Culture-dependent and culture-independent microbial investigation of pine litters and soil in subtropical Australia

There are no files associated with this record.

Title Culture-dependent and culture-independent microbial investigation of pine litters and soil in subtropical Australia
Author Zhang, Li; Xu, Zhihong; Patel, Bharat Kumar
Journal Name Journal of Soils and Sediments
Year Published 2009
Place of publication Germany
Publisher Springer Verlag
Abstract Background, aim, and scope Forest plantations, widely grown for wood production, involve the selective promotion of single-tree species or replacement of natural species by exotic tree species. Slash pine (Pinus elliottii) has been chosen for reforestation of infertile sandy soils in southeast Queensland, Australia. These exotic pine plantations minimize soil and water losses and are important scientific study sites. The soil environment of these plantations, though devoid of sufficient nutrients, organic carbon and other factors, harbors innumerable bacteria that may play a crucial role in maintaining soil quality and ecosystem functions. These soil microorganisms also have the potential for use as sensitive biological indicators to reflect environmental changes. It is therefore essential to understand the interrelationships among bacterial communities and their environment by assessing their structural and functional diversity and their responses to disturbances. The main aim of our investigation was to determine the diversity of bacterial communities in forest litters and soil during the forest leaf litter decomposition using culture-dependent and culture-independent techniques. Materials and methods A 25-cm (diameter) × 40-cm core sample was collected and fractionated into three subsamples designated E1 (L leaf litter layer), E2 (F leaf litter layer), and E5 (0–10 cm soil layer). Both culture-dependent and culture-independent methods were applied in this study. In the culture-independent study, a strategy of whole-community DNA extraction, polymerase chain reaction (PCR) amplification followed by cloning and 16S rDNA sequence analysis was used; for culture-dependent study, the strategy included sample plating and bacteria isolating, DNA extraction, PCR amplification, and 16S rDNA sequence analysis. The diversity similarities between two bacterial communities and two methods are quantified using Jensen–Shannon divergence. Results From culture-dependent study, 336 colonies in total were isolated and grouped from the three subsamples, and the 16S rRNA sequence analysis from a representative isolate from each morphogroup (21 isolates) indicated that they belonged to the phyla Actinobacteria, Firmicutes, and Proteobacteria. Culture-independent assessment based on 16S rRNA gene library comprising 194 clones revealed that members of the phylum Actinobacteria were absent in the culture-independent studies. Clones in libraries from E1 consisted exclusively of members of the Firmicutes. The majority of clones from E2 were related to Firmicutes (79%) and Proteobacteria (21%). Clones derived from E5 were mostly affiliated with Acidobacterium (42%), followed by unclassified bacteria (27%), Verrucomicrobiales (12%), Proteobacteria (11%), and Planctomycetes (8%). Discussion This study showed that bacterial culturabilities in different fractions of leaf litters were similar, and both of them were higher than the bacterial culturability in the soil. Unculturable bacterial diversity in the soil, however, was much higher than the leaf litter bacterial diversity. The bacterial diversity on the top layer of leaf litters was slightly less than that on the bottom layer of leaf litters. This might indicate that forest soils are a more complex environment than leaf litters are and also that they might inhabit more unculturable microorganisms in the forest soils, which would need to be further investigated. The leaf litter layer samples also demonstrate the significant difference between the bacterial community diversity discovered by these two methods in this study. The information provided by assessing the different fractions of leaf litters and forest soil has improved our understanding of the bacterial community distributions within the forest soil and the above-leaf litters in an exotic pine plantation of subtropical Australia. Conclusions This study represents the first attempt to examine the bacterial community in the different
Peer Reviewed Yes
Published Yes
Alternative URI http://dx.doi.org/10.1007/s11368-009-0059-z
Volume 9
Issue Number 2
Page from 148
Page to 160
ISSN 1439-0108
Date Accessioned 2010-03-04
Date Available 2010-08-04T07:20:23Z
Language en_AU
Research Centre Environmental Futures Research Institute; Centre for Health Practice Innovation; Queensland Micro and Nanotechnology Centre; Griffith Health Institute
Faculty Faculty of Science, Environment, Engineering and Technology
Subject Soil Biology
URI http://hdl.handle.net/10072/30708
Publication Type Journal Articles (Refereed Article)
Publication Type Code c1

Show simple item record

Griffith University copyright notice