of our TD-tree on updates of randomly selected now-
relative interval data of 100 tuples. As explained in
update algorithm subsection 4.5, to perform update it
is required to perform delete from the previous region
and insert interval into the new region.

5.4 Experiments

The same data set is used both for RI-tree and TD-
tree testing experiment. The initial relations with
structure Employment(ID, Name, Position, Start,
End) were replicated and altered accordingly to suit
each particular method.

Relations for testing the performance of the RI-
Tree, were altered with column node, which is calcu-
lated for every row of data by algorithm as explained
in paper (Kriegel et al. 2001). Two B+-tree composite
indexes have been created LowerIndex (node, Start)
and UpperIndex (node, End). A point query is per-
formed by calling the dedicated procedure that col-
lects leftnodes and rightnodes and then performs the
transformed SQL statement as instructed in (Kriegel
et al. 2000).

Relations for testing the performance of the TD-
tree were altered with column Region, which is calcu-
lated according the algorithm as explained in subsec-
tion 4.2. The root node, which contains information
for λ, blocking-factor, adjustment date and maximum
depth of the tree we stored as one tuple relation. Be-
cause TD-tree has only leaf nodes it can be organised
as a list and stored in directory table. To ensure that
the population of a region corresponds to one block,
so it can be be efficiently retrieved, we introduced a
blocking factor. We built relation Employment as in-
dex organised table using Region and ID as a primary
key.

5.5 Results

To compare the space requirements for RI-tree and
TD-tree, we considered tables with different num-
ber of rows. We generated tables with 250,000 rows,
500,000 rows and 1,000,000 tuples. All tables are al-
tered to suit the particular approach and all required
primary and secondary indexes are created. In Fig. 6
we show the space requirement for the TD-tree and
RI-tree. Results represent the sum of used space for

table, primary/secondary indexes and for the TD-tree
we add required space for the directory table.

Figure 6: Comparison of the space usage (Table plus
indexes)

To measure the query performance we used a data
set of one million tuples. Results shown in Fig. 7
and Table 4 are for the point query with uniformly
distributed start and exponentially distributed length
with 20% of now-relative data. Results represent disk
I/O and average CPU usage for different points on
timeline which contain different answer sizes. We per-
formed tests with all data distributions mentioned in
subsection 5.1, but testing resulted in similar quali-
tative results as those presented here.

The Theory of Indexability (Hellerstein et al.
1997) identifies I/O complexity cost, measured by the
number of disk accesses, as one of the most important
factors for measuring query performance. Other mea-
sures of importance such as CPU usage and query
response time are also used in conjunction with the
number of disk accesses to assess the performance of
the query processes.

Figure 7: Physical disk I/O as a factor of answer size

For the TD-tree the number of leaf regions ac-
cessed to answer the query is simply the number of
regions returned in the Primary filter. Secondary fil-
tering only does pruning so it does not require any ad-
ditional disk access, it only adds CPU usage. When
the answer is smaller, interval objects pruned with
the secondary filter effect the performance of the TD-
tree and number of answers per one physical disk I/O
is relatively smaller. In Table 3 we can see that TD-



Answer TD − tree Answers/ RI − tree Answers/
Size DiskI/O DiskI/O DiskI/O DiskI/O
19365 6102 3.17 11902 1.63
74727 8952 8.35 43891 1.70
124280 12958 9.59 72426 1.72
163530 16012 10.21 92776 1.76
186795 18054 10.35 107068 1.74

Table 3: Average number of answers per one Physical
disk I/O

Answer TD − tree RI − tree TD − tree RI − tree
Size CPU CPU Resp. time Resp. time
19365 276 293 6 8
74727 301 878 18 26
124280 383 1, 321 27 42
163530 427 1, 622 37 55
186795 460 1, 942 42 63

Table 4: CPU Usage and query response time I/O

tree even for a small answer size has better factor of
answers per physical disk reads. For the RI-tree the
number of answers per physical disk read is not de-
pendent on query load, however for the TD-tree, due
to the secondary filter features, the number of answers
per physical read is dependent on query load and
reaches the best performance on larger query loads.

Beside the queries mentioned in subsection 5.2, we
tested applicability and performance of the TD-tree
on several other query types, such as during, contain,
and even before and after. These results will be men-
tioned and analysed in the next subsection.

5.6 Comparative analysis

When making performance measurements of index
structures it is important to not only consider re-
sponse time but also other parameters such as space
requirements, clustering, CPU usage, updates, and
locking. In our analysis we have concentrated on
space requirements, physical disk reads, CPU usage
and clustering of data. Because both the RI-tree and
TD-tree rely on the relational paradigm, updates and
locking are handled well by the RDBMS itself.

