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Abstract—For a homogeneous TM-type wave propagating in
a two-dimensional half space with both vertical and horizontal
inhomogeneities, where the TM-type wave is aligned with one of
the elements of the conductivity tensor, it is shown using exact
solutions to boundary value problems that the shearing term in the
homogeneous Helmholtz equation for inclined uniaxial anisotropic
media unequivocally vanishes and solutions need only be sought
to the homogeneous Helmholtz equation for fundamental biaxial
anisotropic media. This implies that those problems posed with
an inclined uniaxial conductivity tensor can be identically stated
with a fundamental biaxial conductivity tensor, provided that the
conductivity values are the reciprocal of the diagonal terms from
the Euler rotated resistivity tensor. The applications of this for
numerical methods of solving arbitrary two-dimensional problems for
a homogeneous TM-type wave is that they need only to approximate
the homogeneous Helmholtz equation and neglect the corresponding
shearing term.
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1. INTRODUCTION

The exact one-dimensional surface impedance expression for homoge-
neous plane wave incidence above a horizontally stratified (vertically
inhomogeneous) earth has been well documented. Exact and approxi-
mate solutions for the surface impedance anomaly above a horizontally
inhomogeneous half space with isotropic conductivity have been previ-
ously investigated for both TE- and TM-type waves [1–15]. The issue of
a sloping contact has been considered theoretically by Dmitriev and Za-
kharov [16] and Geyer [17], and numerically by Reddy and Rankin [18].
However, with the exception of the fundamental uniaxial anisotropy so-
lution of Obukhov [19], and the review of d’Erceville and Kunetz’s [2]
exact solution for inclined uniaxial anisotropic conductivity by Grubert
[20], no significant attention has been given to the problem of exactly
solving for the surface impedance anomaly above a vertical contact
between two conductive media that have inclined anisotropic conduc-
tivity. It is the purpose of this paper to present the exact quasi-static
solution for the surface impedance response of a conducting layer with
inclined anisotropic conductivity, with lateral inhomogeneities. In a
similar way that the solutions of Weaver et al. [14, 15] were developed
as control models for the COMMEMI project [21], it is suggested that
the development of an exact solution for a two-dimensional control
model with inclined uniaxial anisotropy will serve as a benchmark for
other approximate methods of solution.

The method used is an extension of the Fourier series
method presented by previous authors for isotropic and fundamental
anisotropic media. The formulation by Rankin [6] is used as the basis
for the formulation presented here. It is assumed that the σxx element
of the conductivity tensor is parallel to the strike of the inclusion and
the linearly polarised Hx field, as this then allows one to solve for
the linearly polarised TM-type homogeneous plane wave, as the TE-
type homogeneous plane wave is uncoupled and will be propagated
independently. The task is simplified by assuming that the lateral
inhomogeneities has infinite strike length. The problem reduces to a
two-dimensional one and it becomes only necessary to solve Maxwell’s
equations in the region z ≥ 0. These issues are explained further in
the derivation.
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2. EXACT FORMULATION: INCLINED ANISOTROPY

2.1. Homogeneous Half Space

The quasi-static Maxwell curl equations can be expanded into source
field vector components as:

∂Hz

∂y
− ∂Hy

∂z
= Jx, (1)

∂Hx

∂z
− ∂Hz

∂x
= Jy, (2)

∂Hy

∂x
− ∂Hx

∂y
= Jz, (3)

∂Ez

∂y
− ∂Ey

∂z
= −jωµHx, (4)

∂Ex

∂z
− ∂Ez

∂x
= −jωµHy, (5)

∂Ey

∂x
− ∂Ex

∂y
= −jωµHz. (6)

Assuming a full conductivity tensor, one can write the current density
components from Ohm’s Law as:

Jx = σxxEx + σxyEy + σxzEz, (7)
Jy = σyxEx + σyyEy + σyzEz, (8)
Jz = σzxEx + σzyEy + σzzEz. (9)

For a homogeneous half space excited by a homogeneous plane wave,
all partial derivatives with respect to x and y are equal to zero. From
(1) to (6), it follows that:

