Impact tests and parametric impact studies on drive-in steel storage racks

File Size Format
70500_1.pdf 2519Kb Adobe PDF View
Title Impact tests and parametric impact studies on drive-in steel storage racks
Author Gilbert, Benoit; Rasmussen, Kim J.R.
Journal Name Engineering Structures
Year Published 2011
Place of publication United Kingdom
Publisher Elsevier
Abstract Extensively used in the industry to store goods, steel storage racks are frequently subjected to accidental impact forces from operating forklift trucks. There is currently little understanding of the nature of these impact forces, leading to occasional catastrophic failures because of inadequate structural design. International racking design codes deal with impact but use an arbitrary value of impact force with no scientific justification. This paper focuses on an impact-sensitive type of storage rack, called ''drive-in racks''. Contrary to classical ''selective racks'', where pallets are stored on beams and where each single pallet is always accessible, ''drive-in racks'' allow the forklift truck to drive into the rack to store pallets on beam rails, one after the other, on the first-in, last-out principle. This type of design leads to slender uprights in the down-aisle direction, only restrained at the base and at the top. When subjected to an impact force, the bowing of the upright triggers progressive failure by allowing the pallets to drop through. This paper presents experimental results obtained from tests on a complete full-size drive-in rack structure subjected to the impact of a forklift truck. Parametric impact studies using finite element analysis are also presented. Factors affecting the sensitivity of drive-in racking structures to impact are investigated and conclusions are drawn about the parameters most significantly influencing the progressive collapse of this type of rack under impact.
Peer Reviewed Yes
Published Yes
Alternative URI http://dx.doi.org/10.1016/j.engstruct.2011.01.017
Copyright Statement Copyright 2011 Elsevier. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
Volume 33
Issue Number 5
Page from 1410
Page to 1422
ISSN 0141-0296
Date Accessioned 2011-05-30
Language en_AU
Faculty Faculty of Science, Environment, Engineering and Technology
Subject Structural Engineering
URI http://hdl.handle.net/10072/40822
Publication Type Journal Articles (Refereed Article)
Publication Type Code c1e

Show simple item record

Griffith University copyright notice