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It was shown by Ahn, Wiseman, and Milburn [PRA 67, 052310 (2003)] that feedback
control could be used as a quantum error correction process for errors induced by weak
continuous measurement, given one perfectly measured error channel per qubit. Here we
point out that this method can be easily extended to an arbitrary number of error channels
per qubit. We show that the feedback protocols generated by our method encode n − 2
logical qubits in n physical qubits, thus requiring just one more physical qubit than in the
previous case.

PACS numbers: 03.67.Pp, 42.50.Lc,03.65.Yz
Keywords: quantum error correction, quantum feedback control

Quantum error correction [1, 2, 3, 4] and
quantum feedback control [5, 6] have a similar
structure: a state of interest is measured, and
then an operation conditioned on the measure-
ment is performed in order to control the state.
However, the end result of the control, as well
as the tools used to measure and control, are
different for each. Quantum feedback control
has traditionally been used to control a known
state using weak measurements and Hamilto-
nian controls, whereas quantum error correc-
tion uses projective measurements and unitary
gates in order to protect an unknown quantum
state.

Despite the differences between the two
techniques, the similarities are sufficient to en-
able combining the two [7, 8, 9, 10, 11, 12]. In
Ref. [12], we used feedback that was directly
proportional to measured currents in order to
correct for a specific error process. In particular,
we assumed that the errors were detected: the
experimenter knows precisely when and where
errors have occurred because the environment
that produces those errors is being continuously
monitored. Given this assumption, we showed
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that feedback was able to protect a stabilizer
codespace perfectly for one perfectly measured
channel per physical qubit, and we discussed
the results when the assumption of perfect mea-
surement is removed.

To be specific, in Ref. [12] we analyzed the
situation in which given n qubits, there was
a single error channel on each qubit, E(j) (on
qubit j). That is, the decoherence of the register
is given by

dρ

dt
=

∑

j

E(j)ρE(j)† − 1

2
{E(j)†E(j), ρ} − i[H, ρ],

(1)
where H is an additional externally applied
(“driving”) Hamiltonian. Moreover, these er-
rors could be perfectly detected in such a way
that the identity of the error (when and where
it occurred) was known. We found that it was
always possible to find feedback Hamiltonians
and “driving” Hamiltonians that together per-
fectly corrected both the error and the no-error
evolution. Our encoding used a single stabilizer
generator, i.e., encoding n− 1 qubits in n.

In this paper we consider the following ob-
vious generalization: What happens if there are
multiple channels E(j),α on a single qubit, all
of which can be detected? (Here j denotes the
qubit on which the channel acts, and α indexes
which channel it is.) Given a certain number of
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channels per qubit, what is the smallest number
of stabilizers needed to be able to use our proto-
col? Equivalently, given n physical qubits, how
many logical qubits can be encoded? To answer
that question, we will first review the main re-
sult of [12], in which there is only one channel
per qubit (we will drop the α index for clarity)
and then present a generalization of the results
to the multiple-channel case.

In the detected-channel model, evolution is
given by the error Kraus operators

Ωj = (E(j) + γ(j))
√
dt (2)

and the no-error Kraus operator

Ω0 = 1 − iHdt− 1

2
E(j)†E(j)dt

−γ
(j)

2
(e−iφ(j)

E(j) − eiφ
(j)
E(j)†)dt, (3)

where γe−iφ is a complex parameter that de-
scribes the kind of measurement (unraveling of
the master equation) that is being done. That
is, the average evolution reproduces the master
equation independently of γ:

ρ+ dρ = Ω0ρΩ
†
0 +

∑

j

ΩjρΩ
†
j. (4)

For example, γ = 0 for a Poisson unraveling,
and γ → ∞ for a white-noise unraveling [13].

In order to find feedback Hamiltonians and
driving Hamiltonians that together perfectly
correct both the error and no-error evolution, a
sufficient condition that needs to be met is

〈ψi|D(j)|ψk〉 = 0, (5)

where |ψi〉, |ψk〉 are orthogonal states in the
codespace, and D(j) is the traceless part of
(E(j) + γ(j))†(E(j) + γ(j)). Equation (5) is just a
variant of the Knill-Laflamme condition for cor-
recting errors [3], applied to the case in which
the time and position of the error are known. It
is satisfied when the codespace is generated by
a stabilizer S satisfying

0 = {S,D(j)}. (6)

Since it is always possible to find another Her-
mitian traceless one-qubit operator s(j) such

that {s(j),D(j)} = 0, it then follows that we may
pick the single stabilizer generator

S = s(1) ⊗ · · · ⊗ s(n) (7)

so that the stabilizer group is {1, S}.
The identification of Eqn. (5) with the Knill-

Laflamme condition, combined with feedback
results from [5], show that it is possible to cor-
rect the error using feedback. Furthermore, the
no-error evolution given in (3) can be corrected
by applying a driving Hamiltonian as follows:

H =
∑

j

i

2
D(j)S+

iγ(j)

2
(e−iφ(j)

E(j)−eiφ(j)
E(j)†).

