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FIG. 5: Experimental result: displacements at impact point and adjacent upright.
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FIG. 6: Experimental result: bay opening.

phases, the rack experiences free vibration. In phase 3 the impacted upright bends back84

to its original position, closing the bay. In phase 4, the impacted upright essentially has85

the same displacement as the adjacent uprights, and the bay opening becomes negligible.86

Therefore, the maximum bay opening occurs at the end of the first phase. Details about the87

experimental test set-up and results are available in Gilbert et al. (2009).88
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Nonlinear dynamic analysis 89

A three-dimensional dynamic FE model was developed to model the impact of forklift 90

truck and rack (Gilbert et al., 2009; Gilbert and Rasmussen, 2011). The FE model includes 91

geometric nonlinear effects, the semi-rigid nature of the base plate, semi-rigid portal beam- 92

to-upright connection details, upright warping torsion, member shear center eccentricity, 93

and nonlinear friction effect between the pallets and rail beams, as described in Gilbert and 94

Rasmussen (2011). Damping for steel rack structures is typically very small, and hence the 95

overall damping of the rack was ignored in the analyses. However, the friction between the 96

pallets and the rail beams generates non-linear frictional damping. This friction may be 97

significant and was modeled. Based on experimental frictional tests between the pallet and 98

the steel rail beam, a coefficient of friction of 0.3 was assumed in the analyses. Quantities of 99

interest, such as impact force versus time relationship, can be extracted from the FE results. 100

Full details of the dynamic analysis can be found elsewhere (Gilbert et al., 2009). 101

Parametric studies were performed using the dynamic FE model to investigate the effect 102

on the bay opening of changing rack loading pattern, friction coefficient between the rail 103

beams and the pallets, and impact location. Three loading patterns were investigated, 104

namely “single pallet load”, “partially loaded” and “fully loaded”. In the presence of friction 105

between the rail beams and the pallets and the consequential horizontal bracing effect of the 106

pallets, it was found that more pallet loads generally result in higher impact forces but 107

smaller bay openings. When friction is ignored as currently practiced in industry, the single 108

pallet loading pattern results in the smallest rotational stiffness of the base plate, thus the 109

largest bay opening. Therefore, whether or not to include the effect of the friction, the least 110

favorable loading pattern is the single pallet loading, i.e., a single pallet located at the front 111

of the rack. It was also found that impact at the first or second rail beam elevation tends to 112

be more critical than those at higher elevations. When the impact occurs there will be no 113

pallet located at the impact point, since otherwise the forklift cannot access that particular 114

elevation. It is the pallets directly above or below the impact point that drop through (see 115
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Fig. 1). Thus, the bay opening should be checked at the elevations directly above/below116

the impact point. Fig. 7 demonstrates the most unfavorable loading pattern and impact117

location.118

FIG. 7: The least favorable loading pattern: single pallet loading (side view).

Equivalent static force for impact effect119

Although it would be possible for an engineer to perform the dynamic analysis presented120

above, it would be impractical to require this as part of a routine design procedure. Moreover,121

the safety check is based on the maximum value of the bay opening. From the structural122

design point of view, it is more appropriate to use an equivalent static force which produces123

the same (maximum) bay opening as produced by the dynamic impact force.124

Experimental tests and numerical studies have shown that the impact force depends,125

among other factors, on forklift truck load, the stiffness properties of the upright being126

impacted, the impact elevation, and the rotational motion of the truck (measured by the127

rotational angle α as demonstrated in Fig. 8) (Gilbert et al., 2009). In order to account for128

these factors in deriving a simple equation for predicting the impact force, a total of 36 typical129

drive-in racks were analyzed using the dynamic FE model. The rack heights range from 3.775130
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FIG. 8: Forklift truck body rotation α.

to 8.775 m (2 to 6 stories), and the design load ranges from 430 kg to 1470 kg per pallet. 131

These racks were identified to represent the current inventory of drive-in racks in Australia. 132

For each rack, impacts were simulated at different rail beam elevations, assuming the single 133

pallet load pattern. The impact forces were extracted from the FE results. Combining the 134

