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Calculation of Electromagnetic Fields in Three Dimensionaising the Cauchy Integral
Andrew Seagarviember, IEEE
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This paper describes a method for calculating the three-diransional monochromatic electromagnetic fields scatteredybconducting
and dielectric objects using the Cauchy integral cast in a miti-dimensional form based on Clifford algebra. Formal relationships
to methods based on quaternions and vector calculus are prested. The characteristics of solutions based on the Cauchyethod
are described and its advantages over comparable methodsviolving Greens functions are discussed.

Index Terms—Boundary value problems, Cauchy integral, Clifford algelra, electromagnetic fields, integral equations.

. INTRODUCTION written in terms of Grassmann’s linear algebra [5], and from

HERE are as many ways to write Maxwell’s equationg‘em construct what Clifford callgd his even 5 way algebia [6

as one would care to invent. Historically, methods #And what we today call a four-dimensional Clifford algebra.
choice include quaternions (by Maxwell), vector calculog ( Clifford’s approach to constructing his algebra from quate
engineers), tensors (by physicists), complex numbersa@ thions is not the only approach of relevance to electromag-
dimensions), Cartan’s differential geometry, and Cliffaige- netism. From quaternions it is also possible to construst fir
bra. In all cases the common features of these methods a@& algebra of octonions and then that of sedenions. Casting
representation of 2, 3 or 4-dimensional geometry in space/t Maxwell's equations into sedenions offers some of the same
with an algebraic structure that supports spatial/temiptifa advantages of Clifford algebra but also incorporates sofne o
ferential operators. As such, all of these methods can ¢ disadvantages of Gibbs's vector calculus. In particula
perceived as one or another kind of differential geometiBe sedenion product and vector cross product both lack an
algebra. associate property. In contrast Clifford products are eratb

For many problems which involve physical phenomeﬁé(ith the assqciative property. That.makes enough diffexrenc

and their representation in mathematical structures teret0 rendgr Clifford algebra the easier to use of these three
no particularly strong reason for choosing one differéntiglternatives.
geometric algebra over another. For problems involving-ele Like both Cartan’s differential geometry and Gibbs's vecto
tromagnetism in the form of Maxwell's equations that hagrbe&alculus, the product in Clifford algebra is non-commueti
but is no longer the case. Theeea very definite advantage in The non-commutativity in all three cases is associated with
one particular of these geometric algebras over the otHers. @ vector—vector product. For vector calculus the vectatere
we review that particular geometric algebra in the contdxt §rossx) product yields another vector. In contrast the vector—
Maxwell's equations, relate it to approaches using quatesn Vvector (wedgen) product of Cartan’s differential geometry

and vector calculus, and describe its advantages and Wilds a bi-vector (a geometric object which behaves like
characteristics of the solutions it offers. an oriented area), and in further contrast the vector-vecto

product of Clifford algebra yields a compound geometric
object containing both a bi-vector and a scalar. The biersct

) ] ) arise from an exterior (outer) product, and in the Cliffoesbe

At the time Maxwell introduced the displacement currenfq js combined with an inner product. The outer product

and for_mulate_d the set O.f equations named _after him, he hadhe key which endows both Cartan’s differential geometry
three differential geometric algebras from which to choge 5 ciifford algebra with all the properties of a full geoniet
Cartesian coordinates, (ii) complex numbers and (iii) quat 5\gepra. Vector calculus, as reflected in its name, is ktrict
nions. Gibbs's vector calculus, Cartan's differential g@ry o any kind of geometric algebra for the very reason that it
and tensors had not yet been invented. lacks an outer product.

Maxwell himself used quaternion§ [1], [2] but with his For electromagnetism the key here is not the similarity or
students, for whom all apart from Clifford [3] found quate_r'dissimilarity of Clifford algebra with quaternions, sedtsms,

nions_too much of a challenge, wrote everythil_wg in Cartesigh ¢ calculus or Cartan’s differential geometry. Ingtelae
coordinates. Complex numb_ers were not sufficiently gene y is in the solution using Clifford algebra of Hamilton’s
b_ecaus_e they were at that time restricted to problems in M rjier problem of extending complex numbers into three
leGgSIOI’;S qnly. . Hamil 41 had b . i dimensions. In particular, Clifford algebra provides forthe

? deve oping (1}yatgrn|0r;s am:ton [4] ba e?]r] |I:1ten ',r%neralisation fromanalyticfunctions of a complex variable in
to find a generalisation of complex numbers which carmgfy,, gimensions tanonogenidunctions of a Clifford variable
them into three dimensions. Hoyvever, the algebra he dlt_iffzreﬁ1 any number of dimensions, and (ii) the generalisatiomfro
did nkot do S.O('j Thatdhad to (;Na't (not very long) ffor C“ﬁor_dthe Cauchy integral of complex variables in two dimensions
to take two independent and commutative sets of quaterniqgsy,q Cauchy integral of Clifford variables in any number of
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significance of these generalisations for electromagmetis is recognised as the negative of the Helmholtz operator. The
apparent once it is understood that electromagnetic wavesGauchy integral in multiple dimensions is then written [7]:

regions without sources are described by monogenic fumtio .
Fu(R) = [ EL(R - INRER) do(®)  (5)
3
I1l. FORMULATION Here[}, is a Clifford-valued function which is monogenic at

all pointsR = Ry e1 + Ryea+ R.e3 in a regionQ) of three-
_ . _ . dimensional space enclosed by a surfageN is a Clifford
Equation (1) shows a four-dimensional Clifford number number representing the outward normal vector to the seirfac

