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Calculation of Electromagnetic Fields in Three Dimensionsusing the Cauchy Integral
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This paper describes a method for calculating the three-dimensional monochromatic electromagnetic fields scattered by conducting
and dielectric objects using the Cauchy integral cast in a multi-dimensional form based on Clifford algebra. Formal relationships
to methods based on quaternions and vector calculus are presented. The characteristics of solutions based on the Cauchymethod
are described and its advantages over comparable methods involving Greens functions are discussed.

Index Terms—Boundary value problems, Cauchy integral, Clifford algebra, electromagnetic fields, integral equations.

I. I NTRODUCTION

T HERE are as many ways to write Maxwell’s equations
as one would care to invent. Historically, methods of

choice include quaternions (by Maxwell), vector calculus (by
engineers), tensors (by physicists), complex numbers (in two
dimensions), Cartan’s differential geometry, and Clifford alge-
bra. In all cases the common features of these methods are a
representation of 2, 3 or 4-dimensional geometry in space/time
with an algebraic structure that supports spatial/temporal dif-
ferential operators. As such, all of these methods can be
perceived as one or another kind of differential geometric
algebra.

For many problems which involve physical phenomena
and their representation in mathematical structures thereis
no particularly strong reason for choosing one differential
geometric algebra over another. For problems involving elec-
tromagnetism in the form of Maxwell’s equations that has been
but is no longer the case. Thereis a very definite advantage in
one particular of these geometric algebras over the others.Here
we review that particular geometric algebra in the context of
Maxwell’s equations, relate it to approaches using quaternions
and vector calculus, and describe its advantages and the
characteristics of the solutions it offers.

II. BACKGROUND

At the time Maxwell introduced the displacement current
and formulated the set of equations named after him, he had
three differential geometric algebras from which to choose: (i)
Cartesian coordinates, (ii) complex numbers and (iii) quater-
nions. Gibbs’s vector calculus, Cartan’s differential geometry
and tensors had not yet been invented.

Maxwell himself used quaternions [1], [2] but with his
students, for whom all apart from Clifford [3] found quater-
nions too much of a challenge, wrote everything in Cartesian
coordinates. Complex numbers were not sufficiently general
because they were at that time restricted to problems in two
dimensions only.

In developing quaternions Hamilton [4] had been intending
to find a generalisation of complex numbers which carried
them into three dimensions. However, the algebra he did create
did not do so. That had to wait (not very long) for Clifford
to take two independent and commutative sets of quaternions
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written in terms of Grassmann’s linear algebra [5], and from
them construct what Clifford called his even 5 way algebra [6]
and what we today call a four-dimensional Clifford algebra.

Clifford’s approach to constructing his algebra from quater-
nions is not the only approach of relevance to electromag-
netism. From quaternions it is also possible to construct first
the algebra of octonions and then that of sedenions. Casting
Maxwell’s equations into sedenions offers some of the same
advantages of Clifford algebra but also incorporates some of
the disadvantages of Gibbs’s vector calculus. In particular
the sedenion product and vector cross product both lack an
associate property. In contrast Clifford products are endowed
with the associative property. That makes enough difference
to render Clifford algebra the easier to use of these three
alternatives.

Like both Cartan’s differential geometry and Gibbs’s vector
calculus, the product in Clifford algebra is non-commutative.
The non-commutativity in all three cases is associated with
a vector–vector product. For vector calculus the vector–vector
(cross×) product yields another vector. In contrast the vector–
vector (wedge∧) product of Cartan’s differential geometry
yields a bi-vector (a geometric object which behaves like
an oriented area), and in further contrast the vector–vector
product of Clifford algebra yields a compound geometric
object containing both a bi-vector and a scalar. The bi-vectors
arise from an exterior (outer) product, and in the Clifford case
this is combined with an inner product. The outer product
is the key which endows both Cartan’s differential geometry
and Clifford algebra with all the properties of a full geometric
algebra. Vector calculus, as reflected in its name, is strictly
not any kind of geometric algebra for the very reason that it
lacks an outer product.