−∂Hy

∂z
= σxxEx + σxyEy + σxzEz, (10)

∂Hx

∂z
= σyxEx + σyyEy + σyzEz, (11)

∂Ey

∂z
= jωµHx, (12)

∂Ex

∂z
= −jωµHy, (13)

and by implication:
Hz = 0, (14)
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and
σzxEx + σzyEy + σzzEz = 0. (15)

(14) and (15) simply state that the vertical magnetic field and vertical
current density in the half space are equal to zero when the source
field is a homogeneous plane wave [22]. By differentiating (12) and
(13) with respect to z and substituting the results into (10) and (11),
one obtains:

0 =
∂2Ex

∂z2
− jωµ(σxxEx + σxyEy + σxzEz), (16)

0 =
∂2Ey

∂z2
− jωµ(σyxEx + σyyEy + σyzEz). (17)

From (15), it is possible to write:

Ez = −σzx
σzz

Ex −
σzy
σzz

Ey. (18)

After substituting (18) into (16) and (17), two coupled second order
differential equations for the horizontal electric fields are obtained:

0 =
∂2Ex

∂z2
−jωµ

(
σxx−

σxzσzx
σzz

)
Ex−jωµ

(
σxy−

σxzσzy
σzz

)
Ey, (19)

0 =
∂2Ey

∂z2
−jωµ

(
σyx−

σyzσzx
σzz

)
Ex−jωµ

(
σyy−

σyzσzy
σzz

)
Ey. (20)

Let us now assume that problem is posed with the inclined conductivity
tensor only being rotated about the x-axis by α such that the
conductivity tensor can be written as:

σ̂ =


 σxx 0 0

0 σyy σzy
0 σyz σzz


 , (21)

where the elements of the conductivity tensor have the form:

σxx = σt, (22)
σyy = σt cos2 α + σn sin2 α, (23)

σzz = σt sin2 α + σn cos2 α, (24)
σyz = σzy = (σt − σn) sin α cos α. (25)

With such conditions on the conductivity tensor, (19) and (20) take the
forms of the uncoupled second order ordinary differential equations:

0 =
∂2Ex

∂z2
− jωµσxxEx, (26)

0 =
∂2Ey

∂z2
− jωµ

(
σyy −

σyzσzy
σzz

)
Ey. (27)
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If one now considers a solution for (27) of the form of the down-going
homogeneous plane wave, then one can substitute (23) to (25) into
(27), where it follows that:

σyy −
σyzσzy

σzz
=

(
cos2 α

σt
+

sin2 α

σn

)−1

= ρ−1
yy , (28)

implying that the ρyy term of the rotated resistivity tensor can be
written in terms of σyy, σyz, σzy and ρzz, and vice versa. It then follows
simply that the wave number is:

k =

√√√√jωµ

(
cos2 α

σt
+

sin2 α

σn

)−1

, (29)

provided Re k > 0 to prevent an exponentially divergent solution in Ey

The surface impedance can then be written as:

Zy,x =

√√√√jωµ

(
cos2 α

σt
+

sin2 α

σn

)
, (30)

which corresponds identically to Chetaev [23]. It is also noticed that:

σzz −
σyzσzy

σyy
=

(
sin2 α

σt
+

cos2 α

σn

)−1

= ρ−1
zz . (31)

2.2. Preliminary Considerations for an Inhomogeneous Half
Space

Consider a homogeneous rectangular prism with inclined conductivity
anisotropy extending infinitely into the x-direction, embedded in an
otherwise homogeneous layer, which also exhibits inclined anisotropic
conductivity (see Figure 1). The common depth of the inclusion and
the layer is h and they are both underlain by a basement with isotropic
conductivity σb. By considering a homogeneous plane wave as the
source field, then all partial derivatives with respect to x are equal to
zero. In the local inclined coordinate system characterised by angle
of inclination α1 about the x-axis, the conductivity of the inclusion is
represented with the uniaxial conductivity tensor:

σ̂1 =


 σt,1 0 0

0 σt,1 0
0 0 σn,1


 . (32)
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Figure 1. Geometry and parameters of the inclusion embedded in a
homogeneous layer.