36 racks with different impact locations, a total of 100 representative impact scenarios were 135

made. Details about the rack configurations and impact scenarios can be found in Gilbert 136

et al. (2009). Based on the study, a simple equation for calculating equivalent static impact 137

force is proposed (Gilbert et al., 2009): 138

F = 4.94
αLk1

1 + 0.1k1

k2

(1)

where F = impact force, α = angle of truck rotation as defined in Fig. 8, and L = vertical 139

distance from the bottom hinge of the mast of the forklift truck to the impact point. The 140

two terms k1 and k2 are defined as 141

k1 =
EIHr

H2
i (Hr −Hi)2

(2)

k2 =
w

Hi + dcog

(3)
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in which EI = bending stiffness of the impacted upright, Hr = total height of the rack, Hi =142

impact height, w = pallet load carried by the forklift truck, and dcog= center of gravity of143

the forklift truck pallet load, measured from the bottom of the pallet. Clearly, the maximum144

impact force is associated with the maximum value of the forklift truck body rotation (α).145

Let Fa and F denote the impact force obtained from the dynamic FE analysis and from146

Eq. (1), respectively. Since the dynamic FE models have been validated through the full-147

scale experimental tests, it is assumed that Fa represents the “actual” impact force. Thus,148

the ratio Fa/F can be used to measure the model uncertainty of Eq. (1). The histogram of149

Fa/F for the 100 representative impact scenarios is plotted in Fig. 9 and may be assumed150

to follow a normal distribution. The mean of Fa/F is found to be 1.0, with a coefficient151

of variation (COV) of 0.145. The fact that Fa/F has a mean close to unit and a relatively152

small COV indicates that Eq. (1) has little bias and is a good predictor of the “actual”153

impact force. The statistical information about the model uncertainty will be used in the154

subsequent reliability analysis.155
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RELIABILITY BASES FOR DESIGN FOR IMPACT EVENT156
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(a) (b)

FIG. 10: Pallet bearing width: (a) under normal working condition; (b) under impact.

Limit state function 157

Consider a pallet in a typical drive-in rack as illustrated in Fig. 10a. It can be seen that 158

L = l + δ1 + δ2 (4)

in which L = pallet width, l = clear distance between the two beam rails, δ1 and δ2 are 159

the bearing widths of the pallet on the two beam rails. Assume that the right upright is 160

impacted and pushed outwards as shown in Fig. 10b. Conservatively ignoring the friction 161

between the pallet and the beam rail, the pallet width L becomes 162

L = l + ∆ + δ′1 + δ2 (5)

in which ∆ = bay opening, and δ′1 = new bearing width on the right beam rail. Note that 163

the bearing width on the left beam rail, δ2, does not change as the left upright remains 164

stationary in the most critical (i.e., the first) phase of the impact. From Eqs. (4) and (5), 165

one has 166

δ′1 = δ1 −∆. (6)

The pallet will drop through if δ′1 ≤ 0. Then, dropping the subscript “1” for simplicity, the 167

system limit state function g can be defined as 168

g = δ −∆. (7)
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The drop-through failure occurs when g ≤ 0.169

The two terms δ and ∆ in Eq. (7) are random variables while, for design practice, a170

deterministic format for Eq. (7) is needed. Although the drop-through limit state is similar171

to the ordinary serviceability limit state which is usually checked under unfactored loads,172

the consequence of the drop-through failure may be catastrophic, thus the limit state has173

the same nature as an ultimate limit state. Therefore, an impact load factor γ (greater than174

1) is introduced in the proposed design check. The proposed conformance check takes the175

form176

γ∆n ≤ δa (8)

in which γ∆n represents the bay opening calculated with factored, design impact load and177

nominal structural properties, and δa is a (deterministic) allowable bay opening. The purpose178

of the load factor γ is to take into account the uncertainties in the impact force, structural179

properties and models used in structural analysis, and to achieve a desired target of structural180

reliability. The determination of γ will be discussed later in this paper.181

Conditional limit state probability182

The probability of structural failure developing from an accidental impact event can be183

written as (Ellingwood, 2007)184

Pf = P (g ≤ 0|I)P (I) (9)

in which Pf = probability of structural failure, I = event of accidental impact, P (I) =185

probability of impact, and P (g ≤ 0|I) = probability of structural failure (i.e., g ≤ 0) given186

that the impact occurs. P (g ≤ 0|I) is a conditional probability, inasmuch as it is based on187

the occurrence of an impact event.188

The risk of structural failure can be mitigated by strategies to reduce the incidence of189

impact, or to reduce its effect on structural performance through structural design if the190

impact does occur (Ellingwood, 2007). The occurrence of impact is an effect of human191

error, which may be controlled by vocational education and training, and organization and192
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management measures such as appropriate regulation, installing impact guard rails or alarm 193

systems, etc. These nonstructural measures for reducing P (I) are outside the scope of this 194

paper. From a structural design point of view, the focus is on controlling the conditional 195

failure probability P (g ≤ 0|I), that is, to compensate for impact in structural design. 196

