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ECOSYSTEM ADAPTATION: DO ECOSYSTEMS MAXIMIZE RESILIENCE?
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Abstract. The response of an ecological system to perturbation can be described in
terms of its resilience, essentially a measure of the time the system takes to return to its
prior state. The resilience of an ecosystem is the result of interactions of the biota and their
environment and will therefore change as the biota evolve and environmental conditions
change. Ecological systems exist within the constraints of thermodynamic laws that pre-
scribe the transfer of energy. Ecologically defined ‘‘thermodynamic imperatives,’’ such as
entropy, exergy, and ascendency, provide whole-ecosystem selection pressures that con-
strain the evolution of individuals within an ecosystem in addition to the selection pressures
of individual evolution. The essence of these whole-ecosystem selection pressures may be
captured by metrics. We have used a ‘‘genetic algorithm’’ to optimize these metrics, sim-
ulating the adaptation of a model ecosystem biota. Our simulations suggest the hypothesis
that, within the constraints of the external environment and the genetic potential of their
constituent biota, ecosystems will evolve to the state most resilient to perturbation.

Key words: ecosystem adaptation; nutrient enrichment; resilience; thermodynamic selection pres-
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INTRODUCTION

Aquatic ecosystems are being increasingly subjected
to anthropogenic perturbation (Smith et al. 1999), with
these perturbations often occurring in the form of in-
creased nutrient loadings (Vitousek et al. 1997). The
resilience of an ecosystem is a measure of how quickly
the system returns to its prior state after a perturbation
(Begon et al. 1996), and it is important that we un-
derstand this property of ecosystems. It is also critical
that explanations we deduce for ecosystem-level prop-
erties are consistent with natural selection at the in-
dividual level (Lenton 1998).

Although difficult to measure in real ecosystems, re-
silience is an easily derived attribute of simple eco-
system models (DeAngelis 1992). Many aspects of eco-
systems are simplified or idealized when we formulate
models, and we cannot expect such simple models to
simulate all the intricacies of real ecosystems. Simple
models may, however, lead to a deeper understanding
of the modeled phenomena (Bazykin 1998).

The overarching themes that shape ecosystem adap-
tation have been a topic of ecological research since
Lotka (1922) suggested that natural selection would op-
erate to preserve organisms that increased the total en-
ergy flux through a system. Common to many hypoth-
esized ecosystem goal functions are underlying ther-
modynamic considerations about how ecosystems utilize
the energy that flows through them. Ecosystems exist
within the constraints of thermodynamic laws that pre-
scribe the transfer of energy and may be considered as
thermodynamic nonequilibrium dissipative structures
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that, in common with their physical counterparts such
as hurricanes and Bénard cells, utilize energy fluxes
from external sources to maintain organization (Prigo-
gine and Stengers 1984, Toussaint and Schneider 1998).
Reviews of the current state of thermodynamics relating
to ecology can be found in Jorgensen (2000a, b).

We have formulated simple metrics that capture the
influence of these thermodynamic and ecological mea-
sures on a model aquatic ecosystem. These metrics are
used as selection pressures to constrain the evolution
of the individuals within the ecosystem. We have sim-
ulated the adaptation of the model ecosystem’s biota
to these selection pressures by coupling the ecosystem
model to a genetic algorithm (GA), an efficient, non-
linear optimization technique based on Darwinian evo-
lution (Holland 1975). This approach has the advantage
of determining the biotic attributes of an ecosystem
from fundamental properties, an alternative to the usual
method of matching the model with empirical data (Jor-
gensen 1999).

Our thermodynamically constrained adaptation sim-
ulations generate an hypothesis of ecosystem evolution.
This hypothesis leads to some counterintuitive impli-
cations for attributes that we might find in real eco-
systems. Although based on a simple model and some-
what fuzzy thermodynamic concepts, there appears to
be considerable empirical support for the hypothesis.