Similarly, in the local inclined coordinate system characterised by angle
of inclination α2 about the x-axis, the conductivity of the host layer is
represented with the uniaxial conductivity tensor:

σ̂2 =


 σt,2 0 0

0 σt,2 0
0 0 σn,2


 . (33)

t subscripts denote the conductivity parallel to the inclined horizontal
axis of the medium, and n subscripts denote the conductivity normal
to the inclined horizontal axis of the medium. When general solutions
to Maxwell’s equations are considered in this section, subscript m is
introduced to designate the medium number, where m = 1 for the
inclusion and m = 2 for the layer. The equations presented here
can be considered to satisfy an arbitrary inclined coordinate system
{x′, y′, z′} rotated through an angle αm about the x-axis. From the
Maxwell equation:

∇×E = −jωµH, (34)
it follows that Hy,m = Hz,m = 0 for a linearly polarised TM-type
homogeneous plane wave where Hx,m is parallel to the σxx component
of σ̂m. From Maxwell’s curl equations, we obtain the family of
equations:

−jωµHx′,m =
∂Ez′,m

∂y′
− ∂Ey′,m

∂z′
, (35)

Ez′,m =
−1
σt,m

− ∂Hx′,m

∂y′
, (36)
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Ey′,m =
1

σn,m

∂Hx′,m

∂z′
. (37)

By differentiating (36) and (37) with respect to y′ and z′ respectively,
and by substituting the results into (35), one obtains the homogeneous
Helmholtz equation for anisotropic media:

1
σn,m

∂2Hx′,m

∂y′2
+

1
σt,m

∂2Hx′,m

∂z′2
− jωµHx′,m = 0. (38)

The coordinate rotations for transforming {x′, y′, z′} coordinates to
{x, y, z} coordinates can be written as:

 x′

y′

z′


 =


 1 0 0

0 cos αm sin αm
0 − sin αm cos αm





 x

y
z


 = R(−α)


 x

y
z


 , (39)

such that the second-order partial derivatives of any function f can be
written as:

∂2f

∂y′2
=

∂2f

∂y2
cos2 αm + 2

∂2f

∂y∂z
sin αm cos αm +

∂2f

∂z2
sin2 αm, (40)

∂2f

∂z′2
=

∂2f

∂y2
sin2 αm − 2

∂2f

∂y∂z
sin αm cos αm +

∂2f

∂z2
cos2 αm. (41)

(38) can now be written in {x, y, z} coordinates as:(
cos2 αm

σn,m
+

sin2 αm
σt,m

)
∂2Hx,m

∂y2
+

(
sin2 αm

σn,m
+

cos2 αm
σt,m

)
∂2Hx,m

∂z2

+2

(
1

σn,m
− 1

σt,m

)
sin αm cos αm

∂2Hx,m

∂y∂z
− jωµHx,m = 0. (42)

The presence of the lateral inhomogeneities will generate anomalous
magnetic fields across the strike of tho inclusion. At an infinite distance
from the dyke, the anomalous fields must reduce to zero and the
solution for the magnetic field will be identical to that of a horizontally
homogeneous medium. Near the inclusion, the general solution for the
total magnetic Hx,m(y, z) can be written as the sum of the background
(b) and anomalous (a) fields:

Hx,m(y, z) = Hb
x,m(z) + Ha

x,m(y, z), (43)

where Ha
x,m(y, z) is the anomalous field that exists due to the lateral

inhomogeneities. Since Hx,m(y, z) satisfies (42), then Hb
x,m(z) and
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Ha
x,m(y, z) must also satisfy a form of (42) as linearly independent

solutions of (42). In this particular problem, the anisotropic media is
bound by a perfectly insulating layer (i.e., air) at the upper boundary
(z = 0), and a basement with isotropic conductivity σb at the lower
boundary (z = h). A general solution for the background magnetic
field Hb

x,m(z), is a homogeneous plane wave with both up-going and
down-going components of the form:

Hb
x,m(z) = Am exp(−kmz) + Bm exp(kmz), (44)

which satisfies (42) provided that the z-directed wave number is given
by:

km =

√√√√jωµ

(
sin2 αm

σn,m
+

cos2 αm
σt,m

)−1

, (45)

and Re km > 0 to prevent an exponentially divergent solution in
Hb
x,m(z). It should be noted that Am and Bm in (44) are independent of
{x, y, z, t} and are not related to components of the vector potential A
or magnetic flux density B. The solution for Hb

x,m(z) is easily identified
as the solution for the horizontally homogeneous problem.