(which has 16 independent complex components) in terms©f 4o is the scalar elemental measure of surface and:
an equivalent matrix of quaternions (centre) and in terms of

an equivalent matrix written in the notation of vector célsu Ex(R) = — {& +ik (B _ ieo)} LH]R' (6)
(right). Table | shows, with Clifford numberX =D, F,S, P [R[? IR] Ar|R|

on the left and quaternionsi,B,C,D on the right, the is the three-dimensional Cauchy kernel.

necessary substitutions to encode Maxwell's equations int Equation (5) plays the role of a direct inverse in the
the Clifford—quaternion—vector formulation of (1). Thelw@s frequency domain to Maxwell's homogeneous (source free)
in columns A, B,C, D are 3d Clifford vectorsj.e. regular equations:D,[F, = 0 when cast in the Clifford formalism.
vectors in which the unit vector®, 3,z are replaced by the Static solutions are recovered by settitg: 0.

Clifford units ey, es, e3. The symboW is used to represent the

Clifford vector equivalent of the vector differential opéor IV. DISCUSSION

V. The other symbols in the body of the table represent

electromagnetic parameters in common engineering nutatigne vector representations in (1) makes explicit the i

with i as the 'maginary un 7.1' structure of the Clifford over the quaternion and of the guat
The differential operatdp is fixed by the need to accommo-_. : .
nion over the vector. To match with the Clifford, structure

date Einstein’s theory of special relativity. The fiéids then i imposed on the four quaternions by embedding them in
fixed under the influence of the differential operator by the b g y 9

; . matrix an ing th [ rul f matrix ition
need to faithfully reproduce all the various parts of Maxisel a mat A d .adopt. 9 the ‘usual rules 0 at add.to
. . : . : . and multiplication. Similarly, to match with the quaternio
equations in regions void of sources. Finally the sowds

. , : . aFldmonaI structure is imposed on the scalars and vectrs a
fixed to reproduce Maxwell's equations in the presence 0 . . . .

. . o used in vector calculus by embedding them in a matrix:
sources. It then follows by simple algebraic verificatiosifig

A. Time Domain

The relationship between the Clifford, the quaternion and

the rulese? = —1 ande;exx; = —exe; for the Clifford units) a —A; —A, —A,
that Maxwell's equations are written: A= (@ —A- A a —-A. Ay )
— \A (al+AX) A, A, a —A,
DF = S (field to source) 2) A, A, A, a
DP = F  (potential to field) () where4,, A,, A, are the Cartesian components of vectar

D’P = S (potential to source) (4) The additional structure afforded by the Clifford or the
R matrix-quaternion or the matrix-vector approaches prgper
The square of the gradierit’® = —(V>—; §7>) is recognised represents all aspects of three-dimensional geoméy,
the negative of the d’Alembertian (wave) operator. scalars, vectors, bi-vectors (oriented areas) and ttievec
(oriented volumes). This eliminates any confusion between
polar vectors (vectors) and axial vectors (bi-vectors)d an
by imposing additional constraints on which operations are
For monochromatic fieldB(R, t) =F;(R)e’! with angular and are not permitted prevents operations meaningless to
frequencyw and wavenumbet =w/c Fourier transformation electromagnetism such as the direct addition of the etectri
gives equations in the frequency domain similar in form tand magnetic fields. When Maxwell’s equations are written
those in the time domain. In particular the gradieby; = in the conventional form involving four equations with vesct
V+kep and its squareD? = —(V2+£?), the latter of which calculus these constraints are missing.

B. Frequency Domain
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TABLE |
ELECTROMAGNETIC PARAMETERS IN THE FORM OFCLIFFORD VARIABLESDD, F, S, P AND QUATERNIONS A, B,C, D.

Clifford Quaternion
A B C D
a A b B | ¢ C d D
gradient [ D = ¥V — feZ 0 0 [-IZ o]0 iV [0 0
field F = pHo —iyeEBeo | 0 JaH 0 oo 0 0 —\eE
source | S = @t + ﬁpeo 0 0 ﬁp 0|0 4/pJ|oO 0
potential | P = %A + ivepey | O 0 ivep 0|0 %A 0 0