Reliability target 197

Probabilistic limit state design is based on a target reliability (or acceptable probability 198

of failure) as a quantitative measure of structural safety (Melchers, 1999; Ellingwood, 2001). 199

Structures are deemed safe if the probability of failure, which is obtained through considering 200

uncertainties in loads, structural capacities and analysis models, is below an acceptable risk 201

level. The reliability is customarily expressed by the notion of a reliability index, β. The 202

conditional failure probability relates the conditional reliability index β through the equation 203

P (g ≤ 0|I) = Φ(−β) (10)

in which Φ(·) is the standard normal distribution function. From Eqs. (9) and (10), it follows 204

β = −Φ−1[
Pf

P (I)
]. (11)

In the current probability-based design specifications for steel structures (e.g., AISC 360- 205

05, 2005), the target reliability indices for various structural members under gravity loads 206

are about 2.5 to 3.0 for a service period of 50 years. On an annual basis, this corresponds 207

to a failure probability of 1.24× 10−4 to 2.7× 10−5/yr (Ellingwood et al., 1980; Ellingwood, 208

2001). These reliability targets were obtained by calibrating to existing acceptable design 209

practice. Since drive-in rack structures are not designed for impact event in current practice, 210

the use of code calibration to quantify an appropriate reliability target is not possible in this 211

study. For a steel drive-in rack, the structural members are generally designed at the code 212

limit, and the system effect (i.e., capacity of load redistribution) is insignificant. Therefore, 213

we assume that the acceptable failure probabilities for a racking system and a steel member 214
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are comparable. The consequences of collapse of a storage rack, compared with buildings215

and bridges, may be deemed as less severe by the public. Thus, the acceptable overall failure216

probability, Pf for rack structures is assumed to be 2.0 × 10−4/yr, a value consistent with217

that of a typical steel member. This target is for the overall failure probability, rather than218

the conditional failure probability P (g ≤ 0|I).219

The frequency of occurrence of impact needs to be estimated to calculate the conditional220

failure probability from Eq. (11). Impact event may be modeled as occurring in time as a221

Poisson process, with a mean occurrence rate of ν (the average number of occurrence per222

unit time interval). Let X denote the number of occurrences of impact in time interval t,223

then224

P (X = x) =
(νt)x

x!
e−νt x = 0, 1, 2, . . . (12)

The probability of occurrence of (at least one) impact event during a period of time t is225

given by226

P (I) = P (X ≥ 1) = 1− P (X = 0). (13)

For small occurrence rate, P (I) ≈ νt. There are little statistical data to define ν. The227

mean incidence of vehicular collision with buildings in the USA is estimated of the order of228

10−4/bldg/yr (Ellingwood, 2007). The risk of accidental impact for storage racks may be229

significantly higher than this number. In deriving the impact load factor, a range of ν was230

considered, i.e., from 10−2 to 2/rack/yr.231

Statistical properties of impact force232

The impact force is characterized by high uncertainty. The uncertainty arises from two233

sources: the model uncertainty and the inherent randomness of the basic variables (e.g.,234

the forklift truck body rotation). The model uncertainty can be regarded as a “correction235

factor”, accounting for the discrepancy between the actual impact force and that predicted236

by Eq. (1). As discussed earlier in this paper, the model uncertainty associated with Eq. (1)237

is estimated as normally distributed with a mean of 1.0 and a COV of 0.145.238
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Among the physical factors affecting the impact force, the following variables are treated 239

as random: w (the weight of the pallet load carried by the forklift truck), EI (the bending 240

stiffness of the impacted upright), and α (the maximum forklift truck body rotation during 241

the impact). The probability distribution of the pallet load w is assumed to be similar to 242

that of dead load, i.e., normally distributed with a mean-to-nominal value of 1.0 and a COV 243

of 0.1 (Ellingwood et al., 1980). The bending stiffness of the upright is modeled by a normal 244

distribution with a mean-to-nominal value of 1.0 and a COV of 0.08 (Ellingwood et al., 245

1980). The statistical data for the maximum forklift truck body rotation were collected 246

from a total of 116 experiments (Gilbert et al., 2009). Fig. 11 shows the histogram for the 247

maximum truck body rotation, fitted to a Beta distribution with a mean of 0.023 rad and 248

a COV of 0.46. In the present study, the nominal (design) value for α is taken as its mean 249

value, i.e., αn = 0.023 rad. The statistics information for w, EI and α are summarized in 250

Table 1. 251
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FIG. 11: Histogram for maximum truck body rotation (fitted to a Beta distribution).