2.3. Perfectly Insulating Basement Solution

If σb = 0, then Hx,m(y, z) = 0 at z = h and this boundary condition
is equivalent to the top of the basement being a perfect magnetic
conductor [11]. It follows that the coefficients for (44) are given by:

Am =
H0 exp(kmh)
2 sinh(kmh)

, (46)

Bm =
−H0 exp(−kmh)

2 sinh(kmh)
, (47)

where H0 is the magnetic field magnitude at z = 0, and is a constant
which may be complex. (44) can then be written as:

Hb
x,m(z) =

H0 sinh km(h− z)
sinh(kmh)

. (48)

It is easily observed from (48) that Hb
x,m(z) = 0 when z = h. Similarly,

Ha
x,m(z) = 0 when z = h. This also implies that Ha

x,m(z) = 0 when
z = 0 since Hx,m(y, z) = H0. By separation of variables, the anomalous
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magnetic field will be written as the product of two independent
functions, fm(y) and gm(z):

Ha
x,m(y, z) = fm(y)gm(z), (49)

where gm(z) can be expressed as a Fourier series of sine terms with an
argument of nπz

h :

gm(z) =
∞∑
n=1

Am,n sin
(

nπz

h

)
, (50)

where n is the mode number (1, 2, 3, . . . ,∞) and where Am,n are the
Fourier series coefficients, and should not be confused with Am in (44),
a coefficient of the magnetic field wave equations. For convenience, we
will include Am,n in the values of fm(y) at each n. (49) can then be
written as:

Ha
x,m(y, z) =

∞∑
n=1

fm(y) sin
(

nπz

h

)
. (51)

For n = 1, 2, 3, . . . ,∞, each term of (51) must satisfy a form of (42) as
a linear sum of solutions. For each term from (51), we have the partial
derivatives:

∂2Ha
x,m,n(y, z)
∂y2

=
∂2fm,n(y)

∂y2
sin

(
nπz

h

)
, (52)

∂2Ha
x,m,n(y, z)
∂z2

= −n2π2

h2
fm,n(y) sin

(
nπz

h

)
, (53)

∂2Ha
x,m,n(y, z)
∂y∂z

=
nπ

h

∂fm,n(y)
∂y

cos
(

nπz

h

)
. (54)

The form of (42) that the anomalous fields must satisfy is then written
as: (

cos2 αm
σn,m

+
sin2 αm

σt,m

)
∂2fm,n(y)

∂y2
sin

(
nπz

h

)

−
(

sin2 αm
σn,m

+
cos2 αm

σt,m

)
n2π2

h2
fm,n(y) sin

(
nπz

h

)

+2

(
1

σn,m
− 1

σt,m

)
sin αm cos αm

nπ

h

∂fm,n(y)
∂y

cos
(

nπz

h

)

−jωµfm,n(y) sin
(

nπz

h

)
= 0. (55)
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At the z = 0 and z = h boundaries, sin
(
nπz
h

)
= 0 and the shearing

term:

2

(
1

σn,m
− 1

σt,m

)
sin αm cos αm

nπ

h

∂fm,n(y)
∂y

cos
(

nπz

h

)
= 0. (56)

At z = 0, cos
(
nπz
h

)
= 1, so (56) can only vanish for three possible

cases:
(a) if:

1
σn,m

− 1
σt,m

= 0, (57)

which is the special case for an isotropic solution (σt,m = σn,m); or
(b) if:

sin αm cos αm = 0, (58)

which is only the special case of either αm = 0 or αm = 90◦,
corresponding to fundamental anisotropic solutions; or else,
(c) if:

∂fm,n(y)
∂y

= 0 ∀ n. (59)

As a general solution for the inclined anisotropic problem is sought,
(57) and (58) are trivial (as they are special conditions) implying that
(59) must hold true in all cases. This means that (55) can be reduced
to: (

cos2 αm
σn,m

+
sin2 αm

σt,m

)
∂2fm,n(y)

∂y2
sin

(
nπz

h

)

−
(

sin2 αm
σn,m

+
cos2 αm

σt,m

)
n2π2

h2
fm,n(y) sin

(
nπz

h

)

−jωµfm,n(y) sin
(

nπz

h

)
= 0. (60)

A solution for fm,n(y) must satisfy both (59) and (60), and a solution
can be shown to be of the form:

fm,n(y) = am,n exp
(−qm,ny

h

)
+ bm,n exp

(
qm,ny

h

)
, (61)

provided that:

qm,n =

√√√√k2
z,mh2 + n2π2

(
σt,m sin2 αm + σn,m cos2 αm

σt,m sin2 αm + σn,m cos2 αm

)
, (62)
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where

kz,m =

√√√√jωµ

(
cos2 αm

σn,m
+

sin2 αm
σt,m

)−1

,

and Re qm,n > 0 for a-type terms and Re qm,n < 0 for b-type terms to
prevent an exponentially divergent solution in fm,n(y). (61) satisfies
the condition that (51) vanish for |y| = ∞, only if the a-type terms
correspond to +y terms and b-type terms correspond to −y terms for
m = 2, whilst both positive and negative exponents are permissible
in the finite region of m = 1. Symmetry conditions at the boundaries
then permit:

am,n = bm,n, (63)

which will ensure that Hx,m(y, z) is an even function about y = 0;
i.e., Hx,m(y, z) = Hx,m(−y, z). Employing this boundary condition is
equivalent to using one of the boundaries for solving the continuity of
the magnetic field components, with the remaining boundary condition
to be available for solving the remainder of the coefficients. If the y = l

2
boundary is considered, then following from (63), the use of symmetry
implies that:
∞∑
n=1

[
2a1,n cosh

(
q1,nl

2h

)
− a2,n exp

(
q2,nl

2h

)]
sin

(
nπz

h

)
= H2 −H1,

(64)
where

Hm ≡ Hb
x,m =

H0 sinh km(h− z)
sinh(kmh)

.

The expansion of H2−H1 into a sine series of argument nπz
h is written

as:

H2 −H1 =
∞∑
n=1

Cn sin
(

nπz

h

)
, (65)

where Cn is a complex constant yet to be determined. At the boundary,
term-by-term must be equated, so both equations:

2a1,n cosh
(

q1,nl

2h

)
− a2,n exp

(
−q2,nl

2h

)
= Cn, (66)

2a1,nq1,nρzz,1 sinh
(

q1,nl

2h

)
+ a2,nq2,nρzz,2 exp

(
−q2,nl

h

)
= 0, (67)

must be satisfied, where (67) is obtained from the Maxwell equation:

Ez,m = −ρzz,m
∂Hx,m

∂y
,
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stating the continuity of the tangential electric field across the
boundary y = ±l/2. Solutions for the a-type coefficients are then:

a1,n =
Cnρzz,2

2ρzz,2 cosh
(

q1,nl

2h

)
+ 2ρzz,1

q1,n

q2,n
sinh

(
q1,nl

2h

) , (68)

a2,n =
−Cnρzz,1 exp

(
q2,nl

2h

)
sinh

(
q1,nl

2h

)

ρzz,2 cosh
(

q1,nl

2h

)
+ ρzz,1 sinh

(
q1,nl

2h

) . (69)

Following the expansion of H2 − H1 into an odd Fourier series with
argument nπz

h , one obtains:

Cn =
2
h

h∫
0

(H2 −H1) sin
(

nπz

h

)
dz, (70)

where:

H2 −H1 =
H0 sinh k2(h− z)

sinh(k2h)
− H0 sinh k1(h− z)

sinh(k1h)
. (71)

Following through with (70) using integration by parts, the solution
for Cn is:

Cn = − 2H0nπ
(
k2

2 − k2
1

)
h2

(
k2

2 +
n2π2

h2

) (
k2

1 +
n2π2

h2

) . (72)

Substituting (72) into (68) and (69), solutions for the a-type coefficients
now take the form:

a1,n =
−H0nπρzz,2

(
k2

2 − k2
1

)



h2

(
k2

2 +
n2π2

h2

) (
k2

1 +
n2π2

h2

)
[
ρzz,2 cosh

(
q1,nl

2h

)
+ ρzz,1

q1,n

q2,n
sinh

(
q1,nl

2h

)]



, (73)

a2,n =
−2H0nπρzz,1

(
k2

2 − k2
1

)
exp

(
q2,nl

2h

)
sinh

(
q1,nl

2h

)



h2

(
k2

2 +
n2π2

h2

) (
k2

1 +
n2π2

h2

)
[
ρzz,1 sinh

(
q1,nl

2h

)
+ ρzz,2

q2,n

q1,n
cosh

(
q1,nl

2h

)]



. (74)
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For − l
2 ≤ y ≤ l

2 , the anomalous magnetic field is written as:

Ha
x,1(y, z) =

∞∑
n=1

2a1,n cosh
(

q1,ny

h

)
sin

(
nπz

h

)
. (75)

The total magnetic field can then be written as:

Hx,1(y, z) =
H0 sinh k1(h− z)

sinh(k1h)
+
∞∑
n=1

2a1,n cosh
(

q1,ny

h

)
sin

(
nπz

h

)
.

(76)
From Maxwell equations (36) and (37) rotated about the x-axis, we
have:

Ey,1 = ρyy,1
∂Hx,1

∂z
, (77)

so the horizontal electric field can be written as:

Ey,1(y, z) =
−k1ρyy,1H0 cosh k1(h− z)

sinh(k1h)

+
∞∑
n=1

2ρyy,1
nπ

h
a1,n cosh

(
q1,ny

h

)
cos

(
nπz

h

)
. (78)

At the air-half space interface (z = 0), (76) reduces to:

Hx,1(y, 0) = H0, (79)

and is constant ∀ y. For z = 0, (78) reduces to:

Ey,1(y, z) =
−k1ρyy,1H0 cosh(k1h)

sinh(k1h)
+
∞∑
n=1

2ρyy,1
nπ

h
a1,n cosh

(
q1,ny

h

)
.

(80)
The surface impedance is defined as:

Zy,x(y, 0) = k1ρyy,1 coth(k1h)−
∞∑
n=1

2ρyy,1
nπ

h

a1,n

H0
cosh

(
q1,ny

h

)
. (81)

In (81), the term:

k1ρyy,1 coth(k1h) =

√√√√jωµ

(
cos2 α1

σt,1
+

sin2 α1

σn,1

)
coth(k1h), (82)

is identified as the surface impedance of a laterally homogeneous
layer above a perfect magnetic conducting basement. Once (82) is
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substituted into (81), one obtains:

Zy,x(y, 0) =

√√√√jωµ

(
cos2 α1

σt,1
+

sin2 α1

σn,1

)
coth(k1h)

+
2π2

h3

(
k2

2 − k2
1

)
ρzz,2ρzz,1

×
∞∑
n=1

n2 cosh
(

q1,ny

h

)



(
k2

2+
n2π2

h2

)(
k2

1+
n2π2

h2

)
[
ρzz,2 cosh

(
q1,nl

2h

)
+ρzz,1

q1,n

q2,n
sinh

(
q1,nl

2h

)]



.

(83)

For y ≥ l
2 and y ≤ − l

2 , the constant term is the same as for medium
1, however the subscripts are interchanged. One writes the anomalous
magnetic field as:

Ha
x,2(y, z) =

∞∑
n=1

a2,n exp
(
−q2,n|y|

h

)
sin

(
nπz

h

)
. (84)

The total magnetic field can then be written as:

Hx,2(y, z) =
H0 sinh k2(h− z)

sinh(k2h)
+
∞∑
n=1

a2,n exp
(
−q2,ny

h

)
sin

(
nπz

h

)
.