METHODS

The essence of our approach lies in the coupling of
a deterministic differential equation ecosystem model
of population dynamics over non-evolutionary time
scales with a stochastic GA that simulates individual
adaptation in response to selection pressures over evo-
lutionary time scales. The coupling between the models
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TABLE 1. Model equations, steady state, and ranges of parameter values.

Model equations Model steady state

dA N
5 m A 2 k AH (1)11 2dt N 1 ks

k2A 5 (5)ss k (1 2 k )1 3

dH
5 k (1 2 k )AH 2 k H (2)1 3 2dt

m NssH 5 (6)ss 1 2k N 1 k1 ss s

dN N
5 k H 1 k k AH 2 m A (3)2 1 3 1 2dt N 1 ks

1 m
N 5 2 1 k 2 N 1 Ass s 0 ss51 22 k1

2m
2 1 k 2 N 1 A 1 4k (N 2 A ) (7)s 0 ss s 0 ss1 2 6! k1

N 5 A 1 H 1 N (4)0
NssFlux 5 k A H 5 m A 5 k H 1 k k A H (8)ss 1 ss ss ss 2 ss 1 3 ss ss1 2N 1 kss s

Parameter values

Symbol Function Units Minimum Maximum

k1

k2

k3

m
ks

N0

herbivore grazing/autotroph palatability
herbivore mortality rate
herbivore excretion
maximum autotroph growth rate
autotroph half-saturation nutrient concentration
total nutrient concentration

2 21 21m · mg N · d
21d

···
21d

2mg N/m
2mg N/m

0.003
0.025
0.200
0.450

138
500

0.009
0.075
0.600
1.350

415
3000

Note: Values are averages for a 20 m deep, mixed-layer oceanic environment.

was achieved by using selection pressures formulated
from the ecosystem model as goal functions for the
genetic algorithm.

A simple ecosystem model was used in this initial
work, as we required a model that had a single, stable
equilibrium point so that analytical expressions could
be derived for the steady state selection pressures. The
use of a simple model, while ignoring the ‘‘fine detail’’
of ecosystem function, does not preclude the model
from simulating fundamental properties of ecosystems.
We find merit in the arguments of Closs et al. (1999)
that simple models that make clear predictions are more
likely to advance ecological theory than highly com-
plex models.

We used a simple autotroph–herbivore–nutrient
(AHN) mixed-layer ecosystem model, based on stan-
dard formulations that are widely used in plankton
modeling (McCauley and Murdoch 1990, DeAngelis
1992, Edwards and Brindley 1999, Huisman and Weiss-
ing 1999). The biomasses (A and H ) and the mass of
nutrient (N ) in the model are expressed as concentra-
tions of nutrient, rather than numbers of individuals.
The model differential equations (Table 1) conserve
the total mass of nutrient (N0) of the ecosystem.

The model has five physiological parameters (k1,
. . . , ks) that define a five-dimensional parameter space
(Table 1). We used empirical values reported for marine
phytoplankton, zooplankton, and nitrogen (Moloney et
al. 1986) for the centers of the parameter ranges and
defined the extremes of the ranges as 650% of each
of the reported values. Simulations were undertaken

for two scenarios, a low-nutrient state (N0 5 500 mg
N/m2) and a high-nutrient state (N0 5 3000 mg N/m2).

The model has three finite steady states, although
only one finite steady state is physically feasible (Table
1). The unstable steady state at (A, H, N ) 5 (0, 0, 0)
is ignored as a trivial solution, and the steady state
specified by the other root of the quadratic for Nss is
ignored as unrealistic as it specifies negative concen-
trations. Although the physically realistic steady state
has several possible behaviors, within the parameter
ranges defined for this study the steady state is always
an asymptotically stable node. It is reactive in the sense
of Neubert and Caswell (1997), and the model therefore
responds to almost all perturbations by initially am-
plifying the magnitude of the perturbation, after which
the perturbation envelope exponentially decays as the
model returns to its steady state.