For electromagnetism the key here is not the similarity or
dissimilarity of Clifford algebra with quaternions, sedenions,
vector calculus or Cartan’s differential geometry. Instead the
key is in the solution using Clifford algebra of Hamilton’s
earlier problem of extending complex numbers into three
dimensions. In particular, Clifford algebra provides for (i) the
generalisation fromanalyticfunctions of a complex variable in
two dimensions tomonogenicfunctions of a Clifford variable
in any number of dimensions, and (ii) the generalisation from
the Cauchy integral of complex variables in two dimensions
to the Cauchy integral of Clifford variables in any number of
dimensions. These generalisations were properly formulated
and documented only within the last few years [7]–[11]. The
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significance of these generalisations for electromagnetism is
apparent once it is understood that electromagnetic waves in
regions without sources are described by monogenic functions.

III. F ORMULATION

A. Time Domain

Equation (1) shows a four-dimensional Clifford numberX

(which has 16 independent complex components) in terms of
an equivalent matrix of quaternions (centre) and in terms of
an equivalent matrix written in the notation of vector calculus
(right). Table I shows, with Clifford numbersX = D, F, S, P
on the left and quaternionsA,B, C,D on the right, the
necessary substitutions to encode Maxwell’s equations into
the Clifford–quaternion–vector formulation of (1). The values
in columnsA, B, C, D are 3d Clifford vectors,i.e. regular
vectors in which the unit vectorŝx, ŷ, ẑ are replaced by the
Clifford units e1, e2, e3. The symbol∇v is used to represent the
Clifford vector equivalent of the vector differential operator
∇. The other symbols in the body of the table represent
electromagnetic parameters in common engineering notation,
with i as the imaginary unit

√
−1.

The differential operatorD is fixed by the need to accommo-
date Einstein’s theory of special relativity. The fieldF is then
fixed under the influence of the differential operator by the
need to faithfully reproduce all the various parts of Maxwell’s
equations in regions void of sources. Finally the sourceS is
fixed to reproduce Maxwell’s equations in the presence of
sources. It then follows by simple algebraic verification (using
the rulese2

j =−1 andejek 6=j =−ekej for the Clifford units)
that Maxwell’s equations are written:

DF = S (field to source) (2)

DP = F (potential to field) (3)

D
2
P = S (potential to source) (4)

The square of the gradient:D2 =−(∇2− 1

c2

∂2

∂t2
) is recognised

the negative of the d’Alembertian (wave) operator.

B. Frequency Domain

For monochromatic fieldsF(R, t)=Fk(R)eiωt with angular
frequencyω and wavenumberk=ω/c Fourier transformation
gives equations in the frequency domain similar in form to
those in the time domain. In particular the gradient:Dk =
∇v+ke0 and its square:D2

k =−(∇2+k2), the latter of which

is recognised as the negative of the Helmholtz operator. The
Cauchy integral in multiple dimensions is then written [7]:

Fk(R) =

∫

Σ

Ek(R′ − R)N(R′)Fk(R′) dσ(R′) (5)

HereFk is a Clifford-valued function which is monogenic at
all points R = Rxe1 +Rye2 +Rze3 in a regionΩ of three-
dimensional space enclosed by a surfaceΣ, N is a Clifford
number representing the outward normal vector to the surface
Σ, dσ is the scalar elemental measure of surface and:

Ek(R) = −
{

R

|R|2 + ik

(

R

|R| − ie0

)}

e−ik|R|

4π|R| (6)

is the three-dimensional Cauchy kernel.
Equation (5) plays the role of a direct inverse in the

frequency domain to Maxwell’s homogeneous (source free)
equations:DkFk = 0 when cast in the Clifford formalism.
Static solutions are recovered by settingk=0.