(85)
From Maxwell’s equations (36) and (37) rotated about the x-axis, we
have:

Ey,2 = ρyy,2
∂Hx,2

∂z
, (86)

so the horizontal electric field is written as:

Ey,2(y, z) =
−k2ρyy,2H0 cosh k2(h− z)

sinh(k2h)

+
∞∑
n=1

ρyy,2
nπ

h
a2,n exp

(
−q2,ny

h

)
cos

(
nπz

h

)
. (87)

At the air-half space interface (z = 0), (85) reduces to:

Hx,2(y, 0) = H0, (88)
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and is constant ∀ y. For z = 0, (87) reduces to:

Ey,2(y, z) =
−k2ρyy,2H0 cosh(k2h)

sinh(k2h)
+
∞∑
n=1

ρyy,2
nπ

h
a2,n exp

(
−q2,ny

h

)
.

(89)
The surface impedance is defined as:

Zy,x(y, 0) = k2ρyy,2 coth(k2h)−
∞∑
n=1

ρyy,1
nπ

h

a2,n

H0
exp

(
−q2,ny

h

)
. (90)

In (90), the term:

k2ρyy,2 coth(k2h) =

√√√√jωµ

(
cos2 α2

σt,2
+

sin2 α2

σn,2

)
coth(k2h) (91)

is identified as the surface impedance of a laterally homogeneous
layer above a perfect magnetic conducting basement. Once (91) is
substituted into (90), one obtains:

Zy,x(y, 0) =

√√√√jωµ

(
cos2 α2

σt,2
+

sin2 α2

σn,2

)
coth(k2h)

+
2π2

h3

(
k2

2 − k2
1

)
ρzz,2ρyy,1

×
∞∑
n=1

n2 exp
(

q2,ny

h

)
exp

(
q2,nl

2h

)
sinh

(
q1,nl

2h

)



(
k2

2+
n2π2

h2

)(
k2

1+
n2π2

h2

)
[
ρzz,1 sinh

(
q1,nl

2h

)
+ρzz,2

q2,n

q1,n
cosh

(
q1,nl

2h

)]



.

(92)

(83) and (92) are the complete exact solution for the surface impedance
of an inclusion with inclined anisotropic conductivity embedded in an
otherwise homogeneous layer above a perfect magnetic conductor.

3. EXACT FORMULATION: FUNDAMENTAL
ANISOTROPY

The formulations derived in Section 2 will now be reduced to the
problem of an inclusion with fundamental uniaxial anisotropy. In this
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case, it can be assumed that α1 = α2 = 0. Firstly, it is noted that the
wave number for medium m is now given by:

km =
√

jωµσt,m, (93)

where Re km > 0 to prevent exponentially divergent solutions. Now
(58) is satisfied and a solution to (60) is sought. (61) is still a valid
solution, and (62) reduces to:

qm,n =
√

k2
z,mh2 + n2π2

σn,m
σt,m

, (94)

where:
kz,m =

√
jωµσn,m,

which we can also write as:

qm,n =

√
k2
mh2 + n2π2

λ2
m

, (95)

where λm is the coefficient of anisotropy of medium (m) and this is
identical to the solution of Obukhov [19]. It follows that:

a1,n =
−H0nπ

(
k2

2 − k2
1

)



h2

(
k2

2 +
n2π2

h2

) (
k2

1 +
n2π2

h2

)
[
cosh

(
q1,nl

2h

)
+

σn,2
σn,1

q1,n

q2,n
sinh

(
q1,nl

2h

)]



, (96)

a2,n =
−2H0nπ

(
k2

2 − k2
1

)
exp

(
q2,nl

2h

)
sinh

(
q1,nl

2h

)



h2

(
k2

2 +
n2π2

h2

) (
k2

1 +
n2π2

h2

)
[
sinh

(
q1,nl

2h

)
+

σn,1
σn,2

q2,n

q1,n
cosh

(
q1,nl

2h

)]



, (97)

and that for − l
2 ≤ y ≤ l

2 , the surface impedance can be written as:

Zy,x(y, 0) =

√
jωµ

σt,1
coth(k1h) +

2π2

h3

(
k2

2 − k2
1

)
ρn,1
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×
∞∑
n=1

n2 cosh
(

q1,ny

h

)



(
k2

2+
n2π2

h2

)(
k2

1+
n2π2

h2

)
[
cosh

(
q1,nl

2h

)
+

σn,2
σn,1

q1,n

q2,n
sinh

(
q1,nl

2h

)]



.