The resilience of an ecosystem model is defined
mathematically as the negative of the real part of the
dominant eigenvalue of the linearized system (De-
Angelis 1980). This definition of resilience is strictly
correct only for small perturbations from the steady
state, but has proved to be a useful indicator of system
responses to large perturbations (DeAngelis 1992). The
expression for the resilience of the AHN model is given
in Table 2.

The parameter space permits a range of ecosystem
behaviors, from systems that eliminate the effects of
very large perturbations almost immediately to ones
that are extremely sensitive to perturbations. These lat-
ter systems do not recover from even small perturba-
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TABLE 2. Selection pressures used in the adaptation simulations.

Selection pressure Metric Significance

max Ass

k2

k (1 2 k )1 3

Maximum sustainable autotroph biomass. Maximum autotroph exergy
(Jorgensen 1992).

max Atr

T1
A dtET 0

Maximum average autotroph biomass/exergy over the first transient after
a perturbation.†

max Hss
m Nss1 2k N 1 k1 ss s

Maximum sustainable herbivore biomass. Also maximum herbivore ex-
ergy.

max Htr

T1
H dtET 0

Maximum average herbivore biomass/exergy over the first transient after
a perturbation.†

max Fluxss
Nssm Ass1 2N 1 kss s

Maximum gross primary production. Maximum ascendency (Ulanowicz
1980).

max Fluxtr

T1 N
m A dtE 1 2T N 1 ks0

Maximum average Flux over the first transient after a perturbation.†

max P /Bss

Fluxss

(A 1 H )ss ss

Maximum gross primary production per unit biomass, power capacity
(Odum and Pinkerton 1955), entropy production (Schneider 1988),
or dissipation (Johnson 1988) at steady state.

max P /Btr

T1 N A
m dtE 1 21 2T N 1 k A 1 Hs0

Maximum average over first transient after a perturbation.†P /B

max resilience m ks Ass21 22 (N 1 k )ss s

Maximum resilience (DeAngelis 1992).

Notes: Abbreviations are: ss, the steady state of the system; tr, transient state of the system. A, H, and N are instantaneous
values of the state variables; is total biomass; T is the period of oscillation of the system; t is time.B (5A 1 H )

† All perturbations removed half of each of the autotroph and herbivore steady-state biomasses.

tions within an ecologically realistic time frame (i.e.,
several years). The reactivity inherent in the model
indicates that such sensitive systems will often exhibit
large amplitude, persistent oscillations (population
booms and busts) in response to very small perturba-
tions.

We simulated the evolutionary adaptation of the eco-
system model by coupling it to a GA. The GA utilizes
the rules of evolution with natural selection, including
random mutation, random crossing-over of genetic ma-
terial during reproduction, and reproductive success
proportional to fitness, to maximize the fitness of vir-
tual chromosomes in a population with respect to a
specified goal function (see Appendix for details). In
our case, each GA chromosome represents one set of
the five parameter values. The coupling was achieved
by using selection pressures defined for the AHN eco-
system model as the goal functions of the GA.

Four basic selection pressures were formulated by
considering thermodynamic (entropy, exergy, and as-
cendency) and ecological (sustainable biomass, pri-
mary productivity, and productivity per unit biomass)
imperatives that influence ecosystems (Table 2). Al-
though the thermodynamic aspects of ecosystems are
not yet well understood, the selection pressures they
imply are consistent with ecological theory. Each se-
lection pressure was evaluated both at steady state and
as an average over the first transient of the system,

resulting in a set of eight ecosystem goal functions to
be optimized by the GA.

Some authors (e.g., Margalef 1968, Odum 1969)
have suggested that ecosystems minimize the primary
production per unit biomass (P/B). We elected to max-
imize P/B in our selection pressures according with
hypotheses of maximum power capacity (Lotka 1922,
Odum and Pinkerton 1955) and entropy production
(Johnson 1990). We will demonstrate that the two
views are not incompatible, as our model ecosystem
maximizes P/B over evolutionary time, but minimizes
P/B over shorter time scales, such as when responding
to a perturbation.