(8)
Putting this Hamiltonian in the total no-error
Kraus operator in (3) gives, with a = 1 +O(dt),

Ω0 = a1 − 1

2

∑

j

D(j)(1 − S)dt. (9)

The second term here is zero on the codespace,
so the no-error evolution does not disturb the
codespace.

For multiple channels (denoted by α) on a
given qubit, the expressions in this previous
work can easily be generalized. We are assum-
ing that the time scale of correction is fast com-
pared to the time scale of decoherence; there-
fore, different errors do not interfere with one
another, and all the expressions in our paper be-
have well (i.e., linearly). We should also note
here that implicit in the idea that all errors are
detected is the assumption that, therefore, given
such a detection we know not only when and
where (j) the error has occurred, but also what
the error is (α). In other words, given a detec-
tion we can determine the error Kraus operator
Ωα

j that has been applied.
Given the above assumptions, to generalize

to multiple-channel protocols we must merely
check whether for all α and j it is true that

〈ψi|D(j),α|ψk〉 = 0. (10)

If (10) holds, the corresponding errors E(j),α

will be correctable, and we will see that this con-
dition also makes it possible to find a driving
Hamiltonian such that the no-jump errors are
also corrected.
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Let us first consider the case when there are
two channels on a single qubit: α = 1, 2. When
there are two channels, a Bloch-sphere analysis
shows that it is possible to find a single S such
that {S,D(j),α} = 0. Let us consider qubit 1:
since D(1),1 and D(1),2 are traceless, they can be
represented by two vectors on the Bloch sphere.
In fact,D(1),1 andD(1),2 define a plane intersect-
ing the Bloch sphere; now we pick s(1) to be the
operator that corresponds to the vector on the
Bloch sphere that is orthogonal to that plane.
Since it is possible to find a unitary rotation that
takes s(1) to σZ as well as D(1),1 and D(1),2 to
linear combinations of σX and σY , this operator
must anticommute with D(1),1 and D(1),2. Do-
ing the same for the other physical qubits, we
pick the single stabilizer generator

S = s(1) ⊗ · · · ⊗ s(n) (11)

so that the stabilizer group is {1, S} as before.
Again, this procedure encodes n−1 qubits in n.

The next step is to consider three channels.
Unfortunately, for three channels on a single
qubit, it is not in general possible to find a single
s which anticommutes with all the D operators
of the channels; this is reflected by the fact that
the Bloch sphere is three-dimensional, and so
given three arbitrary vectors, it is not possible
in general to find a fourth vector perpendicular
to all three.

However, we can do almost as well. Let us
return to (5) again. In fact for (5) to be true, it
suffices to decompose any given error operator,

D, as D = ~d · ~σ and to require

〈ψi|dlσl|ψk〉 = 0 ∀ l. (12)

If our stabilizers are the two stabilizers of the
familiar four-qubit code for the erasure channel
[14],

S1 = XXXX,

S2 = ZZZZ, (13)

we can see that for any l one of these two, call it
Sj(l), will satisfy

{Sj(l), σl} = 0 (14)

no matter what D is, and thus (12) holds.

In this case, with a = 1 +O(dt) as before, we
have

Ω0 = a1 − D

2
dt− γ

2
(e−iφE − eiφE†)dt− iHdt.

(15)
Let

H =
∑

l

i

2
(dlσl)Sj(l) +

iγ

2
(e−iφE− eiφE†), (16)

where Sj(l) is defined as in (14). Then

Ω0 = a1 − 1

2

∑

l

dlσl(1 − Sj(l)), (17)

which leaves the codespace invariant. This
analysis is true for each additional error chan-
nel we introduce. Thus no matter how many
error channels there are, as long as we can de-
tect all of them and know which error has hap-
pened and where the error has happened, we
can correct for the error and the no-error evo-
lution. This code encodes two logical qubits in
four physical ones.

In fact, this reasoning applies for n qubits,
where n is even, given the two stabilizers

S1 = X⊗n

S2 = Z⊗n. (18)

Using these stabilizers with the constant Hamil-
tonian found above, it is possible to encode n−2
qubits in n.

This protocol, of course, borrows heavily
from the stabilizer formalism of the quantum
erasure code. Indeed, the quantum erasure
code can be generalized using the stabilizers in
(18) in the same way, with the same scaling of
n − 2 logical qubits in n physical ones; as far
as we know this scaling has not been explicitly
noted in the literature. On the other hand, our
protocol differs from the erasure code in that
we have made a different and more restrictive
assumption about the error model; as a result,
we only need to perform local measurements
instead of a highly nonlocal stabilizer measure-
ment. To elaborate, the quantum erasure code
makes the same assumption that the position
and time of the error are both known. In the
protocol given here, we make the further as-
sumption that we know what error has occurred
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in that measuring the error tells us what error
has occurred. This information about the er-
ror comes precisely from the detection of the
local measurements performed by the environ-
ment. As in [12], these results indicate that if
dominant error processes can be monitored, us-
ing that information can be the key to correcting
them, and that the overhead in encoding is min-
imal (just two physical qubits).
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