(98)

For y ≥ l
2 and y ≤ − l

2 , the surface impedance can be written as:

Zy,x(y, 0) =

√
jωµ

σt,2
coth(k2h) +

2π2

h3

(
k2

2 − k2
1

)
ρn,2

×
∞∑
n=1

n2 exp
(

q2,ny

h

)
exp

(
q2,nl

2h

)
sinh

(
q1,nl

2h

)



(
k2

2+
n2π2

h2

)(
k2

1+
n2π2

h2

)
[
sinh

(
q1,nl

2h

)
+

σn,1
σn,2

q2,n

q1,n
cosh

(
q1,nl

2h

)]



.

(99)

(98) and (99) were identically obtained by Obukhov [19]. Further, it
can be observed that when σt,m = σn,m = σm then for − l

2 ≤ y ≤ l
2 ,

the surface impedance is given by:

Zy,x(y, 0) =

√
jωµ

σ1
coth(k1h) +

2π2

h3

(
k2

2 − k2
1

)
ρ1

×
∞∑
n=1

n2 cosh
(

q1,ny

h

)



(
k2

2+
n2π2

h2

)(
k2

1+
n2π2

h2

)
[
cosh

(
q1,nl

2h

)
+

q1,n

q2,n
sinh

(
q1,nl

2h

)]



.

(100)

For y ≥ l
2 and y ≤ − l

2 , the surface impedance can be written as:

Zy,x(y, 0) =

√
jωµ

σt,2
coth(k2h) +

2π2

h3

(
k2

2 − k2
1

)
ρ2
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×
∞∑
n=1

n2 exp
(

q2,ny

h

)
exp

(
q2,nl

2h

)
sinh

(
q1,nl

2h

)



(
k2

2+
n2π2

h2

)(
k2

1+
n2π2

h2

)
[
sinh

(
q1,nl

2h

)
+

q2,n

q1,n
cosh

(
q1,nl

2h

)]



,

(101)

which are identical equations to those derived by Rankin [6]. It is noted
that Rankin’s [6] solution was derived using the cgs electromagnetic
units (emu) in which µ is dimensionless and equal to unity in free
space.

4. CONCLUSION

In this paper, we have considered only the propagation of
homogeneous TM-type waves in media with inclined uniaxial
anisotropic conductivity. It has been demonstrated that for a half
space, and for a horizontally stratified half space, the inclined uniaxial
anisotropic conductivity tensor can be written as a corresponding
fundamental bianisotropic conductivity tensor where:

σx,m = ρ−1
xx,m = σxx,m (102)

σy,m =

(
cos2 αm

σt,m
+

sin2 αm
σn,m

)−1

=ρ−1
yy,m = σyy,m −

σyz,mσzy,m
σzz,m

, (103)

σz,m =

(
sin2 αm

σt,m
+

cos2 αm
σn,m

)−1

=ρ−1
zz,m = σzz,m −

σzy,mσyz,m
σyy,m

. (104)

It has been demonstrated that the shearing term in the rotated
Helmholtz equation vanishes for horizontally inhomogeneous media,
as in the case for horizontally homogeneous media. Further, if
one compares (83) and (92) with (98) and (99) respectively, it
should be noticed that the equations are identical with the exception
that in (83) and (92), the conductivity terms are given by (103)
and (104). Hence, it is concluded that homogeneous TM-type
propagation in inhomogeneous two-dimensional problems with inclined
uniaxial anisotropic conductivity can be equivalently described as
a two-dimensional problem with fundamental biaxial anisotropic
conductivity. This has important applications to approximate methods
of solution.
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