Whereas the additional structure imposed by Clifford alg@osition on the axi®DP’). The latter situation could occur
bra is beneficial, it is not fundamentally important; the sanfor example after reducing Maxwell’s continuous equatitms
benefits can be obtained by embedding Maxwell’s equatiodscontinuous (finite) difference equations.
into a tensor formalism. The most important aspect of the Both measures can be calculated without knowledge of the
Clifford formalism is in recognising the electromagnetieldi solution F;,. This makes it easy to compare two alternative
in a region of uniform material properties devoid of sourcesplutionsFF;, andF}: one is guaranteed better than the other
as a monogenic function. From the properties of monogenily if both ¢; ande, are lower in value. It also makes it easy
functions this leads to the ability to reconstruct the iister to determine whether any iterative method of solution which
field from the full trace of the field on the boundary enclosingas ceased converging has actually reached the solutiast.or n
such a region. The reconstruction is via the multi-dimemaio  The new method follows a different approach and therefore
Clifford-valued Cauchy integral (5). Itis a direct (forvigre-  pehaves differently from other methods. In comparison to
construction without recourse to any kind of matrix inversi existing boundary integral formulations note that the ®guc

If one half of the trace of the electromagnetic field (say thearnel and integral are used instead of the Greens function
normal component of the magnetic field and the tangentighg its integral form. The formulation involves only first
component of the electric field) is known on the boundary thgqer differential and integral operators, not second odes.
other half can be reconstructed. The reconstruction isnaggie singular integrals involved are less demanding. Piaent
via the multi-dimensional Clifford-valued Cauchy integrh  and surface currents play no part in the solution. The latter
is an indirect (inverse) reconstruction which does regsm®e point means the method is not restricted to conductors and
kind of matrix or equivalent inversion. applies equally well to dielectrics. Furthermore, solntiare

In scattering problems involving conducting and diel&ctritormuylated only in terms of fields. That means the solution
objects, one half of the trace of the scattered field can Reconstructed only in a single functional space. There is no
obtained from the incident field. This leads immediately to geed to utilise multiple distinct functional spaces forguutal,
new method for calculating the fields scattered from objegig|d and current, unless one particularly wishes to cateula
illuminated by electromagnetic waves. The new method can §@ potential or current.
applied to problems involving static or monochromatic #ld rinayy the solution is not formulated from the (Cauchy) in

in three spatial dimensions for regions of uniform materighy | equation by inner product with some chosen set obbasi
properties meeting at interfaces where the material pt@Ser yeight or test) functions. That would lead to a Galerkiresty

are abruptly di;contiquous. , ) ) of approach [14] and a weak solution, typically minimisihg t
For conducting objects (simpler than dielectrics) the new

method reduces (somewhat surprisingly) to the interseaifo

two straight lines within a particular functional space i(Beh p Q'
space). The geometry of that space, lacking any measure of
angle, behaves more like the affine rather than the familiar
Euclidean geometry. N

The geometric solution [12] is depicted in Fig. 1 by the 7, I €2
intersectionF;, of the horizontal dashed line through the °'f\ """""""""""""
boundary datg and the axi€) P’. That result holds regardless P
of the shape of the scatterer. Examples of applying the
technique in solving for the fields scattered from a conahacti
cubic scatterer are found in [12], [13].

Any approximationFj, to the actual solution of the field
F, can be measured in terms of two errars and eq,
calculated from projectionsa() of Fj, onto axesOP and \
OQ'. One measureg,, indicates how far the approximate - Q
solution deviates in reproducing the measured datdhe 0 nE
other measure; indicates how far the approximate solution
deviates from being a solution to Maxwell's equations (arﬁ/'g. 1. SolutionF;, and error measures , ez for approximate solutior,.
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TABLE Il
CHARACTERISTICS OF TWO METHODS FOR CALCULATION OF ELECTROMBNETIC FIELDS.
method | Clifford & Cauchy | Gibbs & Greens
1. Mathematical Foundation
field functions monogenic (EM waves in 3 dimensions) analytic (static fields in 2 dimensions)
theorem for 2D Cauchy (single Clifford variable) Cauchy (single complex variable)
theorem for 3D Cauchy (single Clifford variable) Greens (multiple real variables)
2. Algebraic Framework
context Clifford algebra  (any number of dimensions) Gibbs’s vector calculus (strictly 3 dimensions)
product associative (easier to use) not associative (harder to use)
exterior product present (is a geometric algebra) lacking (not a geometric algebra)
geometric structurel complete (polar & axial vectors distinct) | incomplete (polar & axial vectors not distinct)
(illegal field addition eliminated) (illegal field addition permitted)
3. Computational Complexity
equation ordinary DE (one equation) partial DE (system of equations)
variable single (multi-dimensional) multiple components (one-dimensional)
differential 1st order (Maxwell-Dirac) 2nd order (Helmholtz)
integral 1st order (Cauchy) 2nd order (Greens)
singularity 1st order (numerically less demanding) | 2nd order (numerically more demanding)
4. Practical Implementation
linear system original (no weight/test functions) after inner product (weighted residual method)
(minimise local error) (minimise global error)
(strong solution) (weak solution)
reconstruction direct (from trace of field on boundary) not direct (no 3D Cauchy theorem)
surface currents not needed (dielectrics or conductors) often used (restricted to conductors when usgd)
basis functions field only (single functional space) field, potential & currents  (multiple functional spaces)
interpretation geometric (for conducting objects) no such interpretation (must rely on algebra)
global error at the expense of higher errors in the vicinity o REFERENCES
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