With known statistical properties for the basic random variables and the model uncer- 252

tainty, a simulation technique was used to study the probability distribution and statistics 253

for the impact force. A series of representative rack structures (Gilbert et al., 2009) were 254

first chosen. For each particular structure, samples of the basic variables were generated 255

randomly according to their statistical distributions using the Latin Hypercube sampling 256
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TABLE 1: Statistical properties for the basic random variables.

R.V. mean/nominal COV Dist. Reference

α 1.0 0.46 Beta Gilbert and Rasmussen (2009a)

w 1.0 0.10 Normal Ellingwood et al. (1980)

EI 1.0 0.08 Normal Ellingwood et al. (1980)

(LHS) method. LHS provides a more efficient sampling scheme than the direct Monte Carlo257

simulation, thus fewer samples are required to cover the probability space (Stein, 1987). The258

sampled basic variables, along with a randomly generated value of model uncertainty, were259

then used with Eq. (1) to compute the impact force. After a sufficient number (500) of sim-260

ulations, the mean, mean-to-nominal ratio and COV for the impact force were determined.261

This simulation procedure was repeated for a series of representative racks. It was found262

that the mean-to-nominal value Fm/Fn is about unit, and the COV, VF is around 0.49. A263

Beta distribution provides a good fit to the simulated impact forces. Clearly, the uncertainty264

in α is the dominant contributor to the overall variability in the impact force.265

Statistical properties of pallet bearing width266

There is an apparent lack of statistical data for the pallet bearing width in the literature.267

However, the bounds of the pallet bearing width can be readily obtained based on the268

manufacturing specifications. In typical Australian industry practice, the design bearing269

width for pallet is around 60 mm. If the pallet is not positioned evenly between the two270

rails, the bearing width varies between 40 mm to 80 mm. In general, let δn,min and δn,max271

denote the design minimum and maximum pallet bearing width. The pallet bearing width272

is assumed in this study to be uniformly distributed between these two extreme values. The273

assumption of uniform probability distribution is conservative because it possesses maximum274

uncertainty.275
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Selection of impact load factor 276

The bay opening under the impact force can be calculated with sufficient accuracy by 277

using a first/second order elastic analysis. Since the second order effect is relatively insignif- 278

icant when a rack structure is loaded with the single pallet loading configuration, the bay 279

opening and impact force can be assumed as linearly related, i.e., 280

∆ = fF (14)

where f is the flexibility coefficient. The limit state function Eq. (7) thus can be expressed 281

as 282

g = δ − fF. (15)

If a rack is designed at the limit, one has 283

δa = γfnFn. (16)

Using Eq. (16), (15) can be rewritten as 284

g = fnFn(γ
δ

δa

− f

fn

F

Fn

). (17)

Eq. (17) implies that for a specified target reliability, the load factor γ is dependent on the 285

ratio of δ/δa. In the present study, the allowable bay opening δa is taken to be the design 286

minimum pallet bearing width specified by the manufacturer, i.e., 287

δa ≡ δn,min. (18)

Thus, the term δ/δa is a uniform distribution with a lower bound of 1 and an upper bound 288

of δn,max/δn,min. Three representative values, δn,max/δn,min = 1.5, 2.0 and 2.5 are considered 289

in determining the impact load factor. 290
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The variability in structural flexibility f for a steel rigid frame under wind load has been291

studied by Galambos and Ellingwood (1986). The mean-to-nominal ratio fm/fn was found292

to be around 1.0, and Vf is mainly due to the variabilities in the bending stiffness of the293

column and is of the order of 0.08. Values of fm/fn and Vf for a steel rack structure would294

not be dissimilar to those of a rigid frame. This paper thus adopts the values fm/fn = 1.0295

and Vf = 0.08.296

With known statistics for δ, f and F , the load factor γ for a prescribed conditional297

reliability index β can be evaluated using standard reliability analysis methods such as298

the simulation method (Melchers, 1999). As discussed earlier in the paper, an appropriate299

target value for the overall failure probability Pf is estimated as 2.0 × 10−4/yr. Under300

this assumption, Table 2 presents P (I), P (g ≤ 0|I), conditional reliability index β, and the301

impact load factor γ for impact occurrence rate ν varying from 10−2 to 2/rack/yr. Three302

sets of impact load factors are listed in the table, with δn,max/δn,min = 1.5, 2.0 and 2.5,303

