Objective Beach-State Classification From Optical Sensing of Cross-Shore Dissipation Profiles

File Size Format
41429.pdf 624Kb Adobe PDF View
Title Objective Beach-State Classification From Optical Sensing of Cross-Shore Dissipation Profiles
Author Browne, Matthew; Strauss, Darrell; Tomlinson, Rodger Benson; Blumenstein, Michael Myer
Journal Name IEEE Transactions on Geoscience and Remote Sensing
Year Published 2006
Place of publication New York, N.Y
Publisher Institute of Electrical and Electronics Engineers
Abstract Remote sensing using terrestrial optical charge-coupled device cameras is a useful data collection method for geophysical measurement in the nearshore zone, where in situ measurement is difficult and time consuming. In particular, optical video sensing of the variability in human-visible surface refraction due to the nearshore incident wave field is becoming an established method for distal measurement of nearshore subtidal morphology. We report on the use of a low-mounted shore-normal camera for gathering data on cross-shore dissipative characteristics of a dynamic open beach. Data are analyzed for the purposes of classifying three of Wright and Shorts' intermediate classes of morphological beach state as determined by expert raters. Although these beach states are usually thought of as being distinctive in terms of their longshore bar variability, theory predicts that differences should also be observed in cross-shore dissipative characteristics. Three methods of generating features from statistical features from the archived optical data are described and compared in terms of their ability to discriminate between the beach states. Principal component scores of the percentile distributions were found to provide slightly better classification performance (i.e., 85%, while approximating the data using relatively fewer features), whereas classification using intensity distributions alone resulted in the worst performance, classifying 78% of beach states correctly. Class center moment profiles for each beach state were constructed, and results indicate that cross-shore wave dissipation becomes more disorganized as linear bars devolve into more complex transverse structures.
Peer Reviewed Yes
Published Yes
Publisher URI http://ieeexplore.ieee.org/Xplore/dynhome.jsp
Alternative URI http://dx.doi.org/10.1109/TGRS.2006.877758
Copyright Statement Copyright 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Volume 44
Issue Number 11
Page from 3418
Page to 3426
ISSN 0196-2892
Date Accessioned 2007-03-15
Date Available 2009-08-26T07:03:38Z
Language en_AU
Research Centre Griffith Centre for Coastal Management; Institute for Integrated and Intelligent Systems
Faculty Faculty of Science, Environment, Engineering and Technology
Subject PRE2009-Oceanography; PRE2009-Pattern Recognition
URI http://hdl.handle.net/10072/14366
Publication Type Journal Articles (Refereed Article)
Publication Type Code c1

Brief Record

Griffith University copyright notice