The resilience of the system was optimized similarly
to the other goal functions (Table 2). Although there
is little thermodynamic or ecological evidence to sug-
gest that this is a legitimate selection pressure, eco-
logical networks that develop stabilizing feedbacks are
considered to be more likely to remain extant than those
that do not (Lenton 1998).

Table 2 clearly shows that, as might be expected in
a simple model, the expressions for the steady state
goal functions are closely related, with quantities such
as the steady state autotroph biomass (Ass) appearing
in the flux, P/Bss, and resilience goal functions, as well
as being a goal function in its own right. This should
not however be taken as an indication that the goal
functions are monotonically related to Ass. The steady
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state nutrient concentration (Nss) appears in all the
steady state goal functions apart from Ass, and as can
be seen from Eq. 6 (Table 1), contains Ass. If the right-
hand side of Eq. 7 is substituted in the steady state
goal functions in place of Nss, we can readily see that
the goal functions are highly nonlinear functions of Ass

and in fact have multiple critical points. The goal func-
tions are thus not necessarily convex hypersurfaces in
the parameter space, and the parameter sets that opti-
mize each of these functions are not necessarily vertices
of the space.

The parameter space represents the genetic potential
of the AHN system’s biota to adapt in response to se-
lection pressures. As the GA simulates the adaptation
of the ecosystem, changes in the values of the five
parameters can reflect either species shifts within a
community or physiological adaptations by individual
species. Ten simulations of the ecosystem’s adaptation
to each selection pressure were performed to investi-
gate the sensitivity of the goal functions to each pa-
rameter. The means of the 10 simulations were used to
indicate the ‘‘optimal’’ parameter values, and the co-
efficients of variation (CV) of the means were used as
estimates of the sensitivity of the goal functions to each
of the parameters. Parameters with CV’s similar to that
of the selection pressure were considered influential.

RESULTS

The adaptation simulations in a low-nutrient envi-
ronment (Table 1, Appendix B) indicate that all the
selection pressures are optimized at the vertex of the
parameter space defined by

k 5 0.003 (9a)1

k 5 0.075 (9b)2

k 5 0.600 (9c)3

m 5 1.350 (9d)

k 5 138. (9e)s

Most of the selection pressures are unequivocally max-
imized at this vertex, although three (Hss, Htr, and P/
Bss) can achieve slightly higher maxima with the values
of k1, k2, or k3 indicated in Table 1. These selection
pressures are, however, only slightly sensitive to var-
iations in these parameters, and the increases are of the
order of only a few percent.

The optimizing parameter set (Eqs. 9a–e) describes
a system with a rapidly growing, unpalatable autotroph
subject to low grazing pressure of a herbivore that in-
efficiently converts ingested nutrient to biomass and
experiences high mortality. The predicted autotroph at-
tributes, of rapid growth and optimal nutrient utiliza-
tion, accord with attributes expected from Darwinian
evolution with individual selection pressures. The pre-
dicted herbivore attributes, however, are both counter-
intuitive and contrary to attributes that might be ex-

pected from individual-based evolution. The herbivore
attributes result in organisms that are less fit to compete
for limiting resources at the individual level. It is also
counterintuitive that the autotroph and herbivore bio-
masses can be maximized by noncontradictory param-
eter sets. Further, it is also unexpected, considering
their substantially different mathematical formulations,
that steady state and transient selection pressures
should be sensitive to the same parameters and indeed
are maximized by the same values.

The most interesting aspect of the simulation is that
the biotic attributes that optimize the thermodynamic
goal functions also maximize the system’s resilience.
The probability of nine independent functions being
optimized at the same vertex of a five-dimensional pa-
rameter space is 2.8 3 10214 and substantially less if
optima at interior points are considered. Steady-state
relationships between P/B and resilience have been
demonstrated previously for Lotka-Volterra and Mi-
chaelis-Menten models (DeAngelis 1980, Moore et al.
1993), although Stone et al. (1996) showed that such
relationships are not necessarily monotonic, even for
simple Lotka-Volterra models. Our simulations imply
these relationships might also apply to transient dy-
namics and also suggest additional relationships be-
tween biota biomasses and resilience.