IV. D ISCUSSION

The relationship between the Clifford, the quaternion and
the vector representations in (1) makes explicit the additional
structure of the Clifford over the quaternion and of the quater-
nion over the vector. To match with the Clifford, structure
is imposed on the four quaternions by embedding them in
a matrix and adopting the usual rules of matrix addition
and multiplication. Similarly, to match with the quaternion
additional structure is imposed on the scalars and vectors as
used in vector calculus by embedding them in a matrix:

A =

(

a −A ·
A (aI+A×)

)

=


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a −Ax −Ay −Az

Ax a −Az Ay

Ay Az a −Ax

Az −Ay Ax a









(7)

whereAx, Ay, Az are the Cartesian components of vectorA.
The additional structure afforded by the Clifford or the

matrix-quaternion or the matrix-vector approaches properly
represents all aspects of three-dimensional geometry,i.e.
scalars, vectors, bi-vectors (oriented areas) and tri-vectors
(oriented volumes). This eliminates any confusion between
polar vectors (vectors) and axial vectors (bi-vectors), and
by imposing additional constraints on which operations are
and are not permitted prevents operations meaningless to
electromagnetism such as the direct addition of the electric
and magnetic fields. When Maxwell’s equations are written
in the conventional form involving four equations with vector
calculus these constraints are missing.
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TABLE I
ELECTROMAGNETIC PARAMETERS IN THE FORM OFCLIFFORD VARIABLES D, F, S, P AND QUATERNIONSA,B, C,D.

Clifford Quaternion
A B C D

a A b B c C d D

gradient D = ∇v − i
c
e0

∂
∂t

0 0 − i
c

∂
∂t

0 0 i∇v 0 0

field F =
√

µHσ − i
√

ǫEe0 0
√

µH 0 0 0 0 0 −√
ǫE

source S =
√

µJ +
i√
ǫ
ρe0 0 0 i√

ǫ
ρ 0 0 i

√
µJ 0 0

potential P = 1√
µ

A + i
√

ǫφe0 0 0 i
√

ǫφ 0 0 i√
µ

A 0 0

Whereas the additional structure imposed by Clifford alge-
bra is beneficial, it is not fundamentally important; the same
benefits can be obtained by embedding Maxwell’s equations
into a tensor formalism. The most important aspect of the
Clifford formalism is in recognising the electromagnetic field
in a region of uniform material properties devoid of sources
as a monogenic function. From the properties of monogenic
functions this leads to the ability to reconstruct the interior
field from the full trace of the field on the boundary enclosing
such a region. The reconstruction is via the multi-dimensional
Clifford-valued Cauchy integral (5). It is a direct (forward) re-
construction without recourse to any kind of matrix inversion.

If one half of the trace of the electromagnetic field (say the
normal component of the magnetic field and the tangential
component of the electric field) is known on the boundary the
other half can be reconstructed. The reconstruction is again
via the multi-dimensional Clifford-valued Cauchy integral. It
is an indirect (inverse) reconstruction which does requiresome
kind of matrix or equivalent inversion.

In scattering problems involving conducting and dielectric
objects, one half of the trace of the scattered field can be
obtained from the incident field. This leads immediately to a
new method for calculating the fields scattered from objects
illuminated by electromagnetic waves. The new method can be
applied to problems involving static or monochromatic fields
in three spatial dimensions for regions of uniform material
properties meeting at interfaces where the material properties
are abruptly discontinuous.

For conducting objects (simpler than dielectrics) the new
method reduces (somewhat surprisingly) to the intersection of
two straight lines within a particular functional space (Banach
space). The geometry of that space, lacking any measure of
angle, behaves more like the affine rather than the familiar
Euclidean geometry.

The geometric solution [12] is depicted in Fig. 1 by the
intersectionFk of the horizontal dashed line through the
boundary datag and the axisOP ′. That result holds regardless
of the shape of the scatterer. Examples of applying the
technique in solving for the fields scattered from a conducting
cubic scatterer are found in [12], [13].

Any approximationF′
k to the actual solution of the field

Fk can be measured in terms of two errorsǫ1 and ǫ2,
calculated from projections () of F′

k onto axesOP and
OQ′. One measure,ǫ2, indicates how far the approximate
solution deviates in reproducing the measured datag. The
other measureǫ1 indicates how far the approximate solution
deviates from being a solution to Maxwell’s equations (any

position on the axisOP ′). The latter situation could occur
for example after reducing Maxwell’s continuous equationsto
discontinuous (finite) difference equations.

Both measures can be calculated without knowledge of the
solution Fk. This makes it easy to compare two alternative
solutionsF

′
k and F

′′
k: one is guaranteed better than the other

only if both ǫ1 andǫ2 are lower in value. It also makes it easy
to determine whether any iterative method of solution which
has ceased converging has actually reached the solution or not.

The new method follows a different approach and therefore
behaves differently from other methods. In comparison to
existing boundary integral formulations note that the Cauchy
kernel and integral are used instead of the Greens function
and its integral form. The formulation involves only first
order differential and integral operators, not second order ones.
The singular integrals involved are less demanding. Potentials
and surface currents play no part in the solution. The latter
point means the method is not restricted to conductors and
applies equally well to dielectrics. Furthermore, solutions are
formulated only in terms of fields. That means the solution
is constructed only in a single functional space. There is no
need to utilise multiple distinct functional spaces for potential,
field and current, unless one particularly wishes to calculate
the potential or current.

Finally, the solution is not formulated from the (Cauchy) in-
tegral equation by inner product with some chosen set of basis
(weight or test) functions. That would lead to a Galerkin style
of approach [14] and a weak solution, typically minimising the
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Fig. 1. SolutionFk and error measuresǫ1, ǫ2 for approximate solutionF′
k.
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TABLE II
CHARACTERISTICS OF TWO METHODS FOR CALCULATION OF ELECTROMAGNETIC FIELDS.

method Clifford & Cauchy Gibbs & Greens
1. Mathematical Foundation

field functions monogenic (EM waves in 3 dimensions) analytic (static fields in 2 dimensions)
theorem for 2D Cauchy (single Clifford variable) Cauchy (single complex variable)
theorem for 3D Cauchy (single Clifford variable) Greens (multiple real variables)

2. Algebraic Framework
context Clifford algebra (any number of dimensions) Gibbs’s vector calculus (strictly 3 dimensions)
product associative (easier to use) not associative (harder to use)
exterior product present (is a geometric algebra) lacking (not a geometric algebra)
geometric structure complete (polar & axial vectors distinct) incomplete (polar & axial vectors not distinct)

(illegal field addition eliminated) (illegal field addition permitted)
3. Computational Complexity

equation ordinary DE (one equation) partial DE (system of equations)
variable single (multi-dimensional) multiple components (one-dimensional)
differential 1st order (Maxwell-Dirac) 2nd order (Helmholtz)
integral 1st order (Cauchy) 2nd order (Greens)
singularity 1st order (numerically less demanding) 2nd order (numerically more demanding)

4. Practical Implementation
linear system original (no weight/test functions) after inner product (weighted residual method)

(minimise local error) (minimise global error)
(strong solution) (weak solution)

reconstruction direct (from trace of field on boundary) not direct (no 3D Cauchy theorem)
surface currents not needed (dielectrics or conductors) often used (restricted to conductors when used)
basis functions field only (single functional space) field, potential & currents (multiple functional spaces)
interpretation geometric (for conducting objects) no such interpretation (must rely on algebra)

global error at the expense of higher errors in the vicinity of
particular isolated points. The method reported in [12] results
in a strong solution which if implemented properly should lead
to higher accuracy, particularly in the vicinity of sharp corners
where the gradient of the field exhibits high values.

V. CONCLUSION

The use of Clifford algebra opens the way to a new
boundary integral method for calculating scattered fields.Of
key importance to the new technique is the Cauchy integral
as written in its multi-dimensional Clifford form (5). With
the relationships in (1), the Cauchy integral can be recast
into quaternion or vector calculus. The result is however a
multitude of integral equations which require simultaneous
solution. It appears that in practice any such approach would
be unnecessarily complicated.

The new method is of similar complexity to comparable
boundary integral techniques. Far from being more compli-
cated in detail, the rules of Clifford algebra are simpler than
the rules of vector calculus. Their regularity makes them well
suited for effective implementation in algorithmic form.

As shown in table II there appear to be no overt disadvan-
tages in the new method. A viable numerical implementation
has already been demonstrated [12].

In favour of using the new technique (see table II) are
various characteristics related to consistency, convenience and
simplicity, but most importantly two characteristics which can
deliver greater numerical accuracy: a low order solution (with
less demanding singular integrals), and a strong solution of the
original (Maxwell’s) equations (with a correspondingly higher
accuracy – particularly in the vicinity of sharp corners).
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