The TD-tree requires only one virtual index struc-
ture, which means only leaf nodes have to be stored.
The list of leaf nodes are stored in the directory table
and its size is very small comparing to the table itself.
In our experiment the TD-tree directory for one mil-
lion interval objects and uniformly distributed start
and exponentially distributed length required only 26
data blocks. In addition to directory table there is a
need for extra space considering that table is index
organised by region, which is comparable with the
primary index of RI-tree method..

The RI-tree requires two composite index struc-
tures lowerIndex and the upperIndex. One composite
index is on node and Start - start of the interval, and
another composite index is on node and End - end of
the interval. The size of the indexes depend on the
number of interval objects and in our experiment for
one million interval objects required 6708 data blocks
(3354 each index), which is significantly bigger than
the 26 blocks required for the TD-tree directory. For
this reason, the total number of blocks required for
Employment table and index structures for TD-tree is
much smaller than the number of total blocks required
for RI-tree table and index structures. This difference
increases with increasing number of interval objects,
as shown in Fig. 6.

The TD-tree enables efficient usage of clustering
of the data by one dimension, i.e region, as every
region associate with block size. Clustering data im-
proves the query performance and reduces the num-
ber of physical I/O, as shown in Table 3, clustering
ensures higher number of answers per physical disk
I/O. In contrast, the RI-tree can not efficiently use
clustering of data as it has to decide which dimension
to use start or end. If it is clustered by node it will
not result in similar improvements, as in RI-tree node
are fixed size and are too large to provide effective
clustering.

In Figure 7 it can be seen that the virtual struc-
ture of the TD-tree, clustering of data and the query
algorithm significantly reduces the physical disk I/O
reads. This is particularly the case when the answer
size is bigger due to the good clustering, which is
achieved by dividing the regions as often as needed.

Due to the query algorithm, which is able to bulk
include or reject relevant sub-trees, CPU usage is kept
low, which together with low disk I/O results in better
query response time, Table 4.

Our experimental testing shows that the TD-tree
query algorithm performs well on other query types
such as: during, contain, before and after. This is
because it compares the data region with the query
region and uses the same algorithm. It is important
to mention that the RI-tree needs dedicated query
transformation for specific query type. Despite the
TD-tree performing well on before and after query
types it has worse performance in comparison with
the straight forward usage of one dimensional in-
dexes, as was anticipated and highlighted in section
3. The TD-tree does not perform well on query types
such as start and finish because the query region is
a line. However, these query types can be efficiently
answered with one dimensional index, which is also
highlighted in section 3.

6 Conclusions

We described a new approach that is demonstrably
better than existing approaches for handling tempo-
ral, and more generally, interval data. More specifi-
cally, in this study, we:

• Classified the traditional interval relationships
between pairs of intervals and identified which
relationships represent challenging tasks for tem-
poral data access methods;

• Presented a two-dimensional interval space rep-
resentation of intervals and interval relationships
to reduce all interval relationship problems to
simpler spatial intersection problems;

• Showed that a wide range of interval query types
can be reduced to an intersection of data with a
rectangular region, so one algorithm can be ap-
plied uniformly;

• Proposed the triangular decomposition tree (TD-
tree) and associated algorithms that can effi-
ciently answer a wide range of query types in-
cluding the point or timeslice queries;

• Experimentally evaluated the TD-tree by com-
paring its performance with RI-tree, and demon-
strated its overall superior performance.

The TD-tree is a unique access method as it uses
tree structure and at the same time has some char-
acteristics of hashing because it only stores data in



leaf nodes. In contrast to hashing methods that do
not perform well on range queries, TD-trees can effi-
ciently answer a wide range of different query types.
This efficiency is ensured as it is possible to quickly
include or prune all relevant and irrelevant subtrees
without requiring disk accesses to the internal nodes,
using only the query algorithm proposed in this pa-
per. It is important to mention that the management
od the virtual structure is done automatically by us-
ing database triggers, which fire on insert and calcu-
lates and updates the region of the record and also
increments the region in the directory. If required, it
also initiate and performs split. Similarly, database
trigger fires on update/delete and performs actions in
line with Delete and Insert Algorithm.

As a wide range of query regions of interest can be
reduced to rectangles, it is possible to answer such
queries using a single algorithm without requiring
any query transformation. This itself, and fact that
the TD-tree can be incorporated within commercial
RDBMS, makes the TD-trees superior to other meth-
ods proposed for temporal data.

Presented concept can be extended to more dimen-
sions and therefore applied to spatio-temporal data.

References

Allen, J. (1983), ‘Maintaining knowledge about tem-
poral intervals’, Communications of the ACM
26(11), 832–843.

Ang, C. & Tan, K. (1994), ‘The Interval B-tree’, In-
formation Processing Letters 53(2), 85–89.

Bliujute, R. & et al. (2000), Light-Weight Indexing of
General Bitemporal Data, in ‘Statistical and Sci-
entific Database Management’, pp. 125–138.

Date, C., Darwen, H. & Lorentzos, N. (2002), Tempo-
ral Data and the Relational Model, Morgan Kauf-
mann.

Dyreson, C. E., Snodgrass, R. T. & Freiman, M.
(1995), Efficiently Supporting Temporal Granular-
ities in a DBMS, Technical Report TR 95/07.
URL: citeseer.nj.nec.com/dyreson95efficiently.html

Elmasri, R., Wuu, G. & Kim, Y. (1990), ‘The time in-
dex: An access structure for temporal data’, Proc.
16th Conf. Very Large Databases pp. 1–12.

Enderle, J., Schneider, N. & Seidl, T. (2005), Ef-
ficiently processing queries on interval-and-value
tuples in relational databases, in ‘VLDB ’05:
Proceedings of the 31st international conference
on Very large data bases’, VLDB Endowment,
pp. 385–396.

Goh, C. H. & et al. (1996), ‘Indexing temporal data
using existing b+-trees’, Data and Knowledge En-
gineering (18), 147–165.

Guttman, A. (1984), R-Trees: a Dynamic Index
Structure for Spatial Searching, in ‘Proceedings of
the 1984 ACM SIGMOD international conference
on Management of data’, pp. 47–57.

Hellerstein, J., Koutsupias, E. & Papadimitriou, C.
(1997), ‘On the Analysis of Indexing Schemes’, 16th
ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems .

Kolovson, C. & Stonebraker, M. (1991), ‘Segment
indexes: Dynamic indexing techniques for multi-
dimensional interval data’, Proc. ACM SIGMOD
pp. 138–147.

Kriegel, H.-P., Potke, M. & Seidl, T. (2001), Object-
relational indexing for general interval relation-
ships, in ‘Proc. 7th Intl Symposium on Spatial and
Temporal Databases (SSTD01)’.

Kriegel, H.-P., Ptke, M. & Seidl, T. (2000), ‘Managing
intervals efficiently in object-relational databases’,
Proceedings of the 26th International Conference
on Very Large Databases pp. 407–418.

Kumar, A., Tsotras, V. & Faloutsos, C. (1998), ‘De-
signing Access Methods for Bitemporal Databases’,
IEEE Transactions on Knowledge and Data Engi-
neering (TKDE’98) 10(1), 1–20.

Lanka, S. & Mays, E. (1991), ‘Fully persistent b +
trees’, Proc. ACM SIGMOD Conf. on the Manage-
ment of Data pp. 426–435.

Nascimento, M. A. & Dunham, M. H. (1999), ‘In-
dexing Valid Time Databases via B+-Tree’, IEEE
Transactions on Knowledge and Data Engineering
11(6), 929–947.

Ramaswamy, S. (1997), Efficient Indexing for Con-
straint and Temporal Databases, in ‘Proceedings
of the 6th International Conference on Database
Theory’, pp. 419–431.

R.Elmasri, Wuu, G. & V.Kouramajian (1993), ‘The
Time Index and the Monotonic B+-Tree’, In A.
Tansel et.al., editors Temporal Databases: Theory
Design and Implementation pp. 433–456.

Salzberg, B. & Tsotras, V. J. (1999), ‘Comparison
of Access Methods for Time Evolving Data’, ACM
Computiong Surveys 31(1).

Snodgrass, R. T. (2000), Developing Time-Oriented
Database Applications in SQL, Morgan Kaufmann.

Stantic, B., Khanna, S. & Thornton, J. (2004), ‘An
Efficient Method for Indexing Now-relative Bitem-
poral data’, In Proceeding of the 15th Australasian
Database conference (ADC2004), Denidin, New
Zealand 26(2), 113–122.

Stantic, B., Terry, J., Topor, R. & Sattar, A. (2010),
‘Indexing Temporal Data with Virtual Structure’,
Advances in Databases and Information Systems -
ADBIS2010 pp. 591–594.

Stantic, B., Thornton, J. & Sattar, A. (2003), ‘A
Novel Approach to Model NOW in Temporal
Databases’, In Proceeding of the 10th International
Symposium on Temporal Representation and Rea-
soning (TIME-ICTL 2003), Cairns pp. 174–181.

Szalay, A. S., Gray, J., Fekete, G., Kunszt, P. Z.,
Kukol, P. & Thakar, A. (2007), ‘Indexing the
Sphere with the Hierarchical Triangular Mesh’,
CoRR abs/cs/0701164.

Tsotras, V. J., Gopinath, B. & Hart, G. (1995),
‘Efficient management of time-evolving databases’,
IEEE Trans. Knowledge and Data Eng 7(4), 591–
608.

V.Kouramajian & et.al (1994), ‘The time index+:
An incremental access structure for temporal
databases’, In Proceedings of the Third Interbna-
tional Conference on Knowledge and Data Engi-
neering (CIKM’94) pp. 232–242.