respectively. As can be expected, for a given target reliability index the required impact304

load factor decreases as δn,max/δn,min increases. However, the difference is not significant and305

the general trends are the same. This implies that the load factor γ is relatively insensitive306

to δn,max/δn,min. The relationship between the load factor γ and impact incidence ν is also307

graphically shown in Fig. 12 for the case where δn,max/δn,min is equivalent to 2.0. It can be308

seen that the load factor increases as the impact occurrence rate ν increases. The curve,309

however, becomes essentially flat when ν exceeds 1/yr. Although a designer can choose the310

impact load factor from Table 2 if the information on ν and δn,max/δn,min is available, it is311

desirable in the practice to use a single load factor to simplify the design process. It may be312

observed that γ falls within a range of 2.0 to 2.5 for ν varying from 10−1 to 1/yr. A single313

factor, γ = 2.3, appears to be satisfactory across a large range of impact occurrence rate,314

though it could be over-conservative if ν is less than or equal to 10−2/yr.315

Design implications316

The proposed probability-based checking procedure can be summarized as follows:317
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TABLE 2: Impact load factor γ

ν (/yr) P (I) P (g ≤ 0|I) β γa γb γc

10−2 0.010 2.01× 10−2 2.05 1.77 1.61 1.52
10−1 0.095 2.10× 10−3 2.86 2.21 2.09 2.02
0.5 0.393 5.08× 10−4 3.29 2.43 2.33 2.27
1 0.632 3.16× 10−4 3.42 2.49 2.40 2.35
2 0.865 2.31× 10−4 3.50 2.53 2.44 2.39

Values are based on a target risk Pf = 2× 10−4/yr.
a δn,max/δn,min = 1.5. b δn,max/δn,min = 2.0. c δn,max/δn,min = 2.5.
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1. Calculate the nominal impact load using Eq. (1) with a nominal truck body rotation 318

of 0.023 rad, i.e., 319

Fn = 0.114
Lk1

1 + 0.1k1

k2

≈ Lk1

10 + k1

k2

(19)

where k1 and k2 are given by Eqs. (2, 3). The design impact load is obtained by 320

multiplying the nominal impact load Fn by the load factor γ = 2.3. 321

2. Apply the factored impact load assuming the least favorable loading pattern (single 322

pallet load pattern) and impact location (first or second rail beam elevation). 323

3. Calculate the nominal bay opening under the factored impact load, and check the 324

compliance with the minimum pallet bearing width. 325
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The proposed checking procedure was applied to the series of representative steel racks326

(100 sample racks) identified in Gilbert et al. (2009). The pallet bearing width varies in327

the range of 40 to 80 mm. Therefore, the allowable bay opening δa is taken to be the lower328

bound, i.e., 40 mm. The impact loads and bay openings for the 100 sample racks were329

evaluated. Fig. 13 plots the histogram for the (factored) design impact loads, along with330

the existing design impact load of 1.25 kN as specified in FEM 10.2.07 (2010). Note that331

20



the current 1.25 kN impact load is to be applied up to 0.4 m above the floor, and is used to 332

check the strength limit state. It can be seen that in most (95%) cases, the proposed design 333

impact load exceeds the current design value. This comparison suggests that current design 334

impact load of 1.25 kN should not be used for checking the drop-through limit state. The 335

histogram for the nominal bay openings for the 100 sample racks under the design impact 336

loads is shown in Fig. 14. In approximately 10% of the cases, the nominal bay opening 337

exceeds the limit of 40 mm and those racks need to be strengthened in order to satisfy the 338

safety check. 339

CONCLUSION 340

This paper has described the development of a reliability-based safety checking procedure 341

for steel drive-in racks under impact from forklift trucks. The limit state considered is the 342

drop-through failure, that is, the pallets fall from the rail beams due to excessive bowing of 343

the impacted upright. The safety check requires the bay opening not to exceed the minimum 344

pallet bearing width specified by the manufacturer. An impact load factor was developed 345

using structural reliability theory, taking into account the uncertainties in the impact force, 346

structural properties and models used in structural analysis. The variability in the forklift 347

truck body rotation is found to be the dominant contributor to the uncertainty in the impact 348

force. The target value of overall structural reliability for a rack structure is assumed to be 349

comparable to that of a typical steel member. The impact load factor is a function of the 350

occurrence rate of impact accident. However, for design purposes, a single impact load factor 351

of 2.3 appears to be satisfactory over a large range of impact occurrence rates. The research 352

also shows that the proposed impact load generally exceeds the existing design impact load. 353
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