There is also no a priori indication that the optimi-
zation of an ecosystem’s response to thermodynamic
or ecological imperatives should result in a maximally
resilient ecosystem. This outcome, however, is reason-
able, given that all ecosystems exist within the con-
straints of thermodynamic laws and that highly resilient
ecosystems are more likely to remain extant than eco-
systems with low resilience.

The adaptation simulations for a high-nutrient en-
vironment (Table 2, Appendix B) also reveal that a
maximum resilience parameter set optimizes the set of
thermodynamic goal functions:

k 5 0.003 (10a)1

k 5 0.075 (10b)2

k 5 0.600 (10c)3

m 5 1.350 (10d)

k 5 415. (10e)s

This parameter set is similar to the low-nutrient opti-
mum parameter set, differing only in the value of ks.
The resilience is highly sensitive to ks (indeed to all
parameters) in both simulations, with resilience being
maximized by low values of ks in low-nutrient systems
and high values of ks in high-nutrient systems. While
four selection pressures in addition to resilience were
sensitive to ks in the low-nutrient simulations, only re-
silience was sensitive to ks in the high-nutrient simu-
lations.

Simulations maximizing resilience for nutrient load-
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ings between the low-nutrient and high-nutrient ex-
tremes, with ks allowed to vary over the entire nutrient
range, were also undertaken. Optimum points were then
found at interior (i.e., non-vertex) points of the param-
eter space. Regression analysis revealed a strong linear
relationship between the total nutrient (N0) and the val-
ue of ks that maximized the resilience of the system

2k 5 0.99 3 N 2 497 R 5 0.9997s 0

p K 0.001 (11)

The trend to increased phytoplankton ks values in re-
sponse to increased ambient nutrient concentrations
may be considered an ‘‘emergent property’’ of the max-
imally resilient system.

DISCUSSION

Our results are based on the evolution of a simple
ecosystem model under the constraint of thermody-
namic and ecological goal functions that as yet have
little rigorous basis. A measure of the validity of our
results may be obtained by considering how the results
of our simulations compare with properties of real eco-
systems.

A significant result of our simulations is the emer-
gence of the relationship between the autotroph half-
saturation constant ks and the resilience of the ecosys-
tem. Empirical investigations have documented that
phytoplankton ks values do vary with ambient nutrient
concentration (Eppley et al. 1969, MacIsaac and Dug-
dale 1969, Carpenter and Guillard 1971). The values
of ks predicted by our regression agree with measure-
ments of marine phytoplankton ks values for nitrate and
ammonium of 0–28 mg N/m2 for low-nutrient condi-
tions in the Sargasso Sea to 2213–3557 mg N/m2 for
high-nutrient conditions at La Jolla (Eppley et al.
1969).

Further, our predictions that highly resilient ecosys-
tems will have low values of k1 and high values of k3

agree with two ecosystem-stabilizing effects that have
recently been hypothesized from studies of real plank-
ton ecosystems (McCauley et al. 1999). From studies
of algae–Daphnia–nutrient ecosystems in lakes and mi-
crocosms, McCauley et al. concluded that the addition
of inedible algae could stabilize the system, even in
high-nutrient environments. The addition of inedible
algae is analogous to a reduction of k1 in our model,
as this parameter reflects the ‘‘average palatability’’ of
the algal assemblage. They further noted that the sys-
tems could also be stabilized if Daphnia’s rate of in-
crease was reduced by the production of ephippia, rest-
ing eggs that require substantial energy input but do
not contribute immediately to population growth. In
our model, such a physiological response is analogous
to an increase in k3, the proportion of nutrient consumed
by the herbivores that does not contribute to population
growth.

The maximally resilient system predicted by our sim-

ulations also reflects the production per unit biomass
(P/B) characteristics of real ecosystems. When the
maximum resilience system is perturbed from its steady
state, for example by a reduction of its biomass, the
system responds by very rapidly increasing P/B to a
level well above its steady-state value, after which
P/B reduces until it returns to its steady-state level.
This behavior has been observed in mesocosm exper-
iments in which ecosystems were subject to perturba-
tions (pollution) that moved them away from their
steady state by reducing the biomass of the system
(Schneider 1988).

The concordance of ecosystem attributes predicted
by our simulations with attributes observed in real eco-
systems suggests that our model may be reflecting the
mechanisms by which at least some ecosystems change.
We consider that these results support our contention
that our simple ecosystem adaptation model captures
the fundamental properties of ecosystems and that our
thermodynamic/ecological goal functions are feasible
representations of the factors influencing ecosystem
evolution.

The principal implication of our simulations is the
hypothesis that ecosystems evolve to maximize resil-
ience. This hypothesis concurs with the conclusions of
Johnson’s (1990) extensive study of isolated Arctic
lake ecosystems. On the basis of his empirical work,
Johnson proposed the hypothesis that ‘‘all autonomous
ecosystems, irrespective of their diversity, tend to as-
sume a stable state, within the boundary constraints of
the system, the regularity of the energy input and the
genetic make-up of their species populations’’ (Johnson
1990:9). Our results suggest that Johnson’s hypothesis
may be refined to contend that ecosystems will evolve
to the most stable state available.

Testing ecosystem hypotheses is not a trivial task,
and in this case the resilience of a real ecosystem is
not readily measurable. The best approach to testing
our hypothesis may lie in defining verifiable attributes
we might expect to find in real ecosystems.

Our results suggest that the ratio m/k1, which can be
relatively easily obtained for real ecosystems, may be
a useful surrogate measure of ecosystem resilience.
This ratio reflects the coupling between the autotrophs
and herbivores in an ecosystem, being a ratio of the
growth attributes of the autotroph (m) and the inter-
action of the autotroph palatability and herbivore graz-
ing characteristics (k1). Our simulations imply that eco-
systems with high values of m/k1 will have high resil-
ience to perturbation (Fig. 1). The nature of the rela-
tionship between m/k1 and resilience is not clear, as
linear, quadratic, power, and exponential functions all
explain .95% of the variation in the data in Fig. 1.
Paradoxically, high values of m/k1 do not necessarily
imply high steady-state autotroph biomass; in this mod-
el they result instead in high steady-state herbivore
biomass. Inversions of the classic trophic biomass pyr-
amids such as this have been well documented in ponds



2024 ROGER CROPP AND ALBERT GABRIC Ecology, Vol. 83, No. 7

FIG. 1. Resilience of systems vs. m/k1. Values of m/k1 are
obtained from various ratios of 0.45 , m , 1.35 and 0.003
, k1 , 0.009 (n 5 147). Other parameter values are for the
maximum resilience system.

FIG. 2. The resilience, normalized to the maximum re-
silience for each nutrient level, of maximally resilient systems
with total nutrient (N0) of 600 mg N/m2 (thick line), 1500 mg
N/m2 (dotted line), and 3000 mg N/m2 (thin line) for different
values of ks.

FIG. 3. A comparison of the predicted return times of
maximally resilient systems for increasing nutrient loads. The
thick line represents the resiliences of ecosystems that have
ks adapted to each nutrient load but have the same values for
all other parameters. The dotted line represents the resilience
of an ecosystem adapted to low nutrient (N0 5 500 mg N/
m2), and the thin line represents an ecosystem adapted to N0

5 600 mg N/m2.

and are defined as the annual clear-water stage in many
lacustrine environments (Straskraba et al. 1999).

Simulations with the maximum resilience ecosystem
indicate that the sensitivity of the resilience to ks varies
according to the ambient nutrient level of the system.
Comparison of the normalized resilience of an eco-
system adapted to a low-nutrient environment with the
normalized resilience of the same (in the other four
parameters) ecosystem adapted to intermediate and
high-nutrient environments (Fig. 2) reveals that in-
creasing the total nutrient of an ecosystem broadens
the range of ks values for which the resilience is close
to its maximum. This suggests that we might expect to
find a greater range of ks values in a high-nutrient eco-
system and that the rate at which autotrophs will in-
crease ks in response to nutrient enrichments will slow
as nutrient loadings increase.

Our hypothesis that ecosystems will adapt to max-
imize resilience does not imply that ecosystems will
be impervious to perturbation. Simulations predict that
model ecosystems that have adapted ks to low-nutrient
regimes can be severely destabilized (i.e., will have
longer return times, the inverse of resilience; De-
Angelis 1980) by the addition of nutrient (Fig. 3). The
severity of the destabilization is therefore more depen-
dent on the history of the nutrient regime of the eco-
system prior to perturbation than on the contemporary
nutrient loading. This is of fundamental importance for
managing the impact of nutrient enrichment, as it sug-
gests we can expect the effects of anthropogenic nu-
trient addition on oligotrophic ecosystems, such as cor-
al reefs, to be more severe than the equivalent nutrient
addition to systems adapted to high nutrient. Similar
hypotheses have been proposed from empirical studies
of coral reef ecosystems (i.e., Bell and Elmetri 1995).

The short return times predicted for adapted systems
at high-nutrient loadings in Fig. 3 also correspond with
empirical observations that stable plankton popula-
tions, in the field and in mesocosms, are not restricted

to low-nutrient systems (McCauley and Murdoch
1990). These authors also note that the destabilizing
effect of nutrient enrichment is a fundamental property
of a large range of predator–prey models, including the
one we have used. It is particularly interesting, there-
fore, that the evolutionary pressures we postulate lead
to the prediction of relatively stable states for the eco-
system model, even when subject to nutrient enrich-
ment. Our hypothesis also supports contentions (i.e.,
Jorgensen 1999) that unstable or chaotic dynamics will
be uncommon in unperturbed ecosystems. High resil-
ience is predicted for adapted ecosystems, although our
simulations suggest that unstable or chaotic dynamics
may be introduced into previously stable ecosystems
by perturbations such as species invasions or extinc-
tions, or nutrient enrichment.
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Concluding remarks

The principal outcome of our ecosystem adaptation
simulations is the hypothesis that ecosystems evolve
to the most stable state available within the constraints
of their environments and the genetic potential of their
constituent biota. We have documented empirical ev-
idence that both supports the fundamental results of
our simulations and suggests that the predictions we
make on the basis of our hypothesis are reasonable.

The concurrence of our theoretical results and ob-
served properties of real ecosystems further suggests
that our thermodynamic imperatives, although yet to
be rigorously defined in relation to living systems, may
be reasonable representations of the constraints on eco-
system evolution. The analogous results of adaptation
simulations of both steady state and transient selection
pressures provide promise that applications of this ap-
proach may not be limited to models that have ana-
lytically tractable steady states. Future work to simulate
thermodynamically constrained ecosystem evolution
with more complex models will provide a more reliable
indication of the generality of our results.

While our hypothesis relates to the evolution of eco-
systems, our simulations do not have an intrinsic time
scale. Changes in parameter values may also represent
non-evolutionary ecosystem change such as shifts in
species composition. The maximization of resilience
may therefore be an emergent property of ecosystems
apparent over a range of time scales.
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APPENDIX A

A description of the genetic algorithm is available in ESA’s Electronic Data Archive: Ecological Archives E083-036-A1.

APPENDIX B

Tables of parameter values that optimize selection pressures is available in ESA’s Electronic Data Archive: Ecological
Archives E083-